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Abstract: To address the problem of the supply–demand imbalance caused by network transmission
losses in integrated power and heating systems (IPHS), this paper presents an optimal economic
dispatch strategy to minimize system operation cost and realize coordination and optimization
between power and heat. Firstly, an innovative economic dispatch model considering transmission
losses is developed, where both power and heat transmission losses models are established with
good precision together. In addition, the coordination equation is derived from the formulated
nonlinear, multi-constrained coupling optimization problem, where the coordination relationship
of units’ outputs is clearly analyzed in an analytic way. Then, a double-λ-iteration algorithm is
proposed, which can not only effectively solve the nonlinear coupling optimization problem but also
decrease computation burden with faster convergence rate. Finally, simulations performed on five
case studies illustrate the satisfying performance of the presented strategy.

Keywords: integrated power and heating systems; network transmission losses; economic dispatch;
nonlinear coupling; double-λ-iteration algorithm

1. Introduction

As a core part of integrated energy systems [1–3], IPHS refer to the organic coordination
and optimization of electric energy and heat energy in the process of planning, construction and
operation, where production, transmission, distribution, conversion, storage and consumption have
been performed holistically. With coupling elements such as combined heat and power (CHP) [4–6]
units being integrated, the originally independent power system and heating system can be coupled
closely in IPHS. By this way, IPHS can not only achieve diversified energy supply and efficient energy
conversion but also ensure energy supply to be sustainable and reliable.

Technologies related to IPHS have been highly valued by researchers and technicians in the global
energy field [7–10]. At present, relevant research has mainly focused on promoting the application of
distributed energies and cogeneration technologies, increasing the use proportion of renewable energy
resources, and advancing collaborative optimization among multiple energy resources, etc. The work
studied in this paper will focus on the economic dispatch of IPHS, which aims at minimizing the total
system operation cost for power and heat generation of multiple units, while meeting users’ actual
energy demands and scheduling units’ optimal outputs.

The economic dispatch problem (EDP) is one of the most important optimization problems of
power system operation, which aims at minimizing the total operation cost while satisfying both
system-level and unit-level constraints [11]. The EDP can be typically formulated as a constrained
optimization problem, and existing solving algorithms for economic dispatch can be classified into
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two categories: analytic optimization algorithms such as iteration method [12], Newton’s method [13],
linear programming method [14], and heuristic optimization algorithms such as genetic algorithm [15],
particle swarm optimization [16], and bee colony optimization [17]. It can be noted that EDP of power
systems considering power transmission losses has been studied well [11], and there have been many
methods to handle the EDP. However, the EDP of power systems is only the study of the single power
optimization dispatch, which cannot realize collaborative optimization and economic distribution
among multiple energy resources, and it cannot meet the developing trend of the future power grid to
integrated energy systems with diversified energy supply and consumption.

Extending this issue to IPHS, domestic and foreign scholars have done some noticeable research.
The authors in [18] have proposed a classical CHP economic dispatch model. In addition, the authors
in [19] have developed a day-ahead economic dispatch model for regional IPHS to comprehensively
consider the wind curtailment cost, electric vehicle dispatch cost and so on. The authors in [20]
have presented a holistic optimization dispatching method to minimize the operation cost of the
integrated community energy system. However, none of them have considered transmission losses.
With power transmission losses, the authors in [21] have designed a line-up competition algorithm
and the authors in [22] have proposed an optimization technique based on time-varying acceleration
particle swarm optimization to handle CHP multi-objective optimization problems, but neither of
them have considered heat transmission losses and network transmission constraints. Defining power
and heat losses coefficients, the authors in [23] have presented a distributed neurodynamic-based
approach to solve the EDP of integrated energy systems, but neither power nor heat transmission
losses model have been established, which means that both of them have been simply considered as
constants to a certain extent.

At present, the EDP of IPHS considering network transmission losses is a relatively novel but
complex problem, and there have hardly been good model combinations to estimate both power and
heat transmission losses at the same time. In other words, the EDP discussed in most of the existing
literature is based on the ideal conditions without network transmission losses. Although the goal
of economic dispatch has been achieved through reasonable allocations, the optimal solutions are
accompanied by many problems due to the existences of transmission losses. On one hand, due
to neglecting power transmission losses, it is easy to cause supply–demand imbalance [21,24] and
suboptimal solutions [25,26], which cannot meet users’ actual load demands well. On the other hand,
due to neglecting heat transmission losses, it is easy to cause insufficient heat supply, which will
damage users’ experiences and even bring serious economic losses [7].

To address the above problems, this paper has studied the optimal economic dispatch of IPHS
with network transmission losses, and our major contributions of this paper can be given as follows:

• A novel economic dispatch model is developed for IPHS with network transmission losses, where
both power and heat transmission losses are considered with good precision together, and network
transmission constraints are extra considered for the practical application significance. In addition,
supply–demand equality constraints and output inequality constraints are routinely considered.

• By constructing the systemic Lagrangian function, the coordination equation is derived from the
formulated nonlinear, multi-constrained coupling optimization problem, where the coordination
relationship of units’ outputs is clearly analyzed, and the optimal solutions are illustrated in an
analytic way considering output inequality constraints.

• A double-λ-iteration algorithm is proposed to effectively solve this innovative EDP, which can
not only decrease computation burden but also protect the privacy of power-heat subsystems to a
large extent. More importantly, it can provide optimal analytic solutions with faster convergence
rate than heuristic optimization algorithms.

• The total cost of power and heat generation is minimized while ensuring the supply–demand
balance, and all of the units’ outputs are optimized to relieve the transmission line and pipeline
congestions. Moreover, simulations performed on five case studies illustrate the satisfying
performance of the presented approach.
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The rest of this paper is organized as follows: Section 2 introduces some basics on IPHS. Section 3
develops a novel economic dispatch model with network transmission losses. Section 4 analyzes
the coordination relationship of units’ outputs. Section 5 proposes a double-λ-iteration algorithm.
Section 6 shows the simulation results of the presented method, and conclusions and perspectives for
future works are given in Section 7.

2. Integrated Power and Heating Systems

Traditional power systems and heating systems simply optimize for the single energy form of
electric energy or heat energy, which cannot achieve complementary advantages and collaborative
benefits between energy resources. Relying on advanced communication and control technologies,
IPHS can realize mutual coordinations among electric energy, heat energy, energy storage and load
through the optimization dispatch, and it can also construct a cost-effective, eco-friendly and flexible
way with the integration of production, supply and consumption.

Generalized IPHS involve the production, transmission, distribution, consumption and other
aspects of electric energy and heat energy, so it is very complex to carry out research on its whole.
At present, scholars mainly start from narrow IPHS. By developing a novel economic dispatch model
with network transmission losses, this paper further reduces the imbalance between supply-side and
demand-side caused by transmission losses, while meeting users’ energy demands and minimizing
the enterprises’ production cost. The structure diagram of the IPHS studied in this paper is shown in
Figure 1, which can be mainly used in industrial parks, intelligent factories, intelligent buildings, etc.
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Figure 1. The structure diagram of the IPHS studied in this paper.

Notice that there is no consideration of energy storage units in Figure 1; the reasons can be
attributed to two aspects. First, energy storage units are mainly used to stabilize the fluctuations of
intermittent renewable energy resources, which should be considered as a whole rather than as a
separate part if necessary. Second, for the EDP of IPHS studied in this paper, it can be classified into the
single-period economic dispatch field such as [12,22,23,25], which aims at guiding the supply-side to
develop an optimal generation scheme and dispatching different units to arrange a reasonable output
plan. However, for ensuring the balance constraint between initial state of charge (SOC) and final SOC
in an integral dispatch cycle, the single-period economic dispatch is not applicable.

Remark 1. For modeling electric energy storage, the nonlinear constraints illustrated in [27] can be linearized
to obtain the linear constraints with good precision. In addition, heat energy storage can be modeled in similar
ways [28,29]. More importantly, most commercial battery systems can be simplified and assumed to be linearized
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models in application, so these linearized ways are effective to a large extent. To be noted, all of this literature
discussed above are based on the multi-period economic dispatch field.

3. Economic Dispatch Model

In this section, the problem formulation of the EDP is presented, which aims at minimizing the
total system operation cost for power and heat generation of multiple units to provide the desired
amount of power and heat within the units’ capabilities.

The objective function can be given by

min FT = FP + FC + FH , (1)

where FT is the total system operation cost, FP is the total operation cost for power-only units, FC is the
total operation cost for CHP units, and FH is the total operation cost for heat-only units.

The operation cost for power-only units is usually approximated by a quadratic function as [12]

FP =
Np

∑
i=1

fi(Pi) =
Np

∑
i=1

(αi + βiPi + γiP2
i ), (2)

where fi(Pi) and Pi are the operation cost function and output power associated with the ith power-only
unit, respectively, αi, βi and γi > 0 are the the operation cost parameters.

The operation cost for CHP units is usually approximated by a quadratic function as [18]

FC =
Nc

∑
j=1

f j(Oj, Hj) =
Nc

∑
j=1

(αj + β jOj + γjO2
j + δj Hj + θj H2

j + ε jOj Hj), (3)

where f j(Oj, Hj), Oj and Hj are the operation cost function, output power and output heat associated
with the jth CHP unit, respectively, αj, β j, γj > 0, δj, θj > 0 and ε j are the operation cost parameters.

The operation cost for heat-only units is usually approximated by a quadratic function as [21]

FH =
Nh

∑
k=1

fk(Tk) =
Nh

∑
k=1

(αk + βkTk + γkT2
k ), (4)

where fk(Tk) and Tk are the operation cost function and output heat associated with the kth heat-only
unit, respectively; αk, βk and γk > 0 are the operation cost parameters.

The EDP is subject to several operational constraints. Firstly, the power supply–demand equality
constraint is given by

∆P =
Np

∑
i=1

Pi +
Nc

∑
j=1

Oj − PD − PL = 0, (5)

where ∆P is the system power mismatch, PD is the system power load demand, PL is the power
transmission losses that can be expressed by [11]

PL =
Np

∑
i=1

Np

∑
m=1

PiBimPm + 2
Np

∑
i=1

Nc

∑
j=1

PiBijOj +
Nc

∑
j=1

Nc

∑
n=1

OjBjnOn, (6)

where Bij is the entry of the losses coefficient matrix B on the ith row and the jth column. Bij = Bji can
be calculated according to the transmission line parameters and the average daily operating status of
the power system [24].

To be noted, the EDP of power systems considering power transmission losses can be regarded as
a basic topic in this field [11]. Differing from this topic, this paper extends the issue to IPHS including
both power and heat transmission losses. In addition, we use B matrix losses formula, for it can give a
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sufficiently accurate estimation of the total power transmission losses in the offline mode with a small
amount of computation.

Secondly, the heat supply–demand equality constraint is given by

∆H =
Nh

∑
k=1

Tk +
Nc

∑
j=1

Hj − HD − HL = 0, (7)

where ∆H is the system heat mismatch, HD is the system heat load demand, and HL is the heat
transmission losses that can be expressed by [30]

HL =
n

∑
g=1

2π
tsw, f − tav,g

Rh
lg, (8)

where n is total segments of the heat medium flowing through the pipeline, lg is the length of the heat
medium flowing through each segment of the pipeline, tsw, f is the supply–water temperature in the
heating network node f , tav,g is the mean temperature of the medium around the heating network
pipeline g, and Rh is the total thermal resistance of pipeline per kilometer from the heat medium to the
surrounding medium.

Remark 2. The power transmission losses PL considered in Formula (6) is nonlinear with the output power,
which will cause the equality constraint (5) to not be a simple linear equality constraint, and the output power
and power transmission losses cannot be obtained simultaneously, so how to handle this nonlinear constraint is
one of our major challenges. Although the heat transmission losses HL considered in Formula (8) is linear with
the supply–return–water temperature difference, the supply–water temperature and the mass flow are variable
and coupled in Formula (16), so that the equality constraint (7) is not also a simple linear equality constraint,
so how to handle this nonlinear constraint is our another major challenge.

Then, the output capacity constraint of power-only units is given by

Pmin
i ≤ Pi ≤ Pmax

i , (9)

where Pmin
i and Pmax

i are the lower bound and upper bound of the output power associated with the
ith power-only unit.

In addition, the output capacity constraint of heat-only units is given by

Tmin
k ≤ Tk ≤ Tmax

k , (10)

where Tmin
k and Tmax

k are the lower bound and upper bound of the output heat associated with the kth
heat-only unit.

Moreover, the heat-power feasible operation region of CHP units is given by [21]{
Omin

j (Hj) ≤ Oj ≤ Omax
j (Hj),

Hmin
j (Oj) ≤ Hj ≤ Hmax

j (Oj),
(11)

where Omin
j (Hj), Omax

j (Hj), Hmin
j (Oj) and Hmax

j (Oj) constitute the linear inequalities that define the
feasible operation region of the jth CHP unit. The linear inequalities can be expressed by

bmjOj + cmjHj ≥ dmj, m = 1, 2, 3, (12)

where bmj, cmj and dmj are the coefficients of the linear inequalities associated with the jth CHP unit,
and the heat-power feasible operation region of CHP units is depicted in Figure 2.
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Figure 2. The heat-power feasible operation region of CHP units.

In addition, the transmission capacity constraint of power network lines is given by [13]

Pmin
l,e ≤ Pl,e ≤ Pmax

l,e , (13)

where Pl,e is the transmission power of the power network line e, and Pmin
l,e and Pmax

l,e are the lower
bound and upper bound of the transmission power associated with the power network line e.

Finally, the transmission capacity constraints of heating network pipelines are given by [7]

tmin
sw, f ≤ tsw, f ≤ tmax

sw, f , (14)

where tmin
sw, f and tmax

sw, f are the lower bound and upper bound of the supply–water temperature in the
heating network node f :

mmin
g ≤ mg ≤ mmax

g , (15)

where mg is the mass flow in the heating network transmission pipeline g, mmin
g and mmax

g are the
lower bound and upper bound of the mass flow associated with the heating network transmission
pipeline g.

q f = cmg(tsw, f − trw, f ), (16)

where q f is the transmission heat in the heating network node f , trw, f is the return–water temperature
in the heating network node f , and c is the specific heat capacity of the heat medium.

Remark 3. Based on the optimization dispatch models in [21,22], this paper develops both power and heat
transmission losses models at the same time. In addition, network transmission constraints are extra considered
for their practical application significance. Compared with the EDP of power systems considering power
transmission losses, there are some solving difficulties in the studied EDP of IPHS. For one thing there exist
power-heat couplings both in the objective function and in the constraint conditions, which will cause output
power and output heat to be mutually influential when solving the optimal solutions. For another, there exist
more nonlinear constraints than the EDP of power systems considering power transmission losses, which will
make the EDP studied in this paper more complex to solve. As a result of these, this formulated EDP in this
paper is evidently different from the EDP of power systems and it cannot be directly solved.
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4. Output Coordination Relationship

In this section, the coordination relationship of units’ outputs is analyzed, which will motivate us
to propose the double-λ-iteration algorithm for solving this EDP effectively in the next section.

4.1. Analytic Solutions without Transmission Losses and Inequality Constraints

A core concept of analytic solutions for economic dispatch is the incremental cost (IC), which is
the difference in costs as a result of adding/subtracting one unit of power or heat. Mathematically
speaking, IC is the derivative of the operation cost function with respect to the output power or output
heat. When transmission losses and inequality constraints are neglected, the Lagrangian function
based on the developed economic dispatch model is given by

L = FT − λp∆P− λh∆H, (17)

where λp and λh are Lagrangian multipliers associated with the power supply–demand equality
constraint and the heat supply–demand equality constraint, respectively.

Furthermore, we can obtain the first-order Karush–Kuhn–Tucker (KKT) optimality conditions [31],
which can be expressed by 

∂L
∂Pi

= ∂ fi(Pi)
∂Pi
− λp = 0,

∂L
∂Oj

=
∂ f j(Oj ,Hj)

∂Oj
− λp = 0,

∂L
∂Hj

=
∂ f j(Oj ,Hj)

∂Hj
− λh = 0,

∂L
∂Tk

= ∂ fk(Tk)
∂Tk

− λh = 0,

∂L
∂λp

=
Np

∑
i=1

Pi +
Nc
∑

j=1
Oj − PD = 0,

∂L
∂λh

=
Nh
∑

k=1
Tk +

Nc
∑

j=1
Hj − HD = 0.

(18)

Based on the coordination Equation (18), we can obtain
∂ fi(Pi)

∂Pi
=

∂ f j(Oj ,Hj)

∂Oj
= λp,

∂ fk(Tk)
∂Tk

=
∂ f j(Oj ,Hj)

∂Hj
= λh.

(19)

Therefore, it can be known that the necessary conditions for the existence of a minimum-cost
operating point are that all ICs of the output power for power-only units and CHP units must be equal
to λp. Meanwhile, all ICs of the output heat for heat-only units and CHP units must be equal to λh.

Furthermore, the optimal Lagrangian multipliers denoted by λ∗p and λ∗h can be expressed by

λ∗p =

PD +
Np

∑
i=1

βi
2γi

+
Nc
∑

j=1

β j+ε j Hj
2γj

Np

∑
i=1

1
2γi

+
Nc
∑

j=1

1
2γj

, (20)

λ∗h =

HD +
Nh
∑

k=1

βk
2γk

+
Nc
∑

j=1

δj+ε jOj
2θj

Nh
∑

k=1

1
2γk

+
Nc
∑

j=1

1
2θj

. (21)

Consequently, the optimal outputs denoted by P∗i , O∗j , H∗j and T∗k can be calculated by the
coordination equation.
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4.2. Analytic Solutions with Transmission Losses and Inequality Constraints

When transmission losses and inequality constraints (9)–(11) are considered, the necessary
conditions for the existence of a minimum-cost operating point may be expanded slightly as

(βi + 2γiPi)p fpi ≥ λp, Pi = Pmin
i ,

(βi + 2γiPi)p fpi = λp, Pmin
i < Pi < Pmax

i ,
(βi + 2γiPi)p fpi ≤ λp, Pi = Pmax

i ,
(22)


(β j + 2γjOj + ε j Hj)p fpj ≥ λp, Oj = Omin

j (Hj),
(β j + 2γjOj + ε j Hj)p fpj = λp, Omin

j (Hj) < Oj < Omax
j (Hj),

(β j + 2γjOj + ε j Hj)p fpj ≤ λp, Oj = Omax
j (Hj),

(23)


(δj + 2θjHj + ε jOj)p fhj

≥ λh, Hj = Hmin
j (Oj),

(δj + 2θjHj + ε jOj)p fhj
= λh, Hmin

j (Oj) < Hj < Hmax
j (Oj),

(δj + 2θj Hj + ε jOj)p fhj
≤ λh, Hj = Hmax

j (Oj),
(24)


(βk + 2γkTk)p fhk

≥ λh, Tk = Tmin
k ,

(βk + 2γkTk)p fhk
= λh, Tmin

k < Tk < Tmax
k ,

(βk + 2γkTk)p fhk
≤ λh, Tk = Tmax

k ,
(25)

where p fpi and p fpj are penalty factors of the power transmission losses associated with the ith
power-only unit and the jth CHP unit, respectively, which can be expressed by

p fpi =
1

1− ∂PL
∂Pi

=
1

1− 2(
Np

∑
m=1

BimPm +
Nc
∑

j=1
BijOj)

, (26)

p fpj =
1

1− ∂PL
∂Oj

=
1

1− 2(
Nc
∑

n=1
BjnOn +

Np

∑
i=1

BijPi)

, (27)

where p fhj
and p fhk

are penalty factors of the heat transmission losses associated with the jth CHP
unit and kth heat-only unit, respectively, which can be expressed by

p fhj
=

1

1− ∂HL
∂Hj

=
1

1− 2πlg
cmgRh

, (28)

p fhk
=

1

1− ∂HL
∂Tk

=
1

1− 2πlg
cmgRh

. (29)

Let Ωp denote the set of power-only units for which the optimal Pi = Pmin
i or Pi = Pmax

i .
The optimality condition (22) can be rewritten as

λp = (βi + 2γiPi)p fpi , ∀i /∈ Ωp. (30)

Let Ωco denote the set of CHP units for which the optimal Oj = Omin
j (Hj) or Oj = Omax

j (Hj).
The optimality condition (23) can be rewritten as

λp = (β j + 2γjOj + ε j Hj)p fpj , ∀j /∈ Ωco. (31)
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Let Ωch denote the set of CHP units for which the optimal Hj = Hmin
j (Oj) or Hj = Hmax

j (Oj).
The optimality condition (24) can be rewritten as

λh = (δj + 2θjHj + ε jOj)p fhj
, ∀j /∈ Ωch. (32)

Let Ωh denote the set of heat-only units for which the optimal Tk = Tmin
k or Tk = Tmax

k .
The optimality condition (25) can be rewritten as

λh = (βk + 2γkTk)p fhk
, ∀k /∈ Ωh. (33)

Furthermore, we can obtain the optimal Lagrangian multipliers with transmission losses and
inequality constraints, which can be expressed by

λ∗p =

PD + PL − ∑
i∈Ωp

Pi − ∑
j∈Ωco

Oj + ∑
i/∈Ωp

βi
2γi

+ ∑
j/∈Ωco

β j+ε j Hj
2γj

∑
i/∈Ωp

1
2γi p fpi

+ ∑
j/∈Ωco

1
2γj p fpj

, (34)

λ∗h =

HD + HL − ∑
k∈Ωh

Tk − ∑
j∈Ωch

Hj + ∑
k/∈Ωh

βk
2γk

+ ∑
j/∈Ωch

δj+ε jOj
2θj

∑
k/∈Ωh

1
2γk p fhk

+ ∑
j/∈Ωch

1
2θj p fhj

. (35)

Therefore, we can further calculate the optimal outputs considering transmission losses and
inequality constraints by the constrained optimality conditions (30)–(33), respectively.

Based on the above analysis, the optimal Lagrangian multipliers expressed by (34) and (35) cannot
be obtained directly—the reason is that there are many unknown variables to calculate previously,
such as network transmission losses, penalty factors and so on, so that the optimal solutions of this
EDP cannot be solved directly. Thus, the following method is designed to deal with the intractable
EDP in the next section.

5. Double-λ-Iteration Algorithm

In this section, a double-λ-iteration algorithm is presented, which can be divided into λp-iteration
of the power subsystem and λh-iteration of the heating subsystem according to the output coordination
relationship and system variable types.

Initialization: Assume the iteration performed at discrete time instants is denoted by s. Pi(0),
Oj(0), Hj(0), Tk(0), λp(0), λh(0) and tsw, f (0) can be set any fixed admissible value. Network
transmission constraints could be handled by using the following ways. Firstly, the transmission
capacity constraint of power network lines (13) is considered as follows:{

P
′
i (s) = Pi(s), Pmin

l,e ≤ Pi(s) < Pmax
l,e ,

P
′
i (s) = Pmax

i = Pmax
l,e , Pi(s) ≥ Pmax

l,e ,
(36)

{
O
′
j(s) = Oj(s), Pmin

l,e ≤ Oj(s) < Pmax
l,e ,

O
′
j(s) = Omax

j (Hj) = Pmax
l,e , Oj(s) ≥ Pmax

l,e .
(37)

Then, the constraint of supply–water temperatures (14) is considered as follows:
t
′
sw, f (s) = tmin

sw, f , tsw, f (s) ≤ tmin
sw, f ,

t
′
sw, f (s) = tsw, f (s), tmin

sw, f < tsw, f (s) < tmax
sw, f ,

t
′
sw, f (s) = tmax

sw, f , tsw, f (s) ≥ tmax
sw, f .

(38)
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In addition, the mass flow is calculated and its constraint (15) is considered as follows:

mg(s) =
q f (s)

c(t′sw, f (s)− trw, f (s))
, (39)


m
′
g(s) = mmin

g , mg(s) ≤ mmin
g ,

m
′
g(s) = mg(s), mmin

g < mg(s) < mmax
g ,

m
′
g(s) = mmax

g , mg(s) ≥ mmax
g .

(40)

Furthermore, the transmission heat can be updated as follows:
q
′
f (s) = cm

′
g(s)(t

′
sw, f (s)− trw, f (s)),

T
′
k(s) = q

′
f (s), Tk(s) ≥ q

′
f (s),

H
′
j(s) = q

′
f (s), Hj(s) ≥ q

′
f (s).

(41)

It can be noted that the supply–water temperature and the mass flow are optimized in the process
of scheduling, which have to meet transmission constraints of the heating network. In other words,
the supply–water temperature and the mass flow will be updated and determined whether they meet
above transmission constraints in each iteration.

Main algorithm: PL(s), HL(s), p fpi (s), p fpj(s), p fhj
(s), p fhk

(s) can be calculated by using their
own formulas. Moreover, system Lagrangian multipliers can be updated by using (34) and (35),
respectively, so that units’ outputs and supply–water temperatures can be updated as follows:

Pi(s + 1) =

{
1

2p fpi (s)γi
λp(s + 1)− βi

2γi
, ∀i /∈ Ωp,

Pmin
i or Pmax

i , ∀i ∈ Ωp,
(42)

Oj(s + 1) =


1

2p fpj (s)γj
λp(s + 1)− ε j

2γj
H
′
j(s)−

β j
2γj

, ∀j /∈ Ωco,

Omin
j (H

′
j(s)) or Omax

j (H
′
j(s)), ∀j ∈ Ωco,

(43)

Hj(s + 1) =


1

2p fhj
(s)θj

λh(s + 1)− ε j
2θj

Oj(s + 1)− δj
2θj

, ∀j /∈ Ωch,

Hmin
j (Oj(s + 1)) or Hmax

j (Oj(s + 1)), ∀j ∈ Ωch,
(44)

Tk(s + 1) =

{
1

2p fhk
(s)γk

λh(s + 1)− βk
2γk

, ∀k /∈ Ωh,

Tmin
k or Tmax

k , ∀k ∈ Ωh,
(45)

tsw, f (s + 1) =
1

cmg(s)
q f (s + 1) + trw, f (s). (46)

Convergence: The system power mismatch and system heat mismatch are updated by using (5)
and (7) respectively, then the convergence condition can be given by

ξ = max

{
| ∆P(s + 1) |
| ∆H(s + 1) | ≤ µ, (47)

where ξ is the maximum absolute value between the system power mismatch and the system
heat mismatch, and µ > 0 is the convergence factor that can be regarded as an extremely small
positive constant.

In summary, the EDP of IPHS is solved by the proposed double-λ-iteration algorithm, where
the original optimization problem can be divided into λp-iteration of the power subsystem and
λh-iteration of the heating subsystem. Thereinto, CHP units working as the bond between subsystems
can implement double-λ-iteration to achieve bidirectional information alternations and coordinated
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resources’ allocations. Through reduplicative iterations, the optimal solutions can not be obtained
until satisfying the convergence condition.

Remark 4. By adopting the double-λ-iteration algorithm, the power subsystem has no use for providing
privacy information such as operation cost parameters, etc. to the heating subsystem and vice versa, so that
the computation burden can be decreased and the privacy of power-heat subsystems can be protected to a large
extent, which mean a lot more importance to generation enterprises in the practical power industries. In addition,
the presented method can be regarded as an analytic optimization algorithm, which can provide clear analytic
solutions with faster convergence rate than heuristic optimization algorithms.

6. Simulation Results

In this section, the proposed double-λ-iteration algorithm is applied to this EDP on the 10-unit
IPHS as shown in Figure 3, where power-only units Gp1 − Gp4 correspond to nodes 1–4, CHP units
Gc1 − Gc2 correspond to nodes 5–6, heat-only units Gh1 − Gh2 correspond to nodes 7–8, and power
load unit and heat load unit correspond to nodes 9–10, respectively. In addition, the blue solid lines
correspond to power network lines, and the red solid lines correspond to heating network pipelines.

1

2

3

4

5

6

7

8

9

power-only units
CHP units heat-only units

power bus heat bus

power load unit

10

heat load unit

11 12

Figure 3. The structure schematic diagram of the 10-unit IPHS.

Based on the basic parameters given in Appendix A, simulations performed on five case studies
demonstrate the effectiveness of the proposed algorithm with output inequality constraints, network
transmission constraints, load fluctuation demand and unit commitment capability. The simulation
results are shown in Tables 1 and 2.

Table 1. The optimal outputs of different units.

Case P1 P2 P3 P4 O1 H1 O2 H2 T1 T2

1 105.3540 118.6603 140.5492 224.7903 69.7815 87.6679 51.2016 70.1857 82.3175 140.1510
2 100.0000 119.9328 141.7102 226.5014 70.4617 87.6043 51.7260 70.0128 82.4121 140.2929
3 100.0000 122.2493 143.7622 220.0000 71.6620 87.4872 52.6314 69.7137 82.5750 140.5400
4 100.0000 134.3102 154.6392 220.0000 76.7202 91.9576 55.5212 72.5051 87.6725 148.1873
5 100.0000 122.2495 143.7623 220.0000 71.6617 87.4884 52.6315 69.7136 82.5766 140.5424
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Table 2. The optimal Lagrangian multipliers and minimum total system operation cost.

Case λ∗
p λ∗

h F∗
T [×103$]

1 5.2648 4.5640 7.1477
2 5.2865 4.5674 7.1480
3 5.3252 4.5733 7.1484
4 5.5344 4.7568 7.4046
5 5.3252 4.5734 7.1484

6.1. Case Study 1: Without Output Inequality Constraints

In this case study, output inequality constraints are not considered. The initial power load demand
and heat load demand are 700 MW and 380 MWth, initial system Lagrangian multipliers are λP(0)=5.0
and λh(0)= 5.5, and the initial supply–water temperature can be set tsw, f (0) = 368 K, respectively.
After a few iterations, system Lagrangian multipliers and units’ outputs tend to be stable gradually.
In addition, the network transmission losses reach PL = 10.3370 MW and HL = 0.3225 MWth, and two
supply–demand equality constraints are satisfied including transmission losses finally. The simulation
waveforms are depicted in Figure 4, and it can be noted that the power-only unit Gp1 is not fulfilling
the constraint on its maximum output power Pmax

1 = 100 MW.
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Figure 4. Case study 1: Without output inequality constraints. (a) system Lagrangian multipliers;
(b) supply-water temperatures; (c) mass flows; (d) optimal outputs; (e) system mismatches.

6.2. Case Study 2: With Output Inequality Constraints

This case study is based on IPHS of the case study 1 considering output inequality constraints.
The maximum output power constraint Pmax

1 = 100 MW is forced on the Gp1 to better visualize the
behavior of the presented method in Figure 5. In this case study, the Gp1 is not exceeding its maximum
output power and the other power-only units and CHP units have to increase their output power with
respect to the previous case to supply for the saturation of the Gp1. The network transmission losses
reach PL =10.3321 MW and HL =0.3225 MWth, and the system converges to new optimal solutions in
a few iterations including output inequality constraints.
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Figure 5. Case study 2: With output inequality constraints. (a) system Lagrangian multipliers;
(b) supply-water temperatures; (c) mass flows; (d) optimal outputs; (e) system mismatches.

6.3. Case Study 3: With Network Transmission Constraints

This case study is based on IPHS of the case study 2 considering network transmission constraints.
The bound constraint of the supply–water temperature is better visualized the behavior of the proposed
algorithm in Figure 6, and the Gp4 is not exceeding the maximum transmission capacity of the power
network line Pmax

l,4−11=220 MW so that the other power-only units and CHP units have to increase their
output power with respect to the case study 2 to supply for the saturation of the Gp4. The network
transmission losses reach PL =10.3050 MW and HL =0.3161 MWth, and the system converges to new
optimal solutions in a few iterations including network transmission constraints.
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Figure 6. Case study 3: With network transmission constraints. (a) system Lagrangian multipliers;
(b) supply-water temperatures; (c) mass flows; (d) optimal outputs; (e) system mismatches.
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6.4. Case Study 4: With Load Fluctuation Demand

This case study is based on IPHS of the case study 3 considering load fluctuation demand.
Two load fluctuations are considered: when s = 9, the system power load demand and heat load
demand are increased by 50 MW and 30 MWth, respectively; then, when s= 15, the system power
load demand and heat load demand are decreased by 20 MW and 10 MWth, respectively. After a
few iterations, two supply–demand equality constraints are satisfied including transmission losses,
and the system converges to new optimal solutions finally considering load fluctuation demand.
The simulation waveforms are depicted in Figure 7.
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Figure 7. Case study 4: With load fluctuation demand. (a) system Lagrangian multipliers;
(b) supply-water temperatures; (c) mass flows; (d) optimal outputs; (e) system mismatches.

6.5. Case Study 5: With Unit Commitment Capability

This case study is also based on IPHS of the case study 3 considering unit commitment capability.
Disconnection and reconnection of the power-only unit Gp1 are considered during the simulation
as shown in Figure 8. When s = 9, the Gp1 is removed from the system, the system detects the
disconnection of this unit and perceives the power mismatch and also calculates new solutions under
the new condition. Obviously, the remaining units have to provide more output power to compensate
for the amount of power previously generated by the disconnected unit; then, when s=16, the Gp1 is
reconnected and the system properly responds to this new condition. The system detects the presence
of an additional unit and reaches the same solutions prior to disconnection as shown in Figure 8.

Remark 5. It should be noted that the simulations performed on five case studies are run in Matlab R2010a,
which can only retain results to the fourth decimal place, so it means that there are rounding errors in simulation
results. Thus, the convergence factor µ is considered to partly reflect the error margin of simulation results in
this paper, which is also the convergence condition of the presented approach.
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Figure 8. Case study 5: With unit commitment capability. (a) system Lagrangian multipliers;
(b) supply-water temperatures; (c) mass flows; (d) optimal outputs; (e) system mismatches.

7. Conclusions

This paper has proposed a novel economic dispatch model to investigate the problem of the
supply–demand imbalance caused by network transmission losses in IPHS, where both power and
heat transmission losses models have been established with good precision at the same time. Based on
the optimization dispatch model, the coordination relationship of units’ outputs has been analyzed,
and the optimal solutions have been illustrated in an analytic way. The optimization target has been
realized by developing a double-λ-iteration algorithm with faster convergence rate, where all of units’
outputs are optimized to relieve the transmission line and pipeline congestions, while ensuring the
supply–demand balance including transmission losses. Simulations performed on five case studies
have been run in Matlab R2010a (MathWorks, Natick, MA, USA), and the results have shown that
the presented method can effectively solve this innovative EDP in fewer iterations than heuristic
optimization algorithms—the reason can be attributed to the fact that there provides a better and faster
updating direction for the optimal solutions. Furthermore, the proposed approach has provided the
satisfying performance under consideration of output inequality constraints, network transmission
constraints, load fluctuation demand and unit commitment capability.

It can be noted that only electric energy and heat energy have been considered in this paper;
our proposed method is also regarded as a centralized method that has some disadvantages inherent
compared with distributed methods. Driven by this content, future works will focus on distributed
optimal energy management for integrated energy systems considering power–heat–gas network
transmission losses, intermittent renewable energy resources, multiple energy storage units, etc.
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Abbreviations

FT total operation cost for IPHS
FP total operation cost for power-only units
FC total operation cost for CHP units
FH total operation cost for heat-only units
Np total number for power-only units
Nc total number for CHP units
Nh total number for heat-only units
fi(Pi) operation cost function for the ith power-only unit
f j(Oj, Hj) operation cost function for the jth CHP unit
fk(Tk) operation cost function for the kth heat-only unit
αi, βi, γi operation cost parameters for the ith power-only unit
αj, β j, γj, δj, θj, ε j operation cost parameters for the jth CHP unit
αk, βk, γk operation cost parameters for the kth heat-only unit
Pi output power for the ith power-only unit
Oj output power for the jth CHP unit
Hj output heat for the jth CHP unit
Tk output heat for the kth heat-only unit
∆P system power mismatch
∆H system heat mismatch
PD system power load demand
HD system heat load demand
PL power transmission losses
HL heat transmission losses
Bij element of the losses coefficient matrix B
n total segments of the heat medium flowing through the pipeline
lg length of the heat medium flowing through the gth pipeline
Rh total thermal resistance of pipeline per kilometer from heat medium to surrounding medium
tsw, f supply–water temperature in the f th heating network node
trw, f return-water temperature in the f th heating network node
tav,g mean temperature of the medium around the gth heating network pipeline
Pmin

i lower bound of the output power for the ith power-only unit
Pmax

i upper bound of the output power for the ith power-only unit
Tmin

k lower bound of the output heat for the kth heat-only unit
Tmax

k upper bound of the output heat for the kth heat-only unit
Omin

j (Hj) lower bound of the output power for the jth CHP unit

Omax
j (Hj) upper bound of the output power for the jth CHP unit

Hmin
j (Oj) lower bound of the output heat for the jth CHP unit

Hmax
j (Oj) upper bound of the output heat for the jth CHP unit

Pl,e transmission power for eth power network line
Pmin

l,e lower bound of the transmission power for the eth power network line
Pmax

l,e upper bound of the transmission power for the eth power network line
tmin
sw, f lower bound of the supply–water temperature in the f th heating network node

tmax
sw, f upper bound of the supply–water temperature in the f th heating network node

mg mass flow in the gth heating network pipeline
mmin

g lower bound of the mass flow in the gth heating network pipeline
mmax

g upper bound of the mass flow in the gth heating network pipeline
q f transmission heat in the f th heating network node
c specific heat capacity of the heat medium
L Lagrangian function
λp Lagrangian multiplier of the output power
λh Lagrangian multiplier of the output heat
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p fpi penalty factor of power transmission losses for the ith power-only unit
p fpj penalty factor of power transmission losses for the jth CHP unit
p fhj

penalty factor of heat transmission losses for the jth CHP unit
p fhk

penalty factor of heat transmission losses for the kth heat-only unit
µ convergence factor

Appendix A

The relevant parameters of IPHS are given in Tables A1–A7.

Table A1. The operation cost function parameters and output limit parameters of power-only units.

Unit αi βi γi Pmin
i [MW] Pmax

i [MW]

Gp1 25 3.0 0.010 10 100
Gp2 40 3.2 0.008 25 170
Gp3 75 2.6 0.009 30 200
Gp4 100 2.4 0.006 40 300

Table A2. The operation cost function parameters of CHP units.

Unit αj βj γj δj θj εj

Gc1 1250 2.2 0.016 1.2 0.016 0.008
Gc2 680 1.2 0.024 0.4 0.022 0.021

Table A3. The operation cost function parameters and output limit parameters of heat-only units.

Unit αk βk γk Tmin
k [MWth] Tmax

k [MWth]

Gh1 650 1.6 0.018 0 1695
Gh2 520 1.2 0.012 0 1250

Table A4. The heat-power feasible operation region parameters of CHP units.

Unit FOR (H [MWth], O [MW])

Gc1 A1(0, 187), B1(153, 132), C1(121, 42), D1(0, 63)
Gc2 A2(0, 94), B2(122, 68), C2(106, 22), D2(0, 36)

Table A5. The capacity limit parameters of power network lines.

Line Pmin
l,e [MW] Pmax

l,e [MW] Line Pmin
l,e [MW] Pmax

l,e [MW]

1–11 0 130 2–11 0 180
3–11 0 210 4–11 0 220
5–11 0 120 6–11 0 100

Table A6. The parameters of heating network nodes and pipelines.

Pipeline lg [km] mmin
g [t/h] mmax

g [t/h] Rh [mK/W] Node tmin
sw, f [K] tmax

sw, f [K]

5–12 2.8 0 2700 20 5 363 373
6–12 2.5 0 2700 20 6 363 373
7–12 3.0 0 2700 20 7 363 373
8–12 2.6 0 2700 20 8 363 373
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Table A7. The initial output parameters of different units.

Unit Initial Output Unit Initial Output

Gp1 P1(0) = 70 Gc1 O1(0) = 110, H1(0) = 100
Gp2 P2(0) = 100 Gc2 O2(0) = 70, H2(0) = 80
Gp3 P3(0) = 150 Gh1 T1(0) = 90
Gp4 P4(0) = 200 Gh2 T2(0) = 110

The mean temperature of the medium around the heating network pipeline and the return–water
temperature in the heating network node can be set tav,g = 273 K and trw, f = 323 K respectively,
and the specific heat capacity of the heat medium can be given by c = 4.2 kJ/(kgK). In addition,
the convergence factor can be set µ = 0.0001, and the losses coefficient matrix B can be given by

B =



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39


× 10−6.
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