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Abstract: In generation expansion planning, sustainable generation expansion planning is gaining
more and more attention. Based on the comprehensive consideration of generation expansion planning
economics, technology, environment, and other fields, this paper analyzes the sustainable development
of power supply planning evaluation indicators and builds a multi-objective generation expansion
planning decision model considering sustainable development. According to the target variables
in the model, the variables such as attribute variables are divided into different subsets, and the
logical relationship analysis method between different nodes is obtained based on Dynamic Bayesian
network theory, which reduces the complexity of the planning model problem. The application
examples show the feasibility and effectiveness of the proposed model and the solution method.

Keywords: generation expansion planning; sustainable development; Dynamic Bayesian Network;
decision model

1. Introduction

With the increasingly serious environmental pollution and the gradual exhaustion of petrochemical
energy, the development of renewable clean energy is receiving more and more attention. As the most
important secondary energy, electric power plays an important role in China’s energy consumption
and production. Power development and planning usually involve many factors such as economy,
resources, environment, science, and technology. Therefore, in essence, generation expansion planning
(GEP) is a complex, multi-variable, multi-constraint, multi-objective, multi-stage nonlinear dynamic
optimization problem [1–6].

In 2003, the British government published its national energy white paper, which first proposed
the concept of “low-carbon economy” [7]; At the world climate conference held in Copenhagen,
Denmark, in 2009, the Chinese government also set two ambitious goals of “reducing CO2 emissions
per unit of GDP by 40% to 45% compared with 2005” and “non-fossil energy accounts for 15% of
total primary energy consumption” by 2020. This not only puts forward a clear goal for China’s
carbon emission reduction work but also will bring severe challenges to the relevant energy sector.
The electrical industry is an important industry of fossil energy consumption in China. According to
BP’s report [8], nearly two-thirds of the world’s new energy consumption will be used to generate
electricity by 2035, while the share of energy used to generate electricity is expected to rise from 42% in
2015 to 47% by 2035. Emissions from energy use will rise by about 13% by 2035, far outpacing the IEA’s
450 scenario, which calls for a roughly 30% reduction in global emissions by 2035 in order to meet
emissions reduction targets set out in the Paris agreement. The specific situation is shown in Figure 1.
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According to BP’s report [8], it is not hard to see that with the rapid development of the national
economy the demand for electricity is growing and, in the process of electricity production, so is the
need to consume large amounts of coal resources, thus causing excessive emissions of greenhouse
gases. This is contrary to the concept of a low-carbon economy. In order to change this situation, it is
particularly important to study GEP to adapt to the development of the low-carbon economy.

Comprehensive consideration of the economic and environmental costs of sustainable development
and the effective use of wind power, solar energy, and other renewable energies has become the
focus of GEP and scientific development of power supply structure in various countries. There have
been many studies on the GEP of sustainable development. For example, in [9], renewable resources
(wind and solar energy) were included in the GEP and the coordinated planning of power system
reliability, economy, and long-term operation was studied. The multiple objectives including economic,
social, and environmental objectives were analyzed and the uncertain multi-objective GEP model was
studied, in [10]. In [11], the interval mixed integer linear programming method was introduced for
the generation mode with coal and gas power generation as the main source and new energy and
renewable energy power generation as the supplement, and the uncertainty problem existing in the
GEP model and the installation expansion problem of the generator set were analyzed. In [12], the
objective function of GEP is modified by considering incentive systems such as tariff, emission trade,
and carbon tax; the GEP model is obtained with environmental protection restrictions, and the model is
solved based on the generalized Benders decomposition method. The above research mainly focuses on
the description of the relationship between power and environment, economy and energy technology.
However, for the multi-objective decision-making of sustainable development of power structure, the
evaluation of indicators and the establishment of models still need to be further improved.

On the other hand, current common GEP models including linear programming, nonlinear
programming, multi-objective programming, integer programming, multilevel programming, and
dynamic programming [13–18] are based on some important assumptions. One of the assumptions
is that the three elements in decision analysis—alternative scheme, constraint space, and utility
function—can be expressed with absolute accuracy and good mathematics, so the solution space
is clear and the result of the solution also strives towards “optimal”. However, many criteria and
considerations are involved in GEP, making it difficult to describe and evaluate the single-objective
method. At the same time, sustainable GEP not only needs to adapt to the current situation of the
power system, the development of society, technology, and economy but also needs to be combined
with future development, involving a lot of information, data, but a lot of information and data cannot
be obtained, so the GEP process has strong uncertainty factors.

At present, there are mainly three kinds of methods for solving multi-target GEP problems in
an uncertain environment. The first type of method is to adopt a fuzzy set, rough set, evidence
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theory, gray theory, and other methods on the basis of definite analysis to deal with incomplete and
inaccurate information [19–22]. However, in the actual decision-making process, considering that the
sustainable development planning of generation expansion has to face many data, choices, risks and
other factors, the mutual influence among various decision variables is difficult to determine, so the
method mentioned above cannot be directly used to guide the decision-making. The second method
is to use the robust optimization method to solve the uncertain environment GEP problem [23,24].
This method uses the robust duality theorem to transform the model with uncertain variables into
a completely determined model and then use the relevant optimization method to solve the model
solution. This method has good robustness, but its solution also has the characteristics of conservatism,
and the stronger the uncertainty, the stronger the conservation of the solution. Therefore, this method
is suitable for small-scale GEP; for the determination of the total installed capacity of various types of
power sources in a certain area, its solution is too conservative due to the large uncertainty range, and
the economy is poor. The second method is the stochastic programming method based on probability
theory, which needs to collect a large number of scene samples to obtain the relatively reliable probability
distribution of renewable energy output so that the complexity of solution increases rapidly [25].

Dynamic Bayesian network (DBN) is a probability graph model used to represent the dependence
between variables, which provides a concise and effective method for the expression and inference of
causality. This method has been applied in power system reliability analysis and fault diagnosis because
it can represent the preference, probability estimation, and information state of decision-makers through
nodes and directed edges, and at the same time, it can make use of the conditional independence between
variables and provide decision-makers with intuitive and accurate logical relations. For example,
reference [26] established a component-based DBN fault diagnosis model for the application of a
genetic algorithm in the power system fault diagnosis. Based on certain inference rules, the objective
function of the genetic algorithm was formed according to the DBN, and the genetic algorithm was
used for optimization and solution. In [27], for the problem that the analytical method is difficult to
analyze the reliability of the distribution system when the scale of the distribution system increases,
a distribution system reliability evaluation reasoning algorithm was proposed based on DBN timing
simulation, which can intuitively find out the weak links of the system.

A reasonable and effective GEP method is the premise to ensure the development of the power
industry and a powerful means to achieve low carbon on the basis of ensuring the safe and stable
operation. In this paper, an evaluation index of sustainable GEP is provided, and the decision-making
model for multi-objective GEP considering sustainable development is established. Based on DBN,
a GEP method considering renewable energy resources uncertainty and multi-objective is proposed
that provides a way for the sustainable development of power supply. The main contributions of this
paper include:

(1) Through comprehensive analysis of sustainable development in the economic, scientific,
environmental, and other aspects of GEP requirements, the sustainable development of GEP
evaluation indicators and the development of a multi-objective GEP decision model considering
sustainable development.

(2) This paper analyzes the uncertainties in power supply planning considering sustainable
development and determines the probability distribution and variation interval of uncertain
variables. By dividing the uncertainty variable interval into several sub-intervals and taking the
most unfavorable state on these sub-intervals as the overall state of the sub-interval, the uncertain
variables are discretized into several discrete states, which greatly reduces the calculation amount
and ensures solution set robustness and economy.

(3) This paper proposes a model solving method based on DBN theory for the problem that
multi-objective multi-stage power planning model with uncertain variables is difficult to solve,
which divides model variables into decision environment variables, decision choice variables,
decision transmission variables, decision target variables, and decision value variables according
to their attributes and represents them as a network structure according to their causal relationship.
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Based on this network, the final utility of each decision scheme is deduced. Since the uncertainty
model draws on the conditional independence assumption of DBN, the decision maker only
needs to consider the relationship between the current node and its parent node when building
the model, which greatly reduces the complexity of the decision maker’s thinking problem and
improves the effective decision making.

The structure of the paper is as follows. Section 2 comprehensively introduces the requirements of
sustainable development for GEP. Section 3 introduces the objective function and constraint conditions
of GEP, constructs a multi-objective GEP model, and introduces how to deal with the multi-objective
optimization problem. Section 4 introduces in detail the uncertain factors in GEP (uncertainty of
renewable energy output and load). Section 5 gives the method of obtaining robust feasible solutions.
In Section 6, the DBN theory and the model solving algorithm of GEP model using DBN are introduced
in detail. Section 7 verifies the proposed model and the model solving algorithm. Finally, Section 8
draws conclusions by discussing the potential, shortcomings, and potential for improvement of the
methods presented in this article.

2. Sustainable Generation Expansion Planning Requirements

2.1. Characteristics of Generation Expansion Planning under Low Carbon Economy

The power plan is generally based on the source and load conditions to make a power plan when
the grid structure and parameters are determined [28,29]. Since the user’s electricity behavior is not
regulated by the power system, the load is quite random. In the traditional GEP, the power supply side
uses conventional energy for power supply, which can provide continuous and stable power supply.
Therefore, only load uncertainty is considered in the conventional GEP. In a low-carbon economy, the
power supply side will be transformed from a single energy structure into a multi-energy structure in
which new energy such as wind, light, and conventional energy are developed in concert. Because
wind energy and solar energy are greatly affected by the climate, and the climatic conditions are
uncontrollable and random, this results in the random uncertainty of photovoltaic and wind power
output [30–35]. This feature makes the source-network-load model of the power system transform
from load uncertainty to source load uncertainty, and the GEP problem becomes more complicated.
The source-network-load model in a low carbon economy is shown in Figure 2.
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The uncertainty of the user’s power consumption makes it difficult to determine the load growth,
and the uncertainty of the load growth makes the unbalanced power uncertain. Unbalanced power is
an important basis for GEP. Its uncertainty makes it difficult to make decisions about power supply
capacity. This is a difficult problem in traditional GEP. In a low-carbon economy, the uncertainty of
renewable energy makes the output of renewable energy uncertain, and this uncertainty will make
the determination of unbalanced electricity more difficult. At the same time, the random nature of
renewable energy makes it necessary for conventional power supplies to provide spare capacity, which
affects the decision of conventional power supply capacity. Therefore, solving the uncertainty of load
and the uncertainty of renewable power supply is the difficulty of GEP decision in a low-carbon
economy. This paper makes GEP decision by establishing load and power model and using Bayesian
network theory to deal with this difficulty.

2.2. Voltage Planning Evaluation Index Considering Low Carbon Emission

The sustainable development plan of the power supply is to incorporate the power supply’s
environmental impact, economic and social satisfaction, and scientific and technological content and
resource constraints into GEP and development and use multi-objective decision-making methods to
seek future power supply goals. Interval optimization process. To conduct research on a sustainable
GEP model, it is first necessary to determine the GEP evaluation indicators. The established indicators
should reflect the relevant multi-objective factors and the essential characteristics of the sustainable
development of the power supply, and the number should be as small as possible and can be analyzed
and calculated according to the data. Based on the relationship between power development and
planning and economic, environmental, technological, and energy aspects, this paper establishes a
sustainable development GEP evaluation index, as shown in Table 1. Among them, f 1 and f 2 reflect
the relationship between sustainable development of GEP and economic and electrical production;
f 3 reflects the relationship with the environment. Indicators in other areas can also be added in the
same way.

Table 1. Evaluation index of the sustainable power structure.

Index Sign Indicators Unit

f 1 Operational and maintenance costs thousand dollars

f 2 Energy efficiency /

f 3

f 31 SO2 emissions G/kW, h
f 32 NO2 emissions G/kW, h
f 33 smoke emission G/kW, h
f 34 CO2 emissions G/kW, h

3. Planning Model Considering Low Carbon Emission

3.1. Objective Function

Due to the characteristics of the power system, from the perspective of meeting the national
economy and life, there are economic and reliability requirements in the GEP objectives; from the
perspective of the impact on the social environment, it is necessary to make full use of renewable
energy and emit emissions to thermal power plants. Exhaust gas, wastewater, waste residue, etc.
have strong constraints. In this paper, only the total installed capacity, reliability power loss, and
total pollutant emissions such as exhaust gas and carbon dioxide emission indicators are selected to
construct a multi-objective function model. Other factors such as national policies and technological
developments can also be added in the same way.

(1) System investment operation and maintenance cost indicator
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The economic costs in GEP include the investment and construction costs of new power plants that
are considered at one time and the operating costs of power plant generator sets that are considered
annually in subsequent planning periods. The system investment and operation and maintenance
costs of many different types of power supply installations during the planning year can be expressed
as follows:

min f1 =
T∑

t=1

N∑
i=1

ut
iB
±

T(∆Qt
i) +

T∑
t=1

N∑
i=1

Ht
tCi(Q

t
i) +

T∑
t=1

MtPg (1)

where T indicates the total length of the planning period; N indicates the number of power types,
including wind, solar, thermal, hydro, nuclear, and other new energy types; ut

i∆Qt
i is new installed

capacity for the i-th power supply in year t; ut
i is 0–1 variable. It indicates the existence of new installed

capacity only when ut
i = 1; B±T(∆Qt

i) indicates the unit installation cost of the i-th power source; Ht
i is

the expected hours of utilization for the i-th power plant in year t; Ci(Q
t
i) indicates the unit operating

unit cost of the i-th power source, where the coal-fired power unit includes fuel costs and operation
and maintenance costs, and the remaining units only include operation and maintenance costs. Mt is
the linkage power of the t-year in the region. When it is greater than 0, it indicates that the region
needs foreign power imports to make up the gap. When it is less than 0, it means that the remaining
electricity in the region can be sold to the field; Pg is the average transaction price in power linkage.

(2) Comprehensive energy efficiency indicator

The comprehensive energy efficiency refers to the average utilization rate of the generator set.
The unit utilization rate can be expressed by the ratio of the actual power generation amount to the
theoretical maximum power generation amount, that is, the ratio of the power generation utilization
hours to the full year hours, which can reflect the utilization level of power generation. Due to the
intermittent and uncontrollable nature of renewable energy such as wind energy and photovoltaic,
the reliability of power supply to the load is worse than that of the traditional power supply, and
traditional thermal power, hydropower, etc. are required for adjustment. In order to evaluate the
utilization efficiency of different types of power supplies, this paper uses the maximum number of
planned power utilization hours, which can be expressed by the following formula:

max f2 =
1
N

N∑
i=1

 1
Ti

Ti∑
t=1

Ht
i

8760

 (2)

(3) Environmental impact indicators

The environmental indicator refers to the environmental impact of waste pollutants and greenhouse
gas CO2 emissions during the production of electric energy. The total indicator of pollutant discharge
in a given period can be minimized. Since thermal power is the main factor of environmental pollution,
the pollutant emissions of coal-fired units mainly consider SO2, nitrogen oxides, and soot emissions.
In the current social background of building low-carbon electricity, people are paying more and more
attention to CO2 emissions. According to the emission intensity of CO2, power sources can be divided
into high-carbon power sources and low-carbon power sources. High-carbon power sources are
mainly traditional thermal power plants. In addition to hydropower and nuclear power, low-carbon
power supplies include new energy sources such as wind power and solar energy. China’s wind
power and solar energy resources are abundant, and its proportion in GEP should be greatly improved.
The calculation of important indicators in sustainable GEP can be expressed as:

min f3 =
T∑

t=1

N∑
i=1

Ot
i =

T∑
t=1

N∑
i=1

Qt
iH

t
i Ei (3)
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where Ok
i refers to the CO2 emission from the i-th power source in the t-th year. For clean renewable

energy, Ok
i = 0; Ei is the CO2 emission per unit of electricity produced by the i-th power source, which

is related to the power generation efficiency, varying from power plant to power plant. Ei is generally
averaged, taking China’s current thermal power generation as an example, Ei = 0.785 kg/(kw·h).

Since the country or society usually has a constraint on the total amount of waste emissions, it can
also adopt the method that the pollutant emissions within a certain period equal to a given amount of
emissions, and then this target can be transferred to the constraint conditions.

3.2. Constraints

Depending on the model adopted, the constraints considered in the GEP model may include
spare capacity or reliability constraints, power supply construction constraints, system operation
constraints, line transmission capacity constraints, minimum start-up capacity constraints, and new
energy generator set constraints, etc. Because the problem of GEP is quite complex, a simplified
method is inevitably adopted in all kinds of optimization models. This paper focuses on the sustainable
development of power supply and only considers the system balance power and power balance
constraints. In the specific implementation process, other constraints can also be added.

(1) System power balance constraint conditions

N∑
i=1

pt
iα

t
is

t
≥ Dt±

D (1 + et
D) (4)

where, Dk±
D is the maximum possible load for the k-th stage system; ek

D is system capacity reserve
factor of the k-stage; it is worth noting that as the system’s wide range of networking and intermittent
renewable energy ratios increase, the system’s reserve factor will change.

(2) Constraint conditions of system electric quantity balance

N∑
i=1

pt
iH

t
i s

t
≥ Et±

D (1 + et
E) (5)

where Et±
D is the number of electricity demand forecasts for the system in the t-th planning year and is

an uncertain value; et
E is the t-planning year system power reserve factor and is the same as et

D, and
each phase is different with system networking and power supply structure changes.

(3) Non-water renewable energy generation constraint

In order to achieve energy conservation and emission reduction, countries have established the
proportion of non-water renewable energy generation, and the corresponding constraints can be
expressed as:

Nre∑
i=1

Ht
i Q

t
i ≥

N∑
i=1

Ht
i Q

t
iη

t (6)

where Nre is the number of sets of non-hydro renewable energy types; ηt is the planned proportion of
non-renewable energy requirements for the system in the t-plan year.

(4) Peaking power reserve capacity constraint

Due to the intermittent and uncontrollable nature of non-water renewable energy sources, it is
necessary to use power sources such as thermal power or hydropower as peaking units. In addition,
there is a certain reserve capacity constraint, specifically:

Nre∑
i=1

Qt
i ≥ RreDt±

D (1 + et
D) (7)
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where Rre is the spare capacity factor.

3.3. Acquisition and Normalization of Uncertain Indicator Decision Matrix

For the sake of generality, let the generation expansion focus on m objective functions and record
the set of indicators as V = {V1, V2, · · · , Vm}. Corresponding to the above model, there are:

Vi = fi =
T∑

k=1

vk
i (8)

In the k-stage of the GEP, there are qk non-inferior solutions, which form a feasible solution set

xi =
{
xk

1, xk
2 · · · , xk

qk

}
and constitute a feasible decision-making solution set X = {x1, x2 · · · , xn}. If the

state set of the k-stage decision is represented by Θk =
{
θk

1,θk
1, · · ·θk

r

}
, the probability that state θk

j

occurs is pk
j , satisfying 0 ≤ pk

j ≤ 1 and
∑qk

j=1 pk
j = 1. In the uncertain environment, the influence of the

i-th scheme xk
i of the k-th stage on the j-th decision indicator under the uncertainty state θk

j , that is,
after the execution of the i-th scheme, the probability that the decision target Vj takes the j-th value Vij
is pk

i j, forming an uncertainty indicator decision matrix P = (pk
i j)n×r×T

.
For the incommensurability between operation and maintenance cost indicator, comprehensive

energy efficiency indicator and environmental indicator, according to the method of [18], the indicators
can be normalized by means of relative state eigenvalues. The formula is as follows:

vmax = max
{
vk

i j : 1 ≤ i ≤ n, 1 ≤ j ≤ r
}

vmin = min
{
vk

i j : 1 ≤ i ≤ n, 1 ≤ j ≤ r
} (9)

For the maximum benefit indicator such as energy efficiency, the indicator is normalized as shown
in Formula (10).

rk
i j = (vk

i j − vmin)/(vmax − vmin)

(1 ≤ i ≤ n, 1 ≤ j ≤ r)
(10)

For the minimum benefit indicator such as operation and maintenance cost or environmental
indicator, the indicator is normalized as shown in Formula (11).

rk
i j = (vmax − vk

i j)/(vmax − vmin)

(1 ≤ i ≤ n, 1 ≤ j ≤ r)
(11)

Through the calculation of the above formula, the relative state eigenvalues under the unified
dimension of each type of indicator can be obtained. Due to the existence of multiple states of decision
target variables, when the situation is different, the proportional weight of each target will change. For
example, when the local environmental requirements are high, the environmental indicator weights

will increase, and the weight of class j decision indicator can be set as W j =
{
w1

j , w2
j , · · · , wn

j

}
. The

determination of the weight needs to include the knowledge and experience, preferences, and other
information of the decision makers and experts. It is assumed that the L decision makers evaluate the
importance of the m planning objectives, and the weight vectors are given wl = (wl1, wl2, . . . , wlm)

T, and
m∑

k=1
wlk = 1, 0 6 wlk 6 1(k = 1, 2, · · ·m; l = 1, 2, · · · L). If each decision maker’s weight is λl(0 ≤ λl ≤ 1)

and
L∑

l=1
λl = 1, the expression of wk, which is the k-th element of w = (w1, w2, . . . , wm)

T, is as in

Formula (12).
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wk =

L∑
l=1

λlwlk

m∑
k=1

L∑
l=1

λlwlk

(12)

In this case, the multi-objective decision-making problem under uncertain conditions is to
use Equation (13) to determine the decision-making choices in each stage successively when the
decision-making conditions are known or partially known, and evaluate each decision-making scheme
with a unified dimension, and then choose the optimal one in the decision-making scheme or give the
priority order.

γ(Xi) =
T∑

k=1

n∑
j=1

wk
jp

k
i jv

k
i ji ∈ X (13)

4. Uncertainty Analysis

4.1. Load Model

Medium or long term load probability models are generally considered to be normal
distribution models.

fP(P) =
1

√
2πδL

e−
(P−βL)

2

2

(14)

where P is the actual load power; βL and δL are the load power expectation and variance, respectively.
Since the accuracy of load prediction is high (the error does not exceed 5%), βL takes the load prediction
value, and δL is given by experts and relevant staff based on experience.

4.2. Renewable Energy Power Generation Model

The auto-regressive moving average (ARMA) model in the time series method is used to simulate
the wind speed curve of the wind farm throughout the year. The general expression of the ARMA
model is as in Formula (15).

yt = φ1yt−1 + φ2yt−2 + · · ·+ φnyt−n + αt − θ1αt−1 − θ2αt−2 − · · · − θmαt−m (15)

where yt is the value of the sequence of time t, ϕ1 . . . ϕn are the autoregressive parameters; θ1,θ2, · · ·,θn

are the moving average parameters; αt is a normal white noise process with a mean of 0 and a variance
of σ2

a , such as αi ∈ NID(0, σ2
a), αi ∈ NID(0, σ2

a) for a normal distribution.
The wind speed at time t is:

vt = µ+ σyt (16)

where, µ is the average wind speed and σ is the standard deviation of wind speed.
The wind turbine output is nonlinearly related to the wind speed and mainly determined by

cut-in wind speed, cut-out wind speed, and rated wind speed of the turbine. The piecewise function is:

Pg(v) =


0 0 ≤ v ≤ vci
(a + bv + cv2)Pr vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco

0 vco ≤ v

(17)

where vci, vr, and vco are cut-in wind speed, rated wind speed, and cut-out wind speed, respectively;
Pr is the rated power; a, b, c are the coefficients.

The output power of a photovoltaic power station is determined by factors such as luminous
intensity, photovoltaic array area, and photoelectric conversion efficiency. The specific calculation
formula is as Formula (18).

Psg = ESη (18)
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where E is illumination intensity, S is the photovoltaic array area, and η is photoelectric
conversion efficiency.

The illumination intensity is random, and Beta probability distribution is usually selected as the
probability distribution of the illumination intensity, which is as in Formula (19).

f (E) =
Γ(α+ β)

Γ(α)Γ(β)
(

E
Emax

)
α−1

(1−
E

Emax
)
β−1

(19)

where E and Emax are the actual illumination intensity and maximum illumination intensity for the
current time period, respectively; α and β are the shape parameters of the Beta distribution, and Γ is
the Gamma function.

5. Acquisition of Feasible Solutions

5.1. Uncertain Subinterval Division

The fluctuation range of the total load power of a certain area and the fluctuation range of the
total output of the j-th renewable energy power station of this area are shown as follows:

pt
l
≤ pt
≤ pt

h∀t (20)

pt
gjl
≤ pt

gj
≤ Pt

gjh
∀ j,∀t (21)

where pt is the load power of t period; pt
l

and pt
h

are the upper and lower bounds of the fluctuation
range of load power in t period, respectively, which can be obtained according to historical data;
pt

gj is the output of the j-th renewable energy power station in t period; pt
l

and pt
h

is the upper and
lower bounds of the fluctuation range of the output of the renewable energy power station in t period,
respectively, and can be obtained based on historical data and weather forecast.

According to the robust optimization theory, load prediction error variation range and the j-th
renewable energy power station output fluctuation variation range are defined as:

pt =

pt
|pt = pt + δt,

∣∣∣δt
∣∣∣ ≤ p̃t, pt =

pt
l + pt

h
2

, p̃t =
pt

h − pt
l

2
, t = 1, 2, · · ·T

 (22)

pt
gj =

pt
gj|p

t
gj = pgj

t + δt,
∣∣∣δgj

t
∣∣∣ ≤ p̃gj

t, pgj
t =

pt
gjl + pt

gjh

2
, p̃gj

t =
pt

gjh − pt
gjl

2
, t = 1, 2, · · ·T

 (23)

Although the robust optimization method is an effective method for solving the uncertainty
problem, the effectiveness of the solution is closely related to the uncertainty interval of the variable.
When the uncertainty interval is large, the solution is conservative. The uncertainty range of a single
load or a renewable energy source may be small, but for GEP of an area, the total load power and
the total output of all renewable energy plants will be relatively indeterminate, which makes GEP
conservative, resulting in a waste of resources. In order to solve this problem, this paper divides the

whole uncertain interval R into several subintervals R1, R2 · · ·Rn(
n
∪

i=1
Ri = R,

n
∩

i=1
Ri = R) and uses the

robust optimization method to obtain the optimal schemes in these sub-intervals. Then, these schemes
are evaluated by using the DBN theory to select the global optimal scheme.

The probability that the variable is in a sub-interval Ri is:

P(p ∈ Ri) =

∫
Ri

f (p)dp i = 1, 2 · · · n (24)
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where p is the uncertain variable; it refers to the load power or the output of the renewable energy
power station; f () is the probability density function of the uncertain variable.

Constraints containing uncertain parameters in the power planning model include system power
balance constraint. In a subinterval Ri(i ∈ {1, 2, · · · n}), the original constraint (4) is added to the
indeterminate parameter, and the constraint is transformed into:

Nre∑
j=1

(∆Q j + Q j)(pt
gj + δt

gj) +

Nc∑
i=1

αt
i(∆Qt

i + Qt
i) ≥ (pt + δt)(1 + et

D) (25)

where Nre is the number of renewable energy types; Nc is the number of conventional power sources.
In summary, the robust model of GEP can be expressed as:{

(8)
s.t.(5) − (7), (25)

(26)

According to the robust duality theorem, Formula (25) can be expressed as Formula (27).
Nre∑
j=1

pt
gj(∆Q j + Q j) −

Nre∑
j=1

p̃gj
t(∆Q j + Q j)y j +

Nc∑
i=1

αt
i(∆Qt

i + Qt
i) ≥ (pt + p̃t)(1 + et

D)

−y j ≤ ∆Q j + Q j ≤ y j

(27)

Formula (26) can be converted to Formula (28).{
(8)

s.t. (5) − (7), (27)
(28)

Since the GEP model shown by Formula (28) is already a completely determined model, there are
already quite mature research results for solving this model [7,36–38] and will not be repeated here.

5.2. Target Utility Value Discretization

Although the above gives a finite number of feasible schemes, when the uncertain variables are
continuous variables, the target utility value of these schemes is in a continuously changing interval
and changes with the uncertain variables; the decision workload is large and complex, which is
very unfavorable for making decisions using DBN theory. When making decisions in an uncertain
environment, with the decision-making scheme used, it is often difficult to achieve a certain target
utility value, and it only needs to reach a certain target state. In order to facilitate the selection of
feasible solutions, the target utility value is discretized into several discrete states by the fuzzy set
method according to the actual needs. The membership function of the fuzzy set adopts the most
common trapezoidal membership function. If the target utility value is discretized into three states,
high, medium, and low, the membership functions of the three states are:

µH(PL) =


1, V < a
a−V
b−a , a ≤ V ≤ b
0, V > b

(29)

µM(PL) =


d−V
d−c , V < d

1, b ≤ V ≤ c
V−a
b−a , V > a

(30)

µL(PL) =


0, V < c
V−d
d−c , c ≤ V ≤ d

1, V > d
(31)



Energies 2019, 12, 2492 12 of 20

where: a, b, c and d are the parameters of the membership functions, obtained from historical data and
expert evaluation. The diagram of its membership function is shown in Figure 3.
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6. Model Solving based on DBN Method

Based on the DBN method, this paper puts forward an applicable analysis method for the
generation expansion model. By analyzing the properties of each variable in the decision problem,
each variable is divided into different sets, and the network is constructed according to its logical
relationship. Moreover, the DBN theory is used to solve the network, and the utility of the decision
scheme is obtained.

6.1. Division of Model Nodes

The decision model is divided into different subsets according to the characteristics of variables,
as follows:

(1) The decision-making base node, C = {C1, C2, · · ·l}, indicates the external condition information
that can be collected before the decision is made, such as renewable energy resources, installed capacity,
and power generation forecast. The information may be determined or uncertain.

(2) Decision-making node, D = {D1, D2, · · ·}, indicates the variables that need to be decided
during the entire GEP process, including building capacity and power structure. For the k-th stage, the
decision variables need to be obtained from the decision set.

(3) Decision-making transfer nodes, E = {E1, E2, · · ·}. In the multi-stage decision-making problem,
each decision result will affect subsequent decision-making choices. For example, the decision of the
power supply structure will affect the environmental protection constraints, and the decision-making
transfer node is introduced to indicate the situation after the decision-making of the previous stage.
The analysis provides more information or constraints for subsequent decision making.

(4) Decision target node, O = {O1, O2, · · ·}, which represents the set of evaluation indicators that
need to be measured in the decision-making process, which embodies the objective function that GEP
needs to consider.

(5) The decision value node, V = {V1, V2, · · ·}, indicates the value brought by each decision target.
It is the quantitative representation of the decision target under the same unified dimension and is
calculated according to the state combination probability and the corresponding weight.

According to the division of the above node set, the GEP model can be expressed as Figure 4.
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6.2. Dynamic Bayesian Network

Dynamic Bayesian networks (DBN) are developed on the basis of static Bayesian networks.
At each point in time, each factor of the environment is represented by a random variable. The DBN
based on GEP is shown in Figure 5.Energies 2019, 5, x FOR PEER REVIEW 14 of 21 
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Figure 5. Three-phase generation expansion planning network representation.

It can be seen from Figure 5 that the role of E in this phase is to provide a decision-making
environment, which has the same effect as C and can be regarded as the decision-making environment
node determined by the previous stage. According to the definition of DBN, E and D are hidden
variables, and O and V are observed variables. Therefore, E and D can be merged into node X, and O
and V are merged into node Y to form a Markov chain. As shown in Figure 6.
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Figure 6. Hidden Markov model.

The state transition matrix is A = (aij)n × n, where aij = P (Xt + 1 = j | Xt = i). According to
Bayesian network independence and Bayes’ theorem, Yt can be solved by prior probability and state
transition matrix.

P(Yt) = P(Yt|Xt)P(Xt) = P(Yt|Xt)P(X1)P(X2|X1) · · ·P(Xt = xt|Xt−1 = xt−1) (32)

6.3. Model Solution

(1) Using the theory of Section 5, discretize the uncertain variables and solve the probabilities in
various decision environments.

(2) The attributes are merged with the nodes with the same function, and the network is simplified
to the hidden Markov model.

(3) Determine the true state of the decision base node and determine the conditional probability
and state transition matrix.

(4) Calculate the value of the obtained decision value node in the current state and go to step (3)
until the planning is completed.

P(v j = vk
j

∣∣∣∣xi, Cnow)

= P(v j = vk
j

∣∣∣∣E(v j)) × P(E(v j)
∣∣∣xi, Cnow)

(33)

(5) According to the above posterior probability, use P(v j = vk
j

∣∣∣∣xi, Cnow) to denote pk
i j and calculate

the sum of the values of all decision value nodes, that is, the utility of the scheme, as shown in
Equation (34).

r(xi) =
m∑

i=1

P(i)
T∑

k=1

n∑
j=1

wk
jp(v j = vk

j

∣∣∣∣E(v j)) × P(v j = vk
j

∣∣∣∣xi, Cnow)vk
i j (34)

where P(i) denotes the probability of occurrence of the decision environment in the ith; m denotes m
kinds of decision environments.

(6) Continuously change the state of the value combination of the decision-making nodes at
each stage and repeat steps (3) and (4) to obtain various feasible decision-making combinations
X = {x1, x2 · · · , xn} for each power plan of each stage.

(7) Calculate the respective utility
{
γ(x1), γ(x2), · · · , γ(xn)

}
of each decision-making scheme;

select the optimal scheme; or sort the scheme for decision-makers to choose the reference.
The model solving algorithm is shown in Figure 7.
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7. Case Analysis

7.1. Case Description and Model Establishment

The load fluctuation range of a certain region is 2769.0 MW–3936.4 MW; the existing installed
thermal power capacity is 2600 MW; the minimum technical output is 0.75; the existing renewable
energy power plants are wind power plants; the installed capacity is 300 MW; the output fluctuation rate
is 0% to 25%. The operating cost of a wind farm is 80 RMB/MWH; the operating cost of a photovoltaic
power station is 120 RMB/MWH; and the volatility is 0% to 20%. The service life of thermal power
units is 30 years. In the future planning period, 10 thermal power units and 5 wind farms can be added,
each thermal power unit with an installed capacity of 100 MW, and each wind farm with an installed
capacity of 100 MW.

In the GEP process, determining the installed capacity of renewable energy and the installed
capacity of conventional energy is an important part of GEP. The installed capacity of renewable energy
is affected by the uncertainty of the output of renewable energy sources. Conventional energy as
a power source that stabilizes the random output of renewable energy is affected by the output of
renewable energy and local load. The installed capacity of these two types of power supplies will
directly affect the various indicators of GEP.

7.2. Case Network Model Structure

First, each uncertainty interval is divided into two uncertain subintervals, and then the robust
optimization algorithm is used to solve the robust optimization schemes of these sub-intervals, whose
solution is shown in Table 2:
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Table 2. Feasible solution set.

No. Renewable Energy Installed Capacity Conventional Energy Capacity

1 QR1(300 MW) QC1(100 MW)
2 QR2(500 MW) QC2(300 MW)
3 QR1(300 MW) QC3(500 MW)
4 QR2(500 MW) QC4(700 MW)

Then, the state values of each node are obtained by using the division method of uncertain stator
interval, the discrete method of target utility value and the expert evaluation method, as shown in
Table 3.

Table 3. Influencing factors node descriptions for sustainable generation expansion planning.

Category Node Mark State

Decision-making
environment

Renewable energy C1 High/Low
Load power C2 High/ Low

Decision-making Renewable energy capacity D1 QR1/QR2
Conventional power capacity D2 QC1/QC2/QC3/QC4

Decision-making transfer Renewable energy generation E1 High/Low

Decision target
Operational indicators O1 High/Mid/Low

The indicators of energy efficiency O2 High/Mid/Low
Environmental indicators O3 High/Mid/Low

Decision value
Operational value V1 V1

H/V1
M/V1

L

Energy efficiency value V2 V2
H/V2

M/V2
L

Environmental value V3 V3
H/V3

M/V3
L

Last, based on the causal relationship, the relationship between these nodes is established, and
the multi-stage multi-objective network structure model of GEP is shown in Figure 8.Energies 2019, 5, x FOR PEER REVIEW 17 of 21 
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Renewable 

Energy 

Fluctuations 

Renewable 

Power 

Capacity 

Operation Index 
Energy Efficiency 

Indicators 
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Figure 8. Network structure analysis chart for the decision-making process.
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7.3. Case Model Probability Parameter

The model probability parameters are not controlled by the decision makers. The main information
comes from probabilistic analysis of many aspects such as direct observation, mathematical estimation,
or expert evaluation. Assume that the probability of impact on the various indicators of GEP due to
the constraints of environmental protection and renewable energy construction is shown in Tables 4–7.

Table 4. The probability distribution of each target in the first stage of decision making.

Renewable
Energy

Fluctuations

Renewable
Power

Capacity

Operation Index Energy Efficiency
Indicators

Environment
Indicators

High Mid Low High Mid Low High Mid Low

High QR1 10% 20% 70% 50% 30% 20% 60% 20% 20%
High QR2 40% 35% 25% 10% 30% 60% 40% 30% 30%
Low QR1 15% 25% 60% 70% 25% 5% 70% 20% 10%
Low QR2 45% 40% 5% 15% 40% 45% 45% 20% 35%

Table 5. The probability distribution of transition state in the first stage of decision making.

Renewable Energy
Fluctuations

Renewable Power
Capacity

Renewable Energy

High Low

High High 65% 35%
High Low 40% 60%
Low High 80% 20%
Low Low 60% 40%

Table 6. The target probability distribution in the second stage of decision making under high
load fluctuation.

Renewable
Power
Output

Conventional
Energy

Capacity

Operation Index Energy Efficiency
Indicators

Environment
Indicators

High Mid Low High Mid Low High Mid Low

High QC1 10% 20% 70% 20% 30% 50% 20% 30% 50%
High QC2 25% 35% 40% 15% 25% 60% 15% 25% 60%
Low QC1 20% 25% 45% 25% 35% 40% 25% 35% 40%
Low QC2 30% 30% 40% 20% 30% 50% 20% 30% 50%

Table 7. The target probability distribution in the second stage of decision making under low
load fluctuation.

Renewable
Power
Output

Conventional
Energy

Capacity

Operation Index Energy Efficiency
Indicators

Environment
Indicators

High Mid Low High Mid Low High Mid Low

High QC3 20% 25% 45% 25% 35% 40% 25% 35% 40%
High QC4 30% 30% 40% 20% 30% 50% 20% 30% 50%
Low QC3 50% 30% 20% 60% 30% 10% 60% 30% 10%
Low QC4 70% 20% 10% 50% 45% 15% 50% 45% 15%

7.4. The Solution of Model Cases

The sum of the target utility is the final quantitative standard of the GEP model. The goal of
the model solution is to provide such a GEP scheme to maximize

∑3
1 Vi. Calculate the GEP decision

indicators according to Equation (35) as shown. The final benefit indicators for calculating each
program are shown in Table 8.
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γ(S1) =
3∑

j=1

q j∑
k=1

Wk
j Vk

i j × P
(
O j = Ok

j

∣∣∣∣Si, C1 = High
)
+

3∑
j=1

q j∑
k=1

Wk
j × P

(
O j = Ok

j

∣∣∣∣Si, C1 = High
)

=
3∑

j=1

q j∑
k=1

Wk
j Vk

i j × P
(
O j = Ok

j

∣∣∣∣E(
O j

))
× P

(
π
(
O j

)∣∣∣∣S1, C2 = High
)

+
3∑

j=1

q j∑
k=1

Wk
j Vk

i j × P
(
O j = Ok

j

∣∣∣∣E(
O j

))
× P

(
E
(
O j

)∣∣∣∣S1, C2 = High
)
= 2.9901

(35)

Table 8. Standardized indicators matrix for generation expansion planning decision-making.

No.
Renewable

Energy
Fluctuations

Load
Fluctuation

Renewable Energy Capacity/
General Power Supply Capacity

QR1 QR2

QC1 QC2 QC3 QC4

1 High High 2.9901 2.9648 3.0366 3.0038
2 High Low 3.2671 3.3518 3.3252 3.4322
3 Low High 3.1581 3.0052 3.2091 3.0502
4 Low Low 3.3691 3.3042 3.4139 3.3668

According to the analysis in Section 4.2, the probability of fluctuations in load and renewable
energy can be obtained. The decision environment probability matrix is shown in Table 9:

Table 9. Standardized indicators matrix for generation expansion planning decision-making.

Renewable Energy
Load Power P(C2)

High Low

High 0.42 0.28 0.7
Low 0.18 0.12 0.3
P(C1) 0.6 0.4 1

In this uncertain environment, the indicators for various decision-making options are shown in
Table 10. It can be seen that in this uncertain environment, the best benefit is adopted in No. 3.

Table 10. Standardized indicators matrix for generation expansion planning decision-making.

No. Renewable Energy
Installed Capacity

Conventional Energy
Capacity Benefit Indicator

1 QR1 QC1 3.0931
2 QR2 QC2 3.1015
3 QR1 QC3 3.2411
4 QR2 QC4 3.1150

8. Conclusions

From the perspective of sustainable social development in the future, the planning of the power
system will pay more attention to the proportion of renewable new energy. Taking environmental
factors as one of the multiple objectives, this paper constructs a multi-objective sustainable development
GEP model with uncertainty. According to the characteristics of target variables, attribute variables
and other factor variables in the model, the model is divided into different subsets, and the logical
relationship analysis method among different nodes is obtained based on the DBN theory, which
reduces the complexity of the planning model problem. This method focuses on the constraints of
economic and environmental factors in GEP and provides an idea and method for the sustainable
development of GEP under the multi-objective situation in China.
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