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Abstract: The determination of chemical composition of lignocellulose biomass by wet chemistry
analysis is labor-intensive, expensive, and time consuming. Near infrared (NIR) spectroscopy coupled
with multivariate calibration offers a rapid and no-destructive alternative method. The objective of
this work is to develop a NIR calibration model for olive tree lignocellulosic biomass as a rapid tool
and alternative method for chemical characterization of olive tree pruning over current wet methods.
In this study, 79 milled olive tree pruning samples were analyzed for extractives, lignin, cellulose,
hemicellulose, and ash content. These samples were scanned by reflectance diffuse near infrared
techniques and a predictive model based on partial least squares (PLS) multivariate calibration
method was developed. Five parameters were calibrated: Lignin, cellulose, hemicellulose, ash, and
extractives. NIR models obtained were able to predict main components composition with R2

cv

values over 0.5, except for lignin which showed lowest prediction accuracy.

Keywords: lignocellulosic components; feedstock analysis; near-infrared spectroscopy;
olive tree pruning

1. Introduction

Within the last two decades, components of biomass materials such as lignocellulosic residues have
increasingly received more attention in the science community due to their potential for the production
of biofuels, as well as new value-added compounds and biomaterials utilizing a “biorefinery” approach.

Olive trees are usually native to the Mediterranean countries, but cultivation has spread globally
during the past two decades due to healthy benefits attributed to olive oil consumption. Currently,
olive trees are cultivated in more than 40 countries, and the total dedicated surface is about 10.8 million
ha in 2017 [1]. Olive tree pruning (OTP) biomass takes place immediately after fruit collection and is
an essential operation performed every two years after fruit harvesting. In the Mediterranean region,
residual biomass from olive tree pruning yield ranges from 1 to 5 and from 4 to 11 oven dry t ha−1

respectively for Spanish and Italian orchards [2]. Older branches are cut down, gathered into to the
center of each row of trees, and further treated. This agricultural residue must be promptly eliminated
from the cultivation fields; otherwise a risk for vegetal diseases may arise. Currently, two different
applications for this pruning biomass exist, either grinding it or scattering the chips over the field or
direct burning. Direct burning represents the most common method of disposal, which puts the field
at risk of an uncontrollable fire and thus an economic cost, although some initiatives are being carried
out to develop collecting techniques [3]. It has been proposed to use this waste as raw material for
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obtaining a broad range of products [4,5], including energy, biofuels as bioethanol [6–9], antioxidant
compounds [10,11], oligosaccharides [12], and others [13].

For any application of olive tree pruning residue it is essential to know its chemical composition
in order to establish the most adequate conversion process. Moreover, the ratio of main structural
components i.e., cellulose, hemicellulose, and lignin, as well as other minor components in a particular
biomass, is of crucial importance to determine the potential markets applications. The current methods
of chemical characterization of the composition of biomass feedstock are labor-intensive and time
consuming, and thus do not meet industrial requirements for providing quick measurements. Moreover,
they are often based on wet-laboratory analysis, during which the integrity and structure of the material
is destroyed [14]. By contrast, the non-destructive spectroscopy techniques provides analytical
information without damaging the sample and in most of the cases, in addition, sample treatment
is not required. Vibrational techniques such as IR spectroscopy are amongst the non-destructive
spectroscopy techniques that have attracted more interest in the last years [15,16]. Additionally, infrared
spectroscopy techniques are fast, accurate, and low-cost analytical methods with high potential in
biomass composition analysis [17,18]. In this context, diffuse reflectance near infrared spectroscopy
(NIR) has been suggested as a re- and non-destructive method to replace reference methods for
determination of lignocellulosic components of feedstock and capacity for bioethanol production [19].
In fact, near-infrared spectroscopic scanning (NIR) coupled with multivariate calibration methods
have been developed to characterize different herbaceous feedstocks [20], switchgrass [21], pine [22],
yellow-poplar [23], willow [24], Miscanthus [25], and bamboo [26]. NIR technique application for olive
residues has been reported to analyze solid fuels for heat and power generation [27]. However, to
date, there is no literature on NIR application to determine chemical composition of olive tree pruning
biomass for liquid biofuels such as bioethanol or other valuable products.

This work attempts to demonstrate the effectiveness of near infrared diffuse reflectance
spectroscopy (NIR) as a rapid and non-destructive method as an alternative to the wet chemical
analysis methods for the determination of structural carbohydrates, lignin, and ash in olive tree
pruning biomass.

2. Materials and Methods

2.1. Raw Material

Olive tree pruning was collected from different locations in Andalusia (Spain) after fruit harvesting.
A total of 79 samples were gathered, 64 of which were used for calibration models, and 15 for external
validation. Samples used in this work were collected manually, using a pruning shear, and corresponded
to shoots less than 3 cm diameter with approximately 70% of leaves and 30% thin steams by weight.
All samples were air-dried at room temperature to equilibrium moisture content of about 10% and
milled using a centrifugal mill (Retsch ZM200, Retsch, Ins., Haan, Germany) to 2 mm particle size.
A sub-sample of milled olive tree pruning was used for analysis of chemical composition (cellulose,
hemicellulose, total lignin, extractives, and ash) and another sub-sample for NIR spectroscopy.

2.2. Wet Chemical Composition Analysis

Chemical composition of the olive tree pruning was determined according to (National Renewable
Energy Laboratory (NREL) procedures for biomass composition analysis [28]. Firstly, extractives
content was determined by Dionex Accelerated Solvent Extractor System (ASE 200). Extraction was
performed in water and ethanol. After extraction, cellulose and hemicellulose content was measured
based on monomers content after a two-step acid hydrolysis procedure to fractionate the fiber. A first
step with 72% (w/w) sulphuric acid at 30 ◦C for 60 min was used, followed by a second step in which
the reaction mixture was diluted to 4% sulphuric acid and autoclaved at 121 ◦C for 1 h. Sugars
concentration was determined by high-performance liquid chromatography (HPLC) in a Waters
2695 liquid chromatograph with refractive index detector. A CARBOSep CHO-682 LEAD column
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(Transgenomic, Omaha, NE, USA) operating at 75 ◦C with Milli-Q water (Millipore Corporation,
Billerica, MA, USA) as mobile-phase (0.5 mL/min) was used. Anhydrous correction was applied to
the quantification results of monomeric sugars to calculate the polymer of carbohydrates. The factor
used to convert sugars monomers to anhydromonomers were 0.90 for glucose to glucan, galactose
to galactan, mannose to mannan and 0.88 for xylose to xylan, arabinose to arabinan. Hemicellulose
was calculated as the sum of xylan, arabinan, galactan, and mannan concentrations. Total lignin
was calculated as the sum of acid soluble and acid insoluble lignin. All measurements were done
in triplicate and results are presented as percentage on an oven-dry weight basis. Results from wet
chemical analysis were used for calibration and validation of the near infrared method.

2.3. NIR Spectroscopy

A total of 79 samples of whole biomass samples, ground to 2 mm particle size, were analyzed.
The biomass samples were dried in oven at 40 ◦C for 48 h before testing. NIR spectra were measured
in spinning Petri dishes, using a Perkin Elmer NIR Spectrometer; model Spectrum One NTS (Perkin
Elmer Inc., Beaconsfield, UK), with diffuse reflectance accessory.

The spectra were collected by averaging 70 scans, six spectra were measured, and a mean spectrum
of each sample was calculated for the construction of the predictive models. The spectral range selected
for analysis was 10000 to 4000 cm−1 and spectral resolution of 8 cm−1.

2.4. Development of NIR Calibration

The spectral and wet chemical data were processed with Spectrum Quant+ software, version
4.51 (Perkin Elmer Inc., Billerica, MA, USA) for chemometric analysis. This includes reduction of
number of variables by principal component analysis (PCA) and multiple regressions. A partial least
square (PLS) multivariate calibration model was developed. To improve the correlation between the
spectra and concentration data, a number of preprocessing techniques for spectral data have been
utilized. To minimize baseline deviations caused by dispersion effect, the smoothing according to
Savitzky–Golay algorithm [29] has been applied. The first and second derivatives were applied to
remove additive and sloped baseline drifts, and finally, normalization methods like multiplicative signal
correction (MSC) and standard normal variate (SNV) remove the multiplicative signal effects produced
by differences of particle size in samples. The two pre-processing methods can also be combined,
first and second derivative with SNV or MSC, to obtain better results. All of these pretreatments
were tested.

2.5. Analysis and Validation of Calibration Models

The application of PLS process allows building a linear regression model based on the relation
between the spectral data matrix and analyte concentration matrix. The calibration results were
assessed by statistic parameters, which decide how adequately the calibration fits the data and how
adequately the calibration will predict external samples. The root mean square error of calibration
(RMSEC) parameter was used to evaluate the calibration and it is a statistical term that measures the
standard deviation of residuals (differences between observed and predicted values) in the regression
equation and measures precision of fit between data and the calibration model.

The model validation in the present study included both full-cross validation (leave-one-out)
and independent validation. Cross-validation (leave-one-out method, LOO) was used as a basis to
calculate the optimal range of principal components and compare the prediction ability of different
calibration models. In full cross-validation procedure, for a dataset on n samples, one sample is
left out and the rest of (n–1) samples are calibrated using PLS to generate a subset model. The full
cross-validation results were expressed using the term root mean square error of cross-validation
(RMSECV), and cross-validation coefficient of determination (R2

cv). On the other hand, 15 samples
were selected randomly from the entire set, to be used for an external validation of the best calibration
models chosen by the cross validation criterion. The result of the external validation is defined by the
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statistic parameter root mean square error of prediction (RMSEP) and external validation coefficient of
determination (R2

ext).
A key factor in determining the quality of a model is the optimum number of principal components

(PCs) (or PLS factors) to include in the model. Too many PCs results in overfitting and too few PCs
result in a low accurate model. There are various criteria to select the appropriate number of PCs;
based on the variation of the eigenvalues with the number of PCs [30]; based on minimum value of
RMSECV or an optimal RMSECV value that uses the significance F-test, according to Haaland and
Thomas criteria [31]. In this work, the latter criterion was chosen.

3. Results and Discussion

3.1. Wet Chemical Composition

The chemical composition of olive pruning biomass is presented in Table 1. Results include mean
value of composition, standard deviation (SD), coefficient of variation (CV), and concentration range.

In OTP biomass, cellulose content is in the range of 8.6–19.8% (w/w). Hemicellulose, lignin
content, and ash content from OTP samples are in the range of 9.4–16.3%, 15.0–19.9%, and 5.1–10.0%
(w/w), respectively. It is worthwhile to mention that this lignocellulosic residue has an extractive
content close to 40% (range 32.5–46.7%, w/w). The coefficient of variation (CV) expresses the variation
as a percentage of the mean and is often preferred as a measure of data dispersion (SD), since SD
increases in proportion to concentration values. It is important to notice the low value of the coefficient
of variation for lignin and extractives. The compositional variance is a factor to consider in order to
achieve robust models.

The proportion of the extractive fraction was greater than that reported for olive tree pruning;
extractive contents ranged from 23.3% (w/w) [32] to 31.4% (w/w) [33]. The variability of composition
was attributed mainly to the heterogeneity of the residue (changing proportions of small branches and
leaves). The high proportion of extractives could be related to a higher content of leaves in the original
samples; high content in extractives in olive leaves (38.8% dry weight) have been reported by other
authors [34].

The summative mass closure gives a value of 88.3%; the remaining percentage (11.7%) may be
attributed to other minor compounds such as acetyl groups (from hemicellulose fraction), crude protein,
and other unanalyzed components, like pectins.

Table 1. Summary of chemical composition of calibration set. All data (% w/w) are on a moisture-free basis.

Components Extractives Cellulose Hemicellulose Lignin Ash

Mean 40.0 12.0 12.0 17.4 7.0
SD 3.0 2.1 1.7 1.1 1.1
CV 7.5 17.5 13.9 6.4 15.2

Range 32.5–46.7 8.6–19.8 9.4–16.3 15.0–19.9 5.1–10.0

3.2. NIR Calibration

3.2.1. Selection of Wavenumber Regions

The NIR radiation covers a wavelength range between 750 and 2500 nm (13,000 to 4000 cm−1

in wavenumber units). This range includes first, second, third overtones, and a combination of
the fundamental bands. As the spectral information is redundant, the wavenumber selection can
improve the robustness of multivariate calibration models if the right choices are made. The use of
derivative filters was explored as a tool for spectral resolution enhancement. A set of reflectance
spectra (expressed in absorbance unities vs. wavenumber) of olive tree pruning samples are shown in
Figure bands between 10,000 cm−1 and 7500 cm−1 have been associated with third overtones and their
low intensity and excessive noise makes them less suitable to calibration process (He and Hu, 2013).



Energies 2019, 12, 2497 5 of 10

The greatest variability between spectra is observed in the range 7500–4200 cm−1. We can observe this
variability in first derivative spectra represented in Figure 1B. There are three interesting zones: 7100
to 6900 cm−1, 6000 to 5600 cm−1 (associated with lignin and extractives first overtones bands), and
the region between 5500 and 4000 cm−1. The latter includes the main band of water at approximately
5200 cm−1 and combination bands associated with stretching vibrations of CH, CH2, and CH3 bonds
of carbohydrates, although the spectral noise in this range is high. In Figure 1C, we can observe the
second derivative. There are two well-resolved bands in the second derivative associated with phenolic
compounds at 6900 and 5980 cm−1. However, care should be taken when choosing the wavenumber
range, in order to avoid a loss of information. A reduced wavenumber region (7500–5500 cm−1) was
also selected to create calibration models and compare the results with those obtained from the full
spectral range studies. This range mainly includes the first overtone bands, corresponding to OH
stretching vibrations associated with carbohydrates and phenolic groups, and CH stretching vibrations
of both aliphatic and aromatic bonds [35]. The reduced spectral range excludes water principal band
extending between 5200 and 5000 cm−1, which consists of multiple overlapping bands. The apparent
location of these bands changes as the spectra are measured from one to another.
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Figure 1. Near infrared spectra of olive tree pruning samples: (A) Raw spectra, (B) first derivative
spectra; and (C) second derivative spectra.

3.2.2. NIR Calibration Development

PLS regression was performed on the near infrared spectra by using spectral preprocessing methods
and using different spectra ranges. Results of the best prediction models of chemical components of
OTP using full spectra (10000–4000 cm−1) and selected spectra region (7500–5500 cm−1), respectively,
are presented in Table 2. The results show how the calibration quality varies with the wavenumber
range and spectral mathematical treatments. In all cases, the application of Savitzky–Golay derivation
with smoothing step (five points) is essential to reach good correlations. The MSC and SNV were
compared as normalization methods (either alone or in combination with first derivative filter). The two
preprocessing methods gave similar results.

Regarding cellulose and extractives content, the models based on the restricted wavenumber
7500–5500 cm−1 gave the best results using first derivative with SNV for cellulose and first derivative
with SNV as pretreatment for extractives. The coefficient of determination for calibration (R2

cal)
indicates a good linear fit (0.95 for cellulose and 0.91 for extractives), while lower errors of prediction
(RMSECV) were found for the restricted range model: 1.75 for extractives and 0.94 for cellulose.
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The coefficients of determination (R2
cv) also give the best results in restricted-range models (0.80 for

cellulose and 0.65 for extractives).
For hemicellulose and lignin content, the models based on the restricted wavenumber

7500–5500 cm−1 gave similar results to those obtained with full spectra range, which indicates that
reduction of wavenumber range does not improve the calibration results. For hemicellulose content,
the statistics of fit were also equivalent (0.72 and 0.73). The same is true for validation parameters,
RMSECV give 0.88 and R2

cv 0.72 for reduced range and 0.89 and 0.71 for full spectrum, respectively.
For total lignin, although the R2

cal values (0.56) indicate some degree of fit, it is remarkable
the relatively low correlation in all models studied and the rapid increase of prediction errors when
introduce a greater number of principal components in model. The data pretreatment in the two
wavenumber ranges (full and restricted) was the second derivative. Good fits with low number of PCs
are achieved, but the prediction quality becomes noticeably worse and RMSECV values are higher
than the other calibration models.

Organic nitrogenous compounds present in this agricultural waste biomass, in addition to an
insufficient organic nitrogenous compounds extraction, can cause interference with the wet chemical
characterization method used [36]. The interference with the acid insoluble lignin values caused by
the presence of organic nitrogen compounds has been explained by the Maillard reactions. Indeed,
with the wet chemical method utilized, during the second hydrolysis step (121 ◦C, 1 h), a fraction
of the organic nitrogen compounds that was not removed during extraction step, could react with
sugars produced during cellulose and hemicellulose, forming insoluble substances that could cause an
overestimation of the lignin values.

For ash content, prediction models for OTP developed with the full spectra regions exhibited the
best correlation values (R2

cal of 0.96). The RMSECV (0.52), clearly indicate a best predictive power
compared to reduced spectral range models (0.74)

Table 2. Results of PLS1 calibration and prediction models developed for chemical composition of
olive pruning biomass (% w/w).

Components Wavenumber
(cm−1)

Data
Preprocessing PCs R2

cal RMSEC R2
cv RMSECV R2

ext RMSEP

Extractives
7500—5500 1st derivative 5 0.91 0.93 0.65 1.75 0.79 2.33

10000—4000 1st der + SNV 4 0.82 1.30 0.45 2.05 0.69 2.25

Cellulose
7500—5500 1st der + SNV 5 0.95 0.51 0.80 0.94 0.84 1.06

10000—4000 1st derivative 3 0.83 0.89 0.73 1.08 0.70 1.75

Hemicellulose
7500—5500 1st der + SNV 3 0.82 0.72 0.72 0.88 0.87 0.84

10000—4000 1st derivative 3 0.82 0.73 0.71 0.89 0.83 0.95

Lignin 7500—5500 2nd derivative 1 0.56 0.75 0.05 1.08 0.29 1.00
10000—4000 2nd derivative 1 0.56 0.75 0.01 1.11 0.04 1.38

Ash
7500—5500 1st derivative 5 0.85 0.42 0.52 0.74 0.85 0.80

10000—4000 1st der + SNV 6 0.96 0.21 0.76 0.52 0.85 0.51

The predictive power data represented in Table 2 give poor results in some cases. There are
various factors that account for these results. First, the variability of the biomass composition data,
expressed as standard deviation of the mean or coefficient of variation, was particularly low in the
case of hemicellulose and lignin. The calibration and prediction results obtained are similar to those
tested by other authors on biomass feedstocks, as yellow poplar [23], Miscanthus [25], or a mixture of
biomasses [21]. The relatively poor values of calibration and external validation statistics associated
with lignin have been also described for other complex biomass such as Eucalyptus [37].

Figure 2 provides a graphical representation of the prediction ability for the five parameters
according to cross validation and external samples analysis.
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3.2.3. External Validation of Model

The 15 samples not included in calibration model were used for external validation. These samples
were chosen so that the mean and standard deviation are very similar to the calibration samples.
Figure 2 shows also the prediction results for cellulose, hemicellulose, lignin, ash, and extractives
corresponding to 15 samples of OTP according to the best model for each parameter depicted in Table 2.
The correlation between predicted composition and measured composition is based on the optimal
calibration applied over every analyte (Table 2). The predictive ability of the model to these external
samples is defined in this work by the root mean square error of prediction (RMSEP), which is a
measure of the variability of the difference between the predicted and reference values for a set of
validation samples. The RMSEP values are shown in Table 2, and the RMSEP values found for the five
parameters for whole range wavenumber method are: 1.75 for cellulose, 0.95 for hemicellulose, 2.25 for
extractives, 1.38 for lignin, and 0.51 for ash. This RMSEP values are comparable to cross-validation
values, although in the case of cellulose, the RMSEP value is about 60 percent larger than the RMSECV
one. For the models constructed using reduced spectral range, RMSEP give the following values:
Extractives 2.33, cellulose 1.06, hemicellulose 0.84, lignin 1.00, and ash 0.80. Nevertheless, coefficient of
determination (R2

ext) for external validation shows higher values than cross-validation coefficients.
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As a summary of the discussion above, it can be stated that the analyses of statistical data
collected give an idea of the predictive capacity of the models. The RMSEC values indicate a good fit,
but RMSECV values denote only discrete ability of prediction. Some other criteria are also available
for this purpose. There are references about 0.5 as a threshold value of R2

cv in LOO cross validation;
values over 0.5 are indicative of good prediction capacity [38], although it is true that LOO procedure
utility as goodness of prediction has been questioned [39]. But, in any case, the calibration models of
this work have values over 0.5 except for lignin. It is not easy to explain this poor behavior for lignin.
On the one hand, it must be pointed out that the high content in extractives of this biomass may be
interfering with spectral data analysis associated with lignin, only partly resolved applying the second
derivative. On the other hand, it is important to consider that the total lignin content value comprises
both the insoluble and the acid soluble lignin, and the later measurement method may imply errors
associated with the use of an absorptivity coefficient not specifically determined for OTP. Moreover, the
acid insoluble lignin could be overestimated by using the wet chemical analysis due to condensation
reaction of relatively high concentration of protein found in OTP samples (around 8%, w/w) [40].

For ash content measurement, previous studies have shown that is possible to determine inorganic
compounds using NIR spectroscopy [41]. Simple inorganic constituents will not absorb directly in NIR
region, and the ash content was indirectly determined through correlation with NIR absorbing organic
compounds. The influence of inorganic elements on organic compounds NIR bands is expected to
occur over full spectrum and not only in the NIR range of 7500–5500 cm−1. The monatomic ions can
be coordinated with C–H, N–H, and O–H bonds, which produce absorption bands across the whole
NIR spectrum.

Finally, the comparison between coefficients of determination calculated for the two methods of
validation (internal and external), reflects a best fit of the external sample set, but taking into account
the relatively low number of samples available, the use of cross validation as a reference evaluation of
calibration models is justified.

4. Conclusions

Results show that near infrared spectroscopy combined with multivariate calibration can be useful
as a predictive technique for olive tree pruning biomass analysis, despite its specific compositional
features characterized by its high content and variability of the extractives fraction. The predictability
of the models in this study is, in principle, limited for the low number of available samples and
low compositional variability of calibration set. In spite of this, the biomass components analyzed
and predicted with the best model exhibit R2

cal values of 0.9 or near of 0.9, and acceptable values
of prediction errors. The exception was total lignin, which exhibit a poor linear fit (R2

cal < 0.6) and
greater prediction errors. Thus, further work is needed in order to improve its potential as a prediction
tool and this implies that to increase the number and compositional variability of the sample set, both
calibration and external validation are needed.
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