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Abstract: In this study, a type-2 fuzzy chance-constrained fractional integrated programming (T2FCFP)
approach is developed for the planning of sustainable management in an electric power system (EPS)
under complex uncertainties. Through simultaneously coupling mixed-integer linear programming
(MILP), chance-constrained stochastic programming (CCSP), and type-2 fuzzy mathematical
programming (T2FMP) techniques into a fractional programming (FP) framework, T2FCFP can
tackle dual objective problems of uncertain parameters with both type-2 fuzzy characteristics and
stochastic effectively and enhance the robustness of the obtained decisions. T2FCFP has been applied to
a case study of a typical electric power system planning to demonstrate these advantages, where issues
of clean energy utilization, air-pollutant emissions mitigation, mix ratio of renewable energy power
generation in the entire energy supply, and the displacement efficiency of electricity generation
technologies by renewable energy are incorporated within the modeling formulation. The suggested
optimal alternative that can produce the desirable sustainable schemes with a maximized share of
clean energy power generation has been generated. The results obtained can be used to conduct
desired energy/electricity allocation and help decision-makers make suitable decisions under different
input scenarios.

Keywords: optimization; electric power system; type-2 fuzzy programming; multiple objectives;
decision-making

1. Introduction

Effective planning of electric power systems (EPS) is of great significance for environmental
protection and economic development. However, the sustainable management of EPS faces many
challenges. For example, decision-makers should consider the tradeoff between rising electric demand
and growing environmental/health concerns, the reflection of dynamic characteristics of the installed
capacity of power generation facilities issues, as well as uncertainties of input information, such as
the forecast values of power demands and renewable resource availabilities [1–4]. Therefore, efficient
systems analysis methods for planning of EPS under these complexities and uncertainties are desired.

Over the past decades, optimization techniques have been used widely for EPS management
problems, which play a significant role in helping decision-makers identify effective planning of EPS.
For example, Li et al. developed a fuzzy interval-parameter credibility constrained programming
method for the EPS management considering greenhouse gas (GHG) emission mitigation [2]. Koltsaklis
and Georgiadis presented a mixed-integer stochastic programming method for Greek electricity
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generation expansion planning [5]. López et al. formulated a long-term reactive electricity investment
planning model using a stochastic mixed-integer programming method [6]. Cai et al. put forward an
interval fuzzy random programming model to identify optimal strategies for energy management
systems planning under uncertainties [7]. Among them, inexact system analysis methods were
extensively used to analyze and deal with comprehensive management problems, which were
generally based on stochastic mathematical programming (SMP) [8–13] and fuzzy mathematical
programming (FMP) [14–16].

FMP is an effective tool for dealing with vague information in objective function or constraints
(left-hand and right-hand sides). SMP can effectively cope with the probabilistic uncertainty in the
coefficients. Classically quite a few models based on FMP and SMP are coupled in the single-objective
linear programming framework to handle uncertainties in the planning process. For example, Zhou et al.
advanced a fuzzy linear programming approach for supporting sustainable EPS planning with the
aim of minimizing system costs under specific levels of environmental requirements [17]. In order
to better reflect the multi-dimensionality of the sustainable development goal, it was increasingly
popular to incorporate a multiple objective programming (MOP) framework into EPS management
problems [18–24]. For instance, Jahromi et al. provided a fuzzy multiple objective model for distribution
network expansion which simultaneously optimizes multiple objective functions namely, system cost,
pollutant emission cost, and technical satisfaction [23]. Li et al. introduced a two-stage MOP method
to cope with the problem of cogeneration economic emission dispatch [24]. However, some MOP
approaches set weights for multiple objectives, and the complexity of the system and the interaction of
multiple objectives could not be adequately reflected. Also, the conventional optimization approaches
neglected to optimize system efficiency expressed as input/output ratios (e.g., optimization of the
ratio of clean energy generation to economic cost). Fractional programming (FP) could better reflect
real-world problems by optimizing economic and environmental ratios in comparison to traditional
single-objective or multi-objective optimization programming approaches [25,26]. For example,
Zhu et al. presented a chance-constrained stochastic FP approach for ratio optimization problems
involving facilities expansion and stochastic information in electric power systems [27]. Zhang et al.
advanced a dynamic fuzzy stochastic FP method for supporting sustainable management of EPS and
balancing conflicting objectives under dual uncertainties [1].

FP was proven to be an effective way of tackling both economic and environmental constraints
related to a system’s sustainability [28]. However, inexact inputs of FP issues were not effectively
addressed in previous studies. In real-world EPS problems, uncertainties exist at multiple levels.
For instance, during the formulation process of electric power system decision-making problems,
many technical parameters are ambiguously or vaguely known to specialists (i.e., the membership of
the fuzzy set is uncertain, that is, it cannot be expressed as accurate information). Moreover, due to
their inherent intermittent nature, renewable energy sources inevitably introduce more variability
and uncertainty to EPS management. Such uncertainties cannot be tackled by the conventional FMP
and the FP approaches. The traditional FMP approaches could only address the fuzzy uncertainty
decision-problems with precise membership grades which may encounter difficulties to quantify the
input parameters when the membership grades of the fuzzy sets are also obtained as fuzzy sets.

Therefore, this study aims to develop an integrated modeling method (type-2 fuzzy chance-
constrained fractional programming, T2FCFP) for EPS management of uncertainties and risks based
on type-2 fuzzy programming. The T2FCFP method will incorporate techniques of SMP and type-2
fuzzy analysis within a FP framework to reflect the dual objectives in the study system and effectively
tackle the uncertainties expressed as type-2 fuzzy parameters with vague or ambiguous membership
function. The effectiveness of the developed T2FCFP method will be further demonstrated through the
application in a typical case study of electric power system planning.
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2. Model Development

2.1. Type-2 Fuzzy Mathematical Programming

Ã is a type-2 fuzzy set in which the membership grade is also fuzzy. The Ã is defined as the
following [29,30]:

Ã = {((x, u),µÃ(x, u)) : ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

According to the definition of the type-1 fuzzy variable (T1FV, a function from the possibility
space to the real numbers set), Kundu et al. defined the type-2 fuzzy variable (T2FV) as a function
from the fuzzy possibility space to the real numbers set [31].

Let ξ̃ be a T2FV with the secondary possibility distribution function µ̃ξ̃(x). Suppose ξ̃ =

(ξ̃1, ξ̃2, . . . , ξ̃m) is a type-2 fuzzy vector defined on a fuzzy possibility space (Γ,A,P̃os). The map
<

m
7→ <[0, 1] is the secondary possibility distribution function µ̃ξ̃(x) of ξ̃ [32], where

µ̃ξ̃(x) = P̃os
{
γ ∈ Γ

∣∣∣ξ̃(γ) = x
}
, x ∈ <m, (2)

The map <m
× Jx 7→ [0, 1] is the type-2 possibility distribution function µ̃ξ̃(x, u) of ξ̃, where

µ̃ξ̃(x, u) = Pos
{
µ̃ξ̃(x) = u

}
, (x, u) ∈ <m

× Jx, (3)

where Pos is the possibility measure induced by the distribution of µ̃ξ̃(x), and Jx ⊂ [0, 1] is the support

of µ̃ξ̃(x),i.e., Jx =
{
u ∈ [0, 1]

∣∣∣µξ̃(x, u) > 0
}
.

The support of a type-2 fuzzy vector ξ̃ is defined as

sup ξ̃ =
{
(x, u) ∈ <m

× [0, 1]
∣∣∣µξ̃(x, u) > 0

}
, (4)

where µξ̃(x, u) is the type-2 possibility distribution function of ξ̃.
Qin et al. introduced a critical value (CV)-based reduction approach for a type-2 fuzzy variable.

The approach is defining three kinds of CVS [33]. They are:

(i) the optimistic CV
CV∗[ξ̃] = sup

α∈[0,1]
[α∧ Pos{ξ̃ ≥ α}] (5a)

(ii) the pessimistic CV
CV∗[ξ̃] = sup

α∈[0,1]
[α∧Nec{ξ̃ ≥ α}] (5b)

(iii) the CV of ξ̃
CV[ξ̃] = sup

α∈[0,1]
[α∧Cr{ξ̃ ≥ α}] (5c)

Suppose ξ̃i = (r̃i
1, r̃i

2, r̃i
3;θl,i,θr,i) is a triangular type-2 fuzzy variable, where θl,θr ∈

[0, 1] indicates the degree of uncertainty of ξ̃ taking the value x. The secondary possibility

distribution µ̃ξ̃i
(x) is

(
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.

Then, integrating the generalized credibility measure C̃r and CV reduction methods, Qin et al.
introduced the crisp equivalent forms of constraints involving triangular T2FV [33]. Let ξi be the
reduction of the T2FV ξ̃i obtained by the CV reduction method. Taking the type-2 triangular fuzzy
variables as the example, the constraints of the crisp equivalent forms are:
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(i) when the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25], then C̃r =
{∑n

i=1 kiξi ≤ t
}
≥ α is

equivalent to
n∑

i=1

(1− 2α+ (1− 4α)θr,i)kiri
1 + 2akiri

2

1 + (1− 4a)θr,i
≤ t, (6a)

and if α ∈ (0.25, 0.5], then C̃r =
{∑n

i=1 kiξi ≤ t
}
≥ α is equivalent to

n∑
i=1

(1− 2α)kiri
1 + (2α+ (4α− 1)θl,i)kiri

2

1 + (4a− 1)θl,i
≤ t. (6b)

(ii) when the generalized credibility level α ∈ (0.5, 1], if α ∈ (0.5, 0.75], then C̃r =
{∑n

i=1 kiξi ≤ t
}
≥ α is

equivalent to
n∑

i=1

(2α− 1)kiri
3 + (2(1− α) + (3− 4α)θl,i)kiri

2

1 + (3− 4a)θl,i
≤ t, (6c)

and if α ∈ (0.75, 1], then C̃r =
{∑n

i=1 kiξi ≤ t
}
≥ α is equivalent to

n∑
i=1

(2α− 1 + (4α− 3)θr,i)kiri
3 + 2(1− α)kiri

2

1 + (4a− 3)θr,i
≤ t. (6d)

Then, the equivalent expressions of C̃r =
{∑n

i=1 kiξi ≥ t
}
≥ α can be acquired [31], these are:

(i) when the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25], then C̃r =
{∑n

i=1 kiξi ≥ t
}
≥ α is

equivalent to
n∑

i=1

(1− 2α+ (1− 4α)θl,i)ki(−ri
3) + 2aki(−ri

2)

1 + (1− 4a)θr,i
≤ −t, (7a)

and if α ∈ (0.25, 0.5], then C̃r =
{∑n

i=1 kiξi ≥ t
}
≥ α is equivalent to

n∑
i=1

(1− 2α+ (1− 4α)θl,i)kiri
3 + 2αkiri

2

1 + (1− 4a)θl,i
≥ t. (7b)

(ii) when the generalized credibility level α ∈ (0.5, 1], if α ∈ (0.5, 0.75], then C̃r =
{∑n

i=1 kiξi ≥ t
}
≥ α is

equivalent to
n∑

i=1

(1− 2α)ki(−ri
3) + (2α+ (4α− 1)θr,i)ki(−ri

2)

1 + (4a− 1)θr,i
≤ −t, (7c)

and if α ∈ (0.75, 1], then C̃r =
{∑n

i=1 kiξi ≥ t
}
≥ α is equivalent to

n∑
i=1

(1− 2α)kiri
3 + (2α+ (4α− 1)θr,i)kiri

2 + 2(1− α)kiri
2

1 + (4a− 1)θr,i
≥ t. (7d)

Figure 1 depicts the process of defuzzification.
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2.2. Type-2 Fuzzy Chance-Constrained Fractional Programming (T2FCFP) Method

Fractional programming (FP) is an effective tool for tackling dual-objective optimization problems.
Integrating type-2 fuzzy variables into the fractional programming framework will enhance the relevant
decision robustness [1,34]. A general linear fractional programming (LFP) problem can be denoted as
follows [27,28]:

Max f =
CX + β

DX + γ
(8a)

subject to:
A(τ)X ≤ B(τ) (8b)

x j ≥ 0, x j ∈ X, j = 1, 2 . . . , n. (8c)

where X is the decision variable; C and D are the numerator and denominator coefficients of the
objective; β and γ are constant.

Chance-constrained stochastic programming (CCSP) allows constraints to be violated at specified
confidence levels and therefore achieves the optimal decision-making scheme [35,36]. The techniques
of CCSP incorporate into type-2 fuzzy programming (T2FP) to form a general LFP framework in order
to handle two-layer fuzziness and randomness which occurred in the constraints. Therefore, a type-2
fuzzy chance-constrained fractional programming (T2FCFP) model is defined as follows:

Max f =

∑n
j=1 c jx j + β∑n
j=1 d jx j + γ

(9a)

subject to:

Cr


n∑

j=1

ai jx j ≤ b̃i

 ≥ αi, i = 1, 2, . . .m1 (9b)

Cr


n∑

j=1

asjx j ≥ b̃s

 ≥ αs, s = 1, 2, . . .m2 (9c)

Pr


n∑

j=1

arjx j ≤ br

 ≥ 1− δr, r = 1, 2, . . .m3 (9d)

x j ≥ 0, j = 1, 2 . . . , n (9e)

where b̃i are T2FV coefficients with secondary possibility distributions; i and s are the number of
constraints with the T2FV right-hand side coefficients; r is the number of constraints with random
right-hand side coefficients.

Charnes and Cooper indicated that if the sign of the denominator on the feasible region is
constant [29], the LFP model can be converted to the following linear programming (LP) problems [27].

Max f =
n∑

j=1

c jx∗j + β · u (10a)

subject to:

Cr


n∑

j=1

ai jx∗j ≤ b̃i · u

 ≥ αi, i = 1, 2, . . .m1 (10b)

Cr


n∑

j=1

asjx∗j ≥ b̃s · u

 ≥ αs, s = 1, 2, . . .m2 (10c)
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Pr


n∑

j=1

arjx∗j ≤ br · u

 ≥ 1− δr, r = 1, 2, . . .m3 (10d)

n∑
j=1

d jx∗j + γ · u = 1 (10e)

x∗j = u · x j ≥ 0, j = 1, 2, . . . , n (10f)

According to CV-based reduction approach, and transformation denoted method proposed by
Huang [8], models 10a–f can be formulated as follows:

Max f =
n∑

j=1

c jx∗j + β · u (11a)

subject to:
n∑

j=1

ai jx∗j ≤ Gb̃i·u
i = 1, 2, . . .m1 (11b)

n∑
j=1

asjx∗j ≥ Gb̃s·ul = 1, 2, . . .m2 (11c)

n∑
j=1

arjx∗j ≤ (br · u)
(pr), r = 1, 2, . . .m3 (11d)

n∑
j=1

d jx∗j + γ · u = 1 (11e)

x∗j ≥ 0, j = 1, 2, . . . , n (11f)

where (br · u)
(pr) = F−1

r (pr), r = 1, 2, . . . , m2; pr = 1 − δr given the cumulative distribution function
of br · u (i.e.,Fr(br · u)) and the probability of violating constraint r [8]. Gb̃i·u

and Gb̃s·u are given by
following equation [31]:

Gb̃i·u
=



(1−2αi+(1−4αi)θl,i)b3
i ·u+2aib2

i ·u
1+(1−4ai)θl,i

, if 0 < αi ≤ 0.25;
(1−2αi)b3

i ·u+(2αi+(4αi−1)θr,i)b2
i ·u

1+(4ai−1)θr,i
, if 0.25 < αi ≤ 0.5;

(2αi−1)b1
i ·u+(2(1−αi)+(3−4αi)θr,i)b2

i ·u
1+(3−4ai)θr,i

, if 0.5 < αi ≤ 0.75;
(2αi−1+(4αi−3)θl,i)b1

i ·u+2(1−αi)b2
i ·u

1+(4ai−3)θl,i
, if 0.75 < αi ≤ 1;

(12a)

Gb̃s·u =



(1−2αs+(1−4αs)θr,s)b1
s ·u+2asb2

s ·u
1+(1−4as)θr,s

, if 0 < αs ≤ 0.25;
(1−2αs)b1

s ·u+(2αs+(4αs−1)θl,s)b2
s ·u

1+(4as−1)θl,s
, if 0.25 < αs ≤ 0.5;

(2αs−1)b3
s ·u+(2(1−αs)+(3−4αs)θl,s)b2

s ·u
1+(3−4as)θl,s

, if 0.5 < αs ≤ 0.75;
(2αs−1+(4αs−3)θr,s)b3

s ·u+2(1−αs)b2
s ·u

1+(4as−3)θr,s
, if 0.75 < αs ≤ 1;

(12b)

2.3. Development of T2FCFP-GEP Model

To indicate the feasibility, the proposed T2FCFP method is adopted in the generation expansion
planning (GEP) problem of EPS. The GEP problem consists of six forms of energy supply (including
exported electricity) and involves three planning periods (each period is a 5-year planning horizon).
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The problem is to determine the least cost plan for allocation of electricity supplies and expansion
choices under environmental protection and growing power requirement limitations over the 15-year
planning horizon; by involving the T2FCFP method the GEP problem can also achieve the aim of
maximization renewable energy generation (natural gas energy in this study is regarded as green
energy). Thus, the T2FCFP-GEP problem is generated with multi-objectives of minimizing the cost
of power generation and maximizing the renewable power generation percentage. The relationships
of the decisions are defined by a series of constraints. The proposed T2FCFP method is applied to
the T2FCFP-GEP model (see Equations (13a~14o)); the planning horizon divided as three periods
brings a dynamic feature to the model. Adequate energy supply at minimum cost is important for EPS
planning. To elaborate on the model, C represents the cost of the objective function of the T2FCFP-GEP
model. The objective function is summarized as the following expression:

C = f1 + f2 + f3 + f4 + f5 + f6 − f7 − f8 (13a)

(1) cost for primary energy supply:

f1 =
3∑

t=1

2∑
j=1

CPEt, j×APEt, j (13b)

(2) fixed and variable operating costs for power generation:

f2 =
3∑

t=1

5∑
j=1

2∑
k=1

CPGt, j ×APGt, j,k (13c)

(3) cost for capacity expansions:

f3 =
3∑

t=1

5∑
j=1

3∑
m=1

CEPt, j × ECAt, j,m ×Yt, j,m (13d)

(4) cost for electricity transmission:

f4 =
3∑

t=1

5∑
j=1

2∑
k=1

CTDt,k ×APGt, j,k (13e)

(5) cost for pollutant mitigation:

f5 =
3∑

t=1

2∑
j=1

3∑
n=1

2∑
k=1

CPMt, j,n ×APGt, j,k × c ft, j,n (13f)

(6) penalty for pollutant emission:

f6 =
3∑

t=1

2∑
j=1

3∑
n=1

2∑
k=1

PESt, j,n ×
(
APGt, j,k × c ft, j,n × (1− ηt, j,n)

)
PEVt, j,n

(13g)

(7) revenue from exported electricity to another power grid:

f7 =
3∑

t=1

5∑
j=1

2∑
k=1

SREt ×APGt, j,k (13h)
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(8) fiscal subsidy of pollution treatment and renewable energy generation:

f8 =
3∑

t=1

2∑
j=1

2∑
k=1

SPTt, j ×APGt, j,k +
3∑

t=1

5∑
j=3

2∑
k=1

SRGt, j ×APGt, j,k (13i)

Renewable energy resources are stochastic, intermittent, and unreliable, and are greatly influenced
by environmental changes. The natural gas power generation has lower GHG emissions in comparison
with coal-fired power generation, and on the other hand it can stabilize the intermittent and
unpredictable risks of renewable energy generation. Therefore, in this study, natural gas resources
were regarded as a form of clean energy. Thus, the ratio objective of the T2FCFP-GEP model can be
represented as follows:

Max f =
clean energy power generation

system cos t

=

3∑
t=1

5∑
j=2

APGt, j

f1+ f2+ f3+ f4+ f5+ f6− f7− f8

(14a)

The constraints related to all interrelationships among conditions and decision variables in EPS
management are formulated as follows:

(1) constraint for electricity supply and demand balance:

(1− LETt)

 2∑
j=1

APGt, j,1 + εt, j

5∑
j=3

APGt, j,1

 ≥ DMt,∀t (14b)

(1− LETt)

 2∑
j=1

APGt, j,2 + εt, j

5∑
j=3

APGt, j,2

 ≥ D̃Et,∀t (14c)

(2) constraint for primary energy resource availabilities:

2∑
k=1

APEt, j,k ≤ UPEt, j,∀t, j = 1, 2 (14d)

2∑
k=1

APGt, j,k × r ft, j ≤ APEt, j,∀t, j = 1, 2 (14e)

(3) constraint for electricity export:

5∑
j=1

APGt, j,2 ≤ UHVt × STt,∀t (14f)

(4) constraint for capacity limitation of electricity generation facilities:

2∑
k=1

APGt, j,k ≤

RCAt, j +
3∑

m=1

(
ECA(t−1), j,m ×Y(t−1), j,m

)
−RET(t−1), j

× STMt, j,∀t, j (14g)

(5) constraint for capacity expansion:

RCAt, j +
3∑

m=1

(
ECA(t−1), j,m ×Y(t−1), j,m

)
−RET(t−1), j ≤ UCAt, j,∀t, j (14h)
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(6) constraint for expansion options:
3∑

m=1

Yt, j,m ≤ 1 , ∀t, j (14i)

Yt, j,m = 1, if capacity expansion is undertaken
Yt, j,m= 0, otherwise

(7) constraint for renewable energy availabilities:

∑2
k=1 APGt,3,k

r f ht
≤ AVHt,∀t (14j)

∑2
k=1 APGt,4,k

r f wt
≤ ÃVW,∀t (14k)

∑2
k=1 APGt,5,k

r f st
≤ ÃVSt,∀t (14l)

(8) export electricity constraints:

5∑
j=3

2∑
k=1

APGt, j,k ≥

 5∑
j=1

2∑
k=1

APGt, j,k

σt,∀t (14m)

(9) constraint for air-pollutants emissions:

2∑
j=1

2∑
k=1

APGt, j,k × c ft, j,n ×
(
1− ηt, j,n

)
≤ EM(pt,n)

t,n ,∀t, n (14n)

(10) non-negativity constraints:

APEt, j, APGt, j,k, Yt, j,m ≥ 0 ∀t, j, m, k (14o)

In this study, the following assumptions are considered with regard to expansion constraints:
(i) each electricity generation unit can be only applied to one capacity expansion choice during each
planning period; (ii) expansion procedure is completed as soon as the planning period begins. Second,
several countries have made policies for Renewable Portfolio Standard (RPS) which is a regulation
aiming at increasing power generation from green resources like solar, hydro, wind, geothermal,
and biomass. According to the requirement of the regulation, the percentage of clean energy power
generation of electricity enterprises has to reach a specific number, and the number is increasing year
by year. Therefore, we also assume that the proportion of renewable energy in the power supply is
required to exceed a certain percentage.

Also, according to Hu and Cheng, the electricity generated by non-fossil fuel resources does not
help to reduce the same amount of electricity generated by current fossil fuel-fired generators [37].
Therefore, ‘mix ratio (σt)’ of renewable energy generation in the entire energy supply and ‘displacement
efficiency (εt, j)’ of electricity generation technologies by renewable energy need to be considered as the
essential technical parameters.

The symbols and abbreviations for variables and parameters are listed in the Nomenclatures.

3. Case Study and Result Analysis

To demonstrate its advantages, the advanced T2FCFP-GEP model is then applied to an EPS
management problem as a case study with typical Chinese technical and data background. The input
data of the model refers to the Shanxi Province, a typical coal-heavy electricity region in China. Table 1
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presents the cost of the primary energy supply and cost of pollutant emission. Table 2 lists the technical
parameters of power generation. Capacity expansion options and expansion costs for power-generation
facilities are denoted in Table 3. Figure 2 depicts the installed capacity of the study area in 2017. Shanxi
Province is one of the most important electricity export provinces in China. Figure 3 shows the power
consumption in Shanxi from 1999 to 2016 [38]. Figure 4 presents the relevant economic parameters for
electricity demand forecasting.

Table 1. Primary energy supply cost and emission cost.

Primary Energy Air Pollutants
Period

t = 1 t = 2 t = 3

Energy supply cost (103 $/TJ)
Coal 3.96 4.554 5.237
Natural gas 6.76 7.436 8.18

Emission cost ($/tonne)
SO2 99 108.9 119.79
NOx 99 108.9 119.79
PM 23 25.3 27.83

Table 2. Power generation technical parameters.

Electricity-Generation Technology Electricity Generation Cost (103 $/GWh) Installed Capacity (GW)

Coal 32.77 59.43
NG 44.82 3.88

Wind 36.47 8.72
PV 40.31 5.90

Hydro 21.50 2.44

Note. Coal: coal-fired power; NG: natural gas; Wind: wind; PV: photovoltaic; Hydro: hydropower.

Table 3. Expansion options and expansion costs for electricity generation facilities.

Electricity-Generation Technology Options Period

t = 1 t = 2 t = 3

Capacity expansion options (GW)

Coal
m = 1 2.2 2.2 2.2
m = 2 6.55 6.55 6.55
m = 3 10.9 10.9 10.9

NG
m = 1 3.12 3.12 3.12
m = 2 5.12 5.12 5.12
m = 3 7.12 7.12 7.12

Wind
m = 1 5.28 5.28 5.28
m = 2 6.28 6.28 6.28
m = 3 7.28 7.28 7.28

PV
m = 1 4.1 4.1 4.1
m = 2 6.1 6.1 6.1
m = 3 8.1 8.1 8.1

Hydro
m = 1 0.6 0.6 0.6
m = 2 1.35 1.35 1.35
m = 3 2.07 2.07 2.07

Capacity expansion cost (106 $/GW)

Coal 577 547 517
NG 726 686 646

Wind 1256 1156 1056
PV 1877 1677 1477

Hydro 1597 1497 1397
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Figure 4. The relevant economic parameters for electricity demand forecasting.

This is assuming that emission constraints can be violated under three specified p levels (p = 0.01,
0.05, and 0.1, known as significance levels) [6]. Figure 5 reveals the economic cost under three risk
levels of violating the constraint of air-pollutant emission target when the share of renewable energy
is different (when α = 0.5). The higher share (σ= 20%) of renewable energy leads to the slightly
higher total system cost than the lower share (σ= 15%) scenario under all levels. In detail, the total
economic cost would respectively be $134.31 × 109, $134.091 × 109, and $133.328 × 109 during the
three planning periods (σ= 20%), which are higher than those of the 15% share scenario ($120.297,
$120.131, and $119.999 × 109, respectively). The higher share of renewable energy in energy supply
means higher renewable energy capacities. The capital investment costs and power generation costs
of renewable power higher than that of coal-fired power generation, which would lead to the higher
total system cost. In addition, changes in p level have an impact on fossil-fired electricity generation,
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which would lead to the changes in economic costs. For instance, with p level rising from 0.01
to 0.1, the total economic cost would drop from $120.297 × 109 to $119.999 × 109 over the three
periods. The main reason is that the lower constraint-violation probability level would correspond to
relatively tight environmental requirements, resulting in higher clean energy generation; while the
higher constraint-violation probability level would correspond to relatively relaxed environmental
requirements, leading to higher coal-fired electricity generation. There has been a slight increase in
economic cost during the planning horizon under all levels when the share of renewable energy in
the electricity supply is 15%. Take p = 0.01 as an example, the system costs would increase from
$39.03 × 109 in period 1 to $40.062 × 109 in period 2, and then reach $41.204 × 109 in period 3. This is
mainly attributable to the steadily growing electricity demand, which would lead to a gradual increase
in system costs.
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Figure 5. Economic cost under different p levels and σ values.

Conversely, when the share of renewable energy accounts for 20%, there has been a downward
trend in economic cost under the three levels. The economic cost would be $51.15 × 109, $42.59
× 109, and $40.569 × 109 in period 1, 2, and 3, respectively (when p = 0.01). The main reason is
that more renewable energy installed capacity is needed under the σ= 20% scenario compared with
σ= 15%. In general, to effectively increase the sustainable power supply during the planning horizon,
the capacity expansions would be implemented sooner rather than later [27]. Therefore, the expansion
of renewable energy in the early part of the planning period would result in a significant increase
in system costs. However, as the initial capacity-expansion investment ends and the cost of power
generation from renewable energy decreases, the system cost would gradually decrease. For example,
in period 3, the system cost would be $40.569 × 109 (when p = 0.01), $40.536 × 109 (when p = 0.05),
and $40.178 × 109 (when p = 0.1), which is lower than the results obtained from the 15% share scenario
($41.204 × 109, $41.284 × 109, and $41.2 × 109, respectively). Comparing the system costs over the
three planning periods in the two scenarios, the increase in the share of renewable energy in energy
supply would bring about a decline in the cost of system power generation in the long-run. Similarly,
the results under other credible values (i.e., α = 0.25, α = 0.75, and α = 1) can be interpreted. System
cost under different α levels with a range from $37.83 × 109 to $56.56 × 109 is depicted in Figure 6.
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Figure 7 depicts the electricity generation pattern under different σ and α values (when p = 0.1).
Due to its competitive price and high reliability within the study planning horizon, coal-fired electricity
supply would account for a large proportion. According to the CV reduction method and generalized
credibility measure method, rising the credible value α would bring about a decrease in the values
of renewable energy availabilities, and increase the values of the export power demand. The results
indicate that the shares of wind power and natural gas in total supply would present upward trends
by descending the value of α. For example, when σ = 15%, wind power would contribute 12.34%
(α = 1), 12.39% (α = 0.75), 12.44% (α = 0.5), and 12.46% (α = 0.25) of the total electricity (see
Figure 7a–d), and there would be a similar trend when σ= 20% (see Figure 7e–h). The results of
wind power and natural gas would be more sensitive to uncertain inputs than that of coal-fired,
photovoltaic, or hydropower. This is because coal-fired, photovoltaic or hydropower accounts for a
large or too small share of total power generation, and the change in α has limited impact on them.
Compared with the σ = 15% scenario, the share of photovoltaic increased significantly in the σ= 20%
scenario. To be specific, when α = 1, α = 0.75, α = 0.5, and α = 0.25, the share of photovoltaic power
generation increased by 3.73%, 3.74%, 2.83%, and 2.72%, respectively. The main reason is that the cost of
photovoltaic generation is lower than that of natural gas, and the resource availability of photovoltaic is
more than that of hydropower in the study area. Moreover, the initial installed capacity of photovoltaic
in the study area is smaller, and the space for expansion is larger than that of wind power.Energies 2019, 12, x FOR PEER REVIEW 13 of 20 
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Figure 8 shows the optimal capacity expansion schemes under different ε, σ values and α levels
(when p = 0.01). The results indicate that the existing electricity generation capacities would be
insufficient for the increasing electricity demands. Differences in the capacity-expansion option for
various power generation technologies can be found between the results of the two scenarios (σ = 15%,
σ = 20%). ε represents the displacement coefficient of renewable energy resource. Hu et al. found
that each unit of electricity supplied by renewable energy resources avoids the generation of an equal
amount of electricity by traditional fossil-fuel generators, which only occurs in the ideal scenario [34].
The solution considering displacement efficiency coefficient (i.e., ε < 1) generally leads to more capacity
expansion to meet the end-users demand. When ε < 1 and σ = 15%, more capacity expansion would be
conducted in the range of 0.32% to 3% compared to the solutions with ε = 1; when ε < 1 and σ = 20%,
that would be in the range of 4% to 9%. Comparing the two scenarios with a different displacement
coefficient, there was no expansion of PV facilities which would be conducted under different α levels
(when σ = 15%, ε = 1/ε < 1). Conversely, the different capacity expansion would be undertaken on
other power generation facilities. Photovoltaic power generation has a high capacity expansion cost
and high operating cost, and thus photovoltaic facilities would only be implemented for expansion
under some harsh conditions (i.e., when the expansions of other energy generating facilities cannot
guarantee power demand). Increased credibility α means more stringent environmental constraints
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which would lead to different expansion schemes to be conducted. For example, when σ = 15%
and ε = 1, with α rising from 0.25 to 1, there was an upward trend in the total capacity expansion,
being 40.89, 41.49, 41.62, and 42.37 GWh, respectively. Similarly, when σ = 15% and ε < 1, the total
capacity expansion would respectively be 41.02, 41.62, 42.37, and 43.09 GWh. Under σ= 20% scenario,
when ε = 1, the overall trend of the expansion scheme within the planning horizon would be similar to
that under σ = 15% scenario. However, when σ= 20% and ε < 1, total capacity expansion would show
an upward trend of volatility. For example, when α rise from 0.25 to 1, the total expansion capacity
would be 49.64, 49.59, 51.22, and 50.34 GWh, respectively.Energies 2019, 12, x FOR PEER REVIEW 14 of 20 
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Figure 8. Capacity expansion schemes under different ε, σ values and α levels.

Different α and p levels in optimal power generation schemes illustrate that the results are sensitive
to inexact system inputs (see Figure 9). For instance, in period 2, to satisfy local electricity demand,
the entire coal-fired electricity generation obtained from the 15% share scenario would be 183.87, 236.28,
220.71, and 241.92 × 103 GWh for α = 0.25, 0.5, 0.75, and 1, respectively; the gas-fired power generation
would be 55.69, 24.61, 18.11, and 3 × 103 GWh; the wind power generation would be 53.54, 32.96,
51.34, and 53.54 × 103 GWh; the PV would be 10.62, 5.06, 8.69, and 0 × 103 GWh; and the hydropower
would be 0, 2.05, 4.91, and 4.53 × 103 GWh. More concretely, PV is most sensitive to changes in σ but
not sensitive to α and p levels. For example, when σ = 15%, the total PV power generation would
be 10.62 × 103 GWh under different α and p levels, but when σ reaches 20%, the total amount of PV
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would be more than 1.034~1.373 times that of under σ = 15% scenario. When σ= 20%, the coal-fired
power generation would increase with the ascending of α. For example, when p = 0.01, σ= 20%,
with α rising from 0.25 to 1, the coal-fired power generation would respectively be 226.879, 227.303,
227.039, 229.965 × 103 GWh in period 1, 245.694, 245.767, 246.532, 246.779 × 103 GWh in period 2,
and 268.736, 269.832, 271.337, 272.543 × 103 GWh in period 3; however, when σ = 15%, it presents
a trend of slight fluctuation. In addition, coal-fired power generation would also increase with the
ascending of the p level. For example, when σ= 20%, α = 0.25, corresponding to p = 0.01 rise to 0.1,
the coal-fired power generation amounts would be 245.694, 246.214, and 246.843 × 103 GWh in period
2, respectively. Hydropower would be the most sensitive to changes when compared to other power
generation technology. For instance, when σ = 15%, corresponding to a rise from 0.25 to 1, the results
obtained from hydropower would be 4.88, 6.07, 7.57, and 9.01, respectively. However, the change in
level would not affect the hydropower generation. Wind power generation and natural gas power
generation are more sensitive to changes in electricity demand than that of the changes in p, σ, and α.
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Figure 9. Power generations under different α and p levels. Note. (a–c): σ= 20%; (d–f): σ= 15%.

Figure 10 exhibits the power generation schemes under two share scenarios (when α = 1, p = 0.01,
ε = 1). The rise in the proportion of renewable energy generation would bring down the percentage of
coal-fired electricity generation. For example, when σ= 20%, the local coal-fired power generation
would be 701.17 × 103 GWh, lower than 760.8 × 103 GWh (when σ = 15%). Under scenario σ= 20%,
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PV generation would respectively be 48.16 × 103 GWh for local and 27.44 × 103 GWh for export,
higher than that under scenario σ = 15% (21.24 × 103 GWh for local, 10.62 × 103 GWh for export).
In two scenarios, the electricity generation patterns of natural gas power generation, wind power,
and hydropower are different, but the total power generations are the same, which would be 175.13
× 103 GWh, 143.89 × 103 GWh, and 27.06 × 103 GWh, respectively. This is the result of the tradeoff

between air pollutants emissions and economic costs. Likewise, the results under different α, p, ε values
can be similarly analyzed.Energies 2019, 12, x FOR PEER REVIEW 16 of 20 
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Figure 10. Comparison of power generations under two share scenarios. Note: L: local; E: export.

In order to demonstrate the superiority of the presented approach compared with previous
methods, the optimal-ratio problem (T2FCFP-GEP) proposed in models 13a–14o can be converted into
a least-cost problem defined by Equation (15).

min f = system cos t
= f1 + f2 + f3 + f4 + f5 + f6 − f7 − f8

(15)

Figure 11 reveals the power generation patterns obtained from T2FCFP-GEP (when α = 1)
and least-cost models under σ= 20%, p = 0.01, ε = 1 scenario. The T2FCFP-GEP model achieves a
relatively higher proportion of clean energy generation. According to the results of the two models,
the percentage of power generated by clean energy facilities would be 21.6% (least-cost) and 36%
(T2FCFP-GEP). In comparison, the least-cost model leads to a slightly higher capacity expansion of
coal-fired power generation and lower opportunities for clean energy development (see Figure 12).
Take coal-fired facilities as an example (corresponding to σ= 20%, p = 0.01, ε = 1), to meet the growing
demand for electricity; the capacity of 2.2 GW and 6.55 GW would be added to the coal-fired facilities
in period 1 and period 2 of the T2FCFP model but would not be expanded in period 3. The total
expansion capacity during the three planning periods would be lower than the expansion capacity
of 10.9 GW in the second planning period of the least-cost model. With another electricity capacity
expansion of 10.9 GW in the third planning period, the total coal-fired electricity expansion capacity
of the least-cost model would reach 21.8 GW. Similarly, the expansion differences of other electricity
facilities can be found between the results of the two models. As illustrated from Figure 13, the cost for
pollutant treatment and pollutant emission from T2FCFP-GEP model would be lower than that of the
least-cost model. The cost for pollutant treatment and pollutant emission would be $1549.6, $1612.65,
and $1713.77 × 106 in the three study periods from the least-cost model, which is higher than the
T2FCFP-GEP model, $1528.81, $1591.74, and $1692.07 × 106, respectively. In addition, certainty models
have limitations in representing various planning impact factors, such as radical and conservative
attitudes of decision-makers, renewable energy availability, etc. In contrast, decision-makers would
prefer models that could reflect complex conditions.
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Figure 12. Comparison of capacity expansions from two models.
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4. Conclusions

This study presents a type-2 fuzzy chance-constrained fractional programming (T2FCFP) method
for electric power system (EPS) sustainable management under varied forms of uncertainties.
This method has shown to be useful for solving dual-objective problems with ratio optimization and
uncertainties in varied forms such as probability distributions, type-2 fuzzy sets, and distribution with
fuzzy probability. The proposed hybrid T2FCFP method has the following advantages:

(a) The T2FCFP method could balance the dual objectives of minimizing system cost and
maximizing clean energy generation, as well as the trade-offs between system efficiency and
environmental constraints.

(b) The intermittent characteristics of renewable energy availability parameters could be expressed
as type-2 fuzzy variables by the T2FCFP method and quantified as determined model input parameters
by the generalized confidence level.
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(c) The T2FCFP method could provide plenty of scenario-based results and various decision
alternatives with different violation risks, which could help decision-makers identify the impact
of different energy policies on electricity generation patterns, expansion schemes, and economic
costs. Sensitivity analysis and comparison of results obtained from the alternative schemes could
help decision-makers to identify the desired long-term regional energy policies under different
system-reliability and economic constraints.

The T2FCFP method has been applied to a case study of the generation expansion planning
problem of electric power system in China. Results obtained from the T2FCFP-GEP model are
proven to be effective to support decision-making of sustainable management of EPS under both
fuzzy and stochastic uncertainties. The results suggest expanding renewable resources development
and maintaining clean-energy production would decrease the total system cost and improve energy
sustainability. The mix ratio of electricity generation by clean energy in the whole energy supply and the
displacement efficiency of power generation technology by renewable energy will have a statistically
significant impact on power generation patterns, capacity expansion schemes, and system costs.

This study is the first attempt for tackling electric power system management through the
developed T2FCFP-GEP model; the results implied that the developed T2FCFP method was applicable
to practical EPS sustainable management problems associated with uncertain and highly complex
information. Also, the T2FCFP method could be extended and applied to other energy decision-making
problems; for example, pollutant emissions mitigation programming and water resource management.
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Nomenclatures

t Research period, t = 1, 2, 3 (5-year for each period)

j
Electricity generation technology, j = 1, . . . , 5 ( j = 1 coal, j = 2 natural gas, j = 3 hydropower,
j = 5 wind power, and j = 5 photovoltaic)

k Type of power demand (k = 1 local, k = 2 export)
m Options of capacity expansion, m = 1, 2, 3
n Type of the air pollutant, n = 1, 2, 3 (n = 1 SO2, n = 2 NOx, n = 3 PM)
APEt, j Supply of primary energy resource for electricity generation technology j in period t (TJ)
APGt, j,k Power generated by electricity generation technology j for electric network k in period t (GWh).
AVHt Hydropower availability in period t.
AVWt Wind energy availability in period t
AVSt Solar energy availability in period t
CEPt, j Cost for expanding the electricity capacity j in period t (103 $/GW)
CPEt, j Cost for primary energy supply for electricity generation technology j in period t (103 $/TJ)
CPMt, j,n Cost for pollution n mitigation of electricity generation technology j in period t (103 $/tonne)
CPGt, j Fixed and variable cost for generating power via technology j in period t (103 $/GWh)
CTDt Cost for transmission and distribution in period t (103 $/GWh)
DMt Local power demand in period t (GWh)
DEt Export power demand in period t (GWh)
EMt,n Permitted emission of pollutant n in period t (103 tonne)
ECAt, j,m Capacity expansion option m of electricity generation technology j in period t (GW)
LETt The rate of electricity transmission line loss in period t (%)
PESt, j,n Penalty of air pollutant n emission of electricity generation technology j in period t (103 $/tonne)
PEVt, j,n Air pollution n equivalent values in period t
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t Research period, t = 1, 2, 3 (5-year for each period)

j
Electricity generation technology, j = 1, . . . , 5 ( j = 1 coal, j = 2 natural gas, j = 3 hydropower,
j = 5 wind power, and j = 5 photovoltaic)

k Type of power demand (k = 1 local, k = 2 export)
m Options of capacity expansion, m = 1, 2, 3
n Type of the air pollutant, n = 1, 2, 3 (n = 1 SO2, n = 2 NOx, n = 3 PM)
APEt, j Supply of primary energy resource for electricity generation technology j in period t (TJ)
APGt, j,k Power generated by electricity generation technology j for electric network k in period t (GWh).
AVHt Hydropower availability in period t.
AVWt Wind energy availability in period t
AVSt Solar energy availability in period t
CEPt, j Cost for expanding the electricity capacity j in period t (103 $/GW)
CPEt, j Cost for primary energy supply for electricity generation technology j in period t (103 $/TJ)
CPMt, j,n Cost for pollution n mitigation of electricity generation technology j in period t (103 $/tonne)
CPGt, j Fixed and variable cost for generating power via technology j in period t (103 $/GWh)
CTDt Cost for transmission and distribution in period t (103 $/GWh)
DMt Local power demand in period t (GWh)
DEt Export power demand in period t (GWh)
EMt,n Permitted emission of pollutant n in period t (103 tonne)
ECAt, j,m Capacity expansion option m of electricity generation technology j in period t (GW)
LETt The rate of electricity transmission line loss in period t (%)
PESt, j,n Penalty of air pollutant n emission of electricity generation technology j in period t (103 $/tonne)
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