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Abstract: Utilization of digital connectivity tools is the driving force behind the transformation of the
power distribution system into a smart grid. This paper places itself in the smart grid domain where
consumers exploit digital connectivity to form partitions within the grid. Every partition, which is
independent but connected to the grid, has a set of goals associated with the consumption of electric
energy. In this work, we consider that each partition aims at morphing the initial anticipated partition
consumption in order to concurrently minimize the cost of consumption and ensure the privacy of its
consumers. These goals are formulated as two objectives functions, i.e., a single objective for each
goal, and subsequently determining a multi-objective problem. The solution to the problem is sought
via an evolutionary algorithm, and more specifically, the non-dominated sorting genetic algorithm-II
(NSGA-II). NSGA-II is able to locate an optimal solution by utilizing the Pareto optimality theory.
The proposed load morphing methodology is tested on a set of real-world smart meter data put
together to comprise partitions of various numbers of consumers. Results demonstrate the efficiency
of the proposed morphing methodology as a mechanism to attain low cost and privacy for the overall
grid partition.

Keywords: load morphing; NSGA-II; smart grid; grid partition; multi-objective optimization;
Pareto theory

1. Introduction

The introduction of communication and information technologies in the current power
infrastructure has accommodated the digital connection of electricity market participants [1] and has
enabled their active participation in various activities pertained to grid operation. The concept of an
energy Internet as introduced in [2] is a characteristic example of the integration of digital connectivity
with power systems. Through active participation, consumers play a significant role in determining the
shape of the final load demand, mainly by responding to price signals with their individual demand [3].
In addition, consumers are now exposed to a high volume of information that is utilized for making
optimal decisions and fulfilling their goals. Notably, the goals of electricity consumers encompass the
maximum fulfillment of energy needs and the minimum possible cost [4].

On one hand, the introduction of digital connectivity in the power grid has leveraged the role of
consumers resulting in the enhanced grid stability, minimization of power losses and decreased cost
of operation [5]. On the other hand, it came with a reduced degree of consumer privacy given that
information sharing and exchange may reveal details about the private life of the consumers. More
specifically, load profiles, if shared, can be used to infer the consuming activities of a specific customer.
For instance, the use of a washer may be inferred by identifying the consumption pattern of the washer

Energies 2019, 12, 2470; doi:10.3390/en12132470 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-5238-649X
http://dx.doi.org/10.3390/en12132470
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/13/2470?type=check_update&version=2


Energies 2019, 12, 2470 2 of 18

in the load profile. Such information may be utilized by third parties for advertising reasons or for
nefarious purposes, where burglars may infer the presence or not of the owner and break into the
house. Therefore, shared load information comprises of a point of vulnerability that may be used to
compromise privacy of consumers in the smart cities of the future [6].

In a market, it is anticipated that consumers are interested in purchasing products of the highest
quality at the lowest possible cost. With regard to electricity consumption, electricity consumers care
about satisfying their maximum demand while attaining the lowest cost; in other words, they would
like to minimize their electricity bill, and fully perform their planned activities [4]. In general, the
decision-making process of consumers, including electricity consumers, is a cost driven approach,
where the consumer has as a first priority the minimization of the overall cost [7]. In that case, the
consumer is prone to morphing his/her load demand in order to retain the cost at a comfortable level.
In smart grids, load demand morphing refers to the actions of either cancelling, or shifting the load
demand [3] with respect to an initial plan. Cancelling load refers to abandon the scheduling of specific
consuming actions, while shifting refers to postponing the consuming actions at a later time, usually at
times where the price is lower [8]. The response of consumers with their load demand to prices set by
the market operator is known with the general term of “demand response” [9].

There are several approaches that deal with the demand response of consumers aiming at
minimizing the cost of consumption. For instance, in [10] an approach that optimizes the electric
appliances scheduling for demand response is presented, while in [11] an approach that reduces the
load variation limits to minimize consumption costs is introduced. The concept of Virtual Budget as an
efficient method for optimizing the electricity cost of demand scheduling using anticipation is proposed
in [3], while a sliding window driven method, which utilizes streamed big data for real time electricity
consumption optimal adjustment, is proposed and tested in [12]. Furthermore, an optimization
algorithm for residential consumption pattern flattening by identifying the time-of-use tariff that
minimizes the overall consumption cost is introduced in [13]. In [14], methods that assume the use of
interruptible tasks are proposed, whereas in [15] an informatics solution that is based on the synergism
of three models in optimizing household appliance management. Furthermore, an autonomous system
for demand response that achieves minimal cost for participating in demand response programs
consumers is introduced in [16], and a similar approach that assumes consumers response to utility
signals prior to any decision making is presented in [17]. Moreover, an approach for scheduling the
electricity consumption of a residential community based on the aggregated payment is introduced
in [18]. A coordinated approach considering a community of prosumers is discussed is in [19], while
the distributed coordination of a grouped consumption using the alternative directions method of
multipliers is introduced in [20]. Overall, the variety of demand response approaches aim at securing
the operation of the grid [21], while the consumers target to minimize their consumption expenses [22].
However, there are demand response methods that rather focus on consumers’ privacy preserving than
the cost-minimizing. An example is presented in [23], where a privacy preserving method employs
data encryption in the form of a homomorphic encryption of the group aggregated demand. Further,
a method focusing on incentive-based demand response of consumers using cryptographic primitives,
such as identity-committable signatures and partially blind signatures, is presented and tested in [24].
Data exchange architectures to ensure the privacy of electricity consumption profiles are presented
in [25] and [26], where in the first case trusted-platform modules for advanced metering infrastructure
(AMI) are used, and in the second case a set of Internet-of-Things tools are put together. In [27], a secure
algorithm tailored for bidding driven markets is proposed utilizing cryptographic primitives without
any explicit third trusted party. Lastly in [28], a study that involves the use of privacy threat models
together with attributed based encryption is provided.

The proposed demand response methods are focusing on single residents and are proposed
within the framework of optimizing the power grid infrastructure. Furthermore, they do not exploit
the ubiquitous digital connectivity that will be the backbone of the smart cities and smart grids. In
this work, we propose an approach that builds upon that connectivity driven future. Notably, we
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see that both the digital connectivity and the smart grid technologies are the enablers for smart cities.
In particular, we assume that consumers, which are also residents of a smart city, are able to connect
and form “virtually connected groups” [29]. This grouping of the residents/consumers is performed at
the cyber level and subsequently allows consumers to form energy partitions within the smart grid [30].
Hence, we will exploit digital connectivity of smart grids to allow consumers within the same partition
to collaborate and formulate the partition’s demand response. The partition demand response is a
single load pattern that coincides with the morphed aggregation of the individual demand patterns of
the consumers within the partition, an idea that has been proposed in [31].

In this work, we push further the envelope in load morphing by assuming that the partition
demand response results from the concurrent consideration of the partitions consumption expenses
and privacy. The paper introduces a new approach where citizens collaborate in order to concurrently
attain low cost and high privacy as a group. A premature version of this method was presented in [32],
where its high potential for smart grids was highlighted. As compared to [32], this paper presents in
more details the morphing method, while it applies it in a higher variety of smart meter data taken
from the power grid of Ireland [33]. Notably, the proposed approach considers the morphing problem
as a multi-objective problem whose solution is located by an evolutionary algorithm. In this work,
the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted to provide a solution to the final
morphing of the demand [34]. NSGA-II is a genetic algorithm that utilizes the Pareto optimality theory
to identify a solution that optimizes both the cost and privacy of the grid partition [35].

At this point it should be noted, that the current work significantly differs from the works in [29–31].
Those works focus only on enhancing the privacy of the group of the consumers without considering
the cost of the final morphed consumption pattern, whereas the current work also explicitly considers
the cost of consumption. Furthermore, in References [29,31] a genetic algorithm is adopted to solve a
single objective optimization problem, while in the current work the genetic algorithm is selected for
locating a solution to a multi-objective problem.

The innovation in the current work is the concurrent consideration of both privacy and consumption
cost in a grid partition, and their concurrent optimization through Pareto optimality, which finds the
optimal tradeoff between the two objectives, i.e., cost and privacy. This work aspires to show that the
morphing of partition consumption driven by those two objectives is a complex optimization problem
with multiple constraints, that can be solved by genetic algorithms. Notably, genetic algorithms
have the ability to always identify a global optimal solution (or near optimal) to complex problems
independently of the number of objectives and constraints.

The roadmap of this paper is as follows: In the next section a brief introduction to evolutionary
computing and Pareto optimality is given, while in Section 3 the morphing methodology is presented.
In Section 4, the results on a set of real-world datasets are presented and discussed, while Section 5
concludes the paper.

2. Background

2.1. Introduction to Evolutionary Computing

The set of stochastic optimization techniques whose framework has been inspired by various
natural evolution processes are known as “evolutionary computing”. Notably, evolutionary computing
algorithms are identified as part of the broader class of artificial intelligence algorithms. Some of
the most widely used evolutionary algorithms, which have been utilized in various applications,
encompass genetic algorithms, genetic programming, swarm intelligence, and artificial immune
systems [36].

The main principle upon which evolutionary computing algorithms are built is the selection
of an initial population and the subsequent rise of the population fitness by following a natural
selection process, based upon the survival of the fittest individuals. Similar to nature, the evolutionary
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computing algorithms select as the final solution the fittest population individuals. In sum, the essential
steps that evolutionary algorithms have in common are the following [36]:

• Maintenance of a set of candidate solutions (population);
• Fitness evaluation and sampling of the current population of solutions; and
• Recombination and mutation of solutions to generate new improved solutions.

The above steps drive the implementation of various evolutionary algorithms despite the fact that
each one differs in technical details. The outline of a general evolutionary algorithm is depicted in
Figure 1.
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Figure 1. Outline of a general evolutionary computing algorithm.

It should be noted that the full cycle as shown in Figure 1 denotes a generation; thus, the generation
is an algorithmic iteration, where transition to a new iteration is initiated when the stopping criterion
is not satisfied.

Genetic algorithms are evolutionary algorithms that are used to find solutions in optimization
problems that are either single-objective or multi-objective. They are powerful algorithms that identify
an optimal solution or a near optimal solution. In addition, they are able to provide solutions to highly
complex problems where conventional convex optimization algorithms fail. However, their operation
needs the initial determination of a set of variables, i.e., initial population, probability of mutation etc,
that may affect their performance. Furthermore, genetic algorithms cover a high area of the search
space, but seeking for a solution in a wide area makes them computationally slow. However, their
ability of find a global solution promotes them as an attractive option, despite their slow execution
time. In this text, the non-dominated sorting algorithm-II will be used for identifying a solution by
utilizing the Pareto optimality theory.

2.2. Pareto Optimality

Problems that involve the optimization of multiple objectives are called multi-objective
optimization problems, or alternatively vector optimization. The multi-objective problems are
following general formulation for minimization problems:

minC(x) = [C1(x), C2(x), . . . , CN(x)]

s.t. fi(x) ≤ 0, i = 1, . . . , k

g j(x) = 0, j = 1, . . . , m

(1)
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with C#() denoting an objective function, N being the population of objective functions, k the
population of inequality constraints, m the number of equality constraints, and f#() and g#() being valid
analytical functions.

As opposed to the single-objective optimization, multi-objective optimization problems typically
do have more than a single global solution. As a result, there is a need to determine a set of criteria
as to whether a solution is recognized as optimal or not. To that end, the set of criteria that identify
a solution as an optimal one are set by the Pareto optimality theory [37]. According to Pareto theory,
“a point, x∗ ∈ X, is Pareto optimal iff there does not exist another point, x ∈ X, such that C(x) ≤ C(x∗), and
Ci(x) ≤ Ci(x∗) for at least one function [38]”. To make it clearer, a solution is Pareto optimal if there is no
other solution that improves at least one objective without adversely affecting any of the rest objectives.

Notably, the population of Pareto solutions pertained to a specific problem can be infinite.
The population of the Pareto solutions consist of the Pareto optimal set, while the projection of the Pareto
optimal set on the objective space is known as the Pareto frontier [38]. A general illustrative example of
Pareto frontier consisting of two objectives is depicted in Figure 2.
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Figure 2. Illustrative example of a Pareto Frontier for a two-objective problem [32].

In addition to the Pareto theory, the concept of a non-dominated or dominated solution is of
significance. A solution x1 is identified as dominated over x2 when: (i) The solution x1 is not worse
than solution x2 in all objective functions, and (ii) the solution x1 is strictly better than x2 in at least one
objective function [38]. If the above conditions are not valid at the same time, then the solution x1 is
non-dominated over x2 [38].

3. Grid Partition Load Morphing Methodology

In this section, the load morphing of smart grid partitions methodology is presented. It should be
noted that the way the partitions are formed in the grid is not of interest to the current manuscript.
For instance, one way to form partitions is via grid partitioning as discussed in [39]. The methodology
presented in this manuscript formulates a multi-objective problem composed of a dual of objective
functions [8]. The two objectives, which express the consumption cost and the degree of privacy in the
grid partition respectively, are minimized by seeking an optimal solution to a multi-objective problem.
The NSGA-II algorithm is applied to identify an optimal solution. The block diagram of the proposed
methodology is presented in Figure 3, where its individual steps are clearly provided.



Energies 2019, 12, 2470 6 of 18

Energies 2019, 12, x FOR PEER REVIEW 6 of 18 

 

 

Figure 3. Block diagram of the grid partition load morphing methodology. 

Initially, the consumers within the grid partition anticipate their day ahead load demand. The 

anticipation is conducted at an hourly level, i.e., that means a set of 24 load values for the next day is 

provided. The overall load anticipation for a whole day is denoted as given below: 

24

1

i

i

L L


   (2) 

where Li is the anticipated load at hour i. In addition to the anticipated load, the consumers are also 

providing their hourly upper and lower bounds of their anticipated load denoted as Ui and Fi for the 

hour i. These bounds coincide with the maximum and minimum values between which the initial 

anticipation can be morphed for a specific hour, and we call them the “morphing bounds”. To make 

it clearer, when the anticipation for the hour i is Li, then the anticipation can be morphed within the 

tube [Li − Fi, Li + Ui].  

In the next step, the individual consumers’ anticipated loads are aggregated and a single 

anticipated load demand signal is obtained. Thus, the aggregated pattern expresses the anticipated 

load of all the partition consumers and is expressed as: 

Consumer 1
Day Ahead 

Anticipated Demand

Consumer 2 
Day Ahead

Anticipated Demand

Consumer N
Day Ahead 

Anticipated Demand……………….

Smart Grid Partition

Linear Aggregation 
of 

Day Ahead Hourly Anticipations

Price Forecasting

Cost Objective

Price 
x 

Demand

Privacy Objective

Hourly 
Mean 
Value

Multiobjective
Optimization Problem

Constraints

NSGA-II

Solution: 
Morphed Load

Mean Square 
Error

Upper 
and 

Lower 
Bounds

Figure 3. Block diagram of the grid partition load morphing methodology.

Initially, the consumers within the grid partition anticipate their day ahead load demand.
The anticipation is conducted at an hourly level, i.e., that means a set of 24 load values for the next day
is provided. The overall load anticipation for a whole day is denoted as given below:

ΣL =
24∑

i=1

Li (2)

where Li is the anticipated load at hour i. In addition to the anticipated load, the consumers are also
providing their hourly upper and lower bounds of their anticipated load denoted as Ui and Fi for the
hour i. These bounds coincide with the maximum and minimum values between which the initial
anticipation can be morphed for a specific hour, and we call them the “morphing bounds”. To make it
clearer, when the anticipation for the hour i is Li, then the anticipation can be morphed within the tube
[Li − Fi, Li + Ui].

In the next step, the individual consumers’ anticipated loads are aggregated and a single anticipated
load demand signal is obtained. Thus, the aggregated pattern expresses the anticipated load of all the
partition consumers and is expressed as:

Ai =
N∑

j=1

Li
j i = 1, . . . , 24 (3)



Energies 2019, 12, 2470 7 of 18

where Li
j is the load of consumer j at hour i, and N is the population of consumers. Likewise,

the individual morphing bounds are also aggregated providing the respective aggregation
morphing bounds:

UA
i =

N∑
j=1

Ui
j i = 1, . . . , 24 (4)

FA
i =

N∑
j=1

Fi
j i = 1, . . . , 24 (5)

where UA
i and FA

i are the upper and lower aggregation morphing bounds for the hour i. At this point,
we introduce the morphed aggregated load, which is denoted as:

AM
i = αi

N∑
j=1

Li
j i = 1, . . . , 24 (6)

with AM
i being the morphed aggregated load at hour i, and αi the morphing factors for the hour i.

The morphing factors express the degree of morphing, where: (i) αi = 1 denotes no morphing, (ii) αi < 1
denotes decreasing of the initial anticipation, and (iii) αi > 1 denotes increasing of the initial anticipation.
Notably, for αi = 1 Equation (6) drops down to Equation (3).

Once the aggregated values have been computed, then the objective functions are formulated.
According to Figure 3, two objectives are formulated, namely, the cost and privacy objectives. The cost
objective expresses the daily cost of purchasing the anticipated load and is formulated as:

Cost =
24∑

i=1

AM
i · Pi (7)

with Pi being the day ahead forecasted electricity price for the hour i.
Formulation of the second objective, which expresses the degree of privacy, is more complex than

that of the cost. It should be noted that as a measure of privacy we assume the degree of variance
in the load pattern. On one hand a highly varying pattern is a carrier of information that can be
easily extracted and subsequently lead to inferences about consumption activities. In other words,
variability can be a source of information–the peaks and valleys of the pattern can be associated with
consumption activities. On the other hand, a constant load pattern exhibits no variance and thus,
inference making becomes challenging. In this work, we aim at deriving a constant load pattern by
morphing the aggregated demand. To that end, we adopt a target constant pattern that is equal to the
mean value of the aggregated value given below:

M =
1

24

24∑
i=1

Ai (8)

where Ai is the aggregated value for hour i computed by Equation (3). Furthermore, to quantify the
degree of difference between the aggregated load and the mean aggregated value, an error measure is
adopted. More specifically, the mean square error is utilized as the objective for expressing the degree
of privacy as the distance of the aggregated demand to the mean value. Thus, the privacy objective
takes the following form:

Privacy =
1

24

24∑
i=1

(
AM

i −M
)2

(9)

where M is taken by Equation (8) and Ai by Equation (2).
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The objective functions as defined by Equations (7) and (9) are accompanied with a set of
constraints. The constraints, which are in the form of box constraints, express the morphing bounds of
the aggregated load and are formulated as:

FA
i ≤ AM

i ≤ UA
i i = 1, . . . , 24 (10)

with AM
i being the morphed aggregated load (see Equation (6)). As shown in Equation (10), there are

24 box constraints, i.e., one for every hour of the day.
At this point, the two objectives and the respective constraints have been fully defined and

therefore, we are able to define the multi-objective problem utilized for load morphing of the grid
partition. The particular form of the multi-objective problem is given below:

minimize
αi

[Cost, Privacy]

w.r.t. FA
i ≤ AM

i ≤ UA
i

i = 1, . . . , 24

where Cost =
24∑

i=1
AM

i · Pi

Privacy = 1
24

24∑
i=1

(
AM

i −M
)2

AM
i = αi

N∑
j=1

Li
j



(11)

where the optimization process takes the form of a minimization of the two objectives.
The multi-objective minimization problem in Equation (11) is solved utilizing evolutionary

computing and more specifically the NSGA-II algorithm. The NSGA-II seeks for non-dominated
solutions, which satisfy by default the Pareto optimality criterion. The identified solution which is
comprised of a set of 24 optimal morphed values, i.e., optimal αopt

i , i = 1, . . . ,24, is the final solution
of the problem. Each morphed factor expresses the degree of morphing of the load for the hour i.
Having computed the morphed values, then the final morphed pattern is obtained by plugging-in the
identified solution to Equation (6):

AM
i = α

opt
i

N∑
j=1

Li
j i = 1, . . . , 24 (12)

where the superposition of the morphed values provides the final load curve of the smart grid partition.
To conclude, consumers by working all together and exploiting the digital connectivity, may minimize
their overall cost and enhance their privacy.

4. Results

4.1. Problem Setup

The presented methodology is tested on a set of real-world data taken from the Irish power
grid [33]. The dataset includes smart meter measurements of various residents. For testing our
methodology, we select a set of smart meters and we assume that they belong to the same grid partition.
In addition, we assume that the smart meters communicate and are able to apply the presented
methodology to form their aggregated load signal. It should be noted, that the final output is the
pattern that will be sent out to the utility as its final electricity order. Therefore, by “seizing” the
final pattern, the utility as well as any third parties won’t be able to make any inferences about the
consumption activities of the individual consumers given that their activities will be masked by the
morphed aggregated signal. In addition, the overall cost will be low, allowing consumer to “enjoy”
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cheaper consumption in a long-term horizon. Furthermore, ordering and scheduling of an aggregated
load demand also allows consumers to perform last minute changes in their demand and exchange
those changes without affecting the overall demand. For instance, someone might need to increase his
load, while concurrently someone else might have to decrease it by the same amount—a situation that
is promoted by the notion of virtual buffers described in [40,41].

In this work, in order to fully define the cost objective the utilization of a forecasted price signal is
required. For simplicity, but without compromising the generalization, the forecasted signal is taken
with the naïve method [42], which considers as forecasts the observed values of the same day a week
ago. The forecasted as well as the real price signal, which the signals were taken from our previous
work in [3], are depicted in Figure 4. Furthermore, we need to evaluate the morphing bounds of
each consumer’s anticipated load. In order to attain a diversity of the morphing values and exhibit a
random behavior of the consumers, we implement a randomizer that provides random values of the
upper and the lower morphing bounds. The randomizer provides a duet of values sampled from the
following intervals:

• [0.7 × Li
j, Li

j] for the lower bound;

• [Li
j, 1.3 × Li

j] for the upper bound.

where Li
j is the anticipated load of consumer j for the hour i.
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Figure 4. Real and forecasted price signal utilized for cost objective.

4.2. Tested Scenarios

In this section, the morphing methodology is applied on several scenarios and the respective
results are recorded. In particular, we apply the presented methodology on grid partitions comprised
six in the first scenario and of seven, 10 and 15 consumers in the rest of the scenarios. The performance
of the methodology is assessed in two dimensions: The first dimension compares the overall cost
provided by the morphing method to the cost before the morphing takes place. The second dimension
measures the degree of privacy attained by the morphing methodology by comparing the correlation
coefficients between the load patterns, i.e., between each of the initial individual patterns and the
final morphed aggregated pattern. The results concerning the tested scenarios are presented in the
subsections given below.
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Scenario 1: Partition of Six Consumers

In this first scenario, we assume a small grid partition comprised of six consumers. Initially,
each of the six consumers anticipates his/her day ahead load pattern; the respective load patterns for
Consumers 1–6 are depicted in Figure 5. In the next step, the hourly morphing bounds of each of the
consumers are obtained; the bounds pertained to the current scenarios are depicted in Figure 6 where
both the upper and lower bounds are presented for all six consumers.
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Figure 5. Anticipated load patterns of Consumers 1–6 for test Scenario 1.
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Figure 6. Anticipated load morphing bounds of Consumers 1–6 for test Scenario 1.
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In the next step, the load patterns and their morphing bounds are aggregated to form the partition’s
load pattern and the respective morphing bounds. The latter ones, will comprise of the box constraints
of the optimization problem, whose goal is to minimize the consumption cost as well as minimize the
distance of the overall aggregated pattern to the its mean value. The aggregated pattern together with
its morphing bounds are presented in Figure 7. In the following step, we compute the mean value
of the aggregated pattern that is found to be equal to 5.69. Therefore, we create a constant pattern
of the form:

Mi = 5.69 i = 1, . . . , 24 (13)

i.e., a set of 24 values equal to 5.69. The pattern in Equation (13) is used to formulate the Mean Square
Error (MSE) objective of the privacy measure.
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Figure 7. Aggregated load pattern of consumers 1–6 and the respective morphing upper and
lower bounds.

At this point, the aggregated pattern and the morphing levels are utilized to set up the
multi-objective problem, which takes the form of minimization problem. Firstly, the cost objective is
defined by Equation (5), where the prices are given by Figure 4, while the load is the aggregated hourly
load presented in Figure 7. Secondly, the privacy objective is given by Equation (9) where M = 0.59,
and AM

i is the aggregated hourly loads of Figure 7. Furthermore, the box constraints of the problem
are taken by Equation (10) where the hourly lower and upper values are those presented in Figure 7.

Notably, the multi-objective formulation is fully defined and a solution is sought. To that end,
the NSGA-II is applied to locating an optimal solution according to Pareto theory. The values of the
genetic algorithm parameters, which are required to evolve the objectives, are taken as:

• Number of individuals: 30,
• Mutation probability: 0.01,
• Reproduction method: 15-point crossover,
• Max number of generations: 200,
• Selection of parents: Roulette method.

and the obtained solution is in the form of a vector whose length is equal to 24, i.e., one morphed
load value for each hour of the day. The solution obtained in this specific scenario is provided in
Table 1 (load values) and Figure 8 (plotted morphed pattern). We observe that the morphed aggregated
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pattern lies within the morphing bounds as determined in Figure 7 (as expected—thus validating our
approach), while it differs from the initial aggregated pattern. Therefore, the algorithm has conducted
a load morphing within the acceptable bounds that have been set by the grid partition consumers.

To fully assess the morphing methodology, we compute the costs and the privacy attained with
the morphed pattern. In particular, we compute the following quantities:

• The non-morphed forecasted cost (NMFC), taken as the forecasted price multiplied by the
aggregated load.

• The non-morphed real cost (NMRC), taken as the real price multiplied by the aggregated load.
• The morphed forecasted cost (MFC), given by the forecasted price multiplied by the morphed

aggregated load.
• The morphed real cost (MRC), given by the real price multiplied by the morphed aggregated load.
• The correlation coefficient (CC) between each individual consumer pattern and the final morphed

pattern denoting the degree of privacy achieved.

where we compute the costs of both forecasted and real price signals. The reason for doing that is to
show that morphing the anticipated load not only reduces the anticipated cost but also the real cost.

Table 1. Load values in kWh taken as the solution of the multi-objective problem for Scenario 1.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Solution 4.87 4.10 3.48 1.53 1.80 2.77 4.11 5.60 2.89 3.04 3.83 2.54

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Solution 3.11 4.54 4.74 5.94 9.21 8.63 8.09 5.72 5.66 4.13 5.46 6.61
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Figure 8. Plot of the final morphed aggregated load pattern computed by non-dominated sorting
genetic algorithm-II (NSGA-II) (Values taken from Table 1).

Regarding the current scenario, the computed values are given in Table 2. By comparing the
NMFC and the MFC, we clearly observe that the morphing methodology significantly reduced the
anticipated expenses. In absolute numbers, the anticipated reduction is about $900 as we observe in
Table 2. Furthermore, by comparing the real costs we observe that indeed a reduction in the electricity
cost was attained. Notably, this reduction is about $1200, which far exceeds the anticipated reduction
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of the $900. Thus, we conclude that by morphing the aggregated load the consumers within the grid
partition attained to reduce their actual aggregated expenses—emphatically, the real expense was
much lower than the anticipated one.

Table 2. Cost and privacy values computed for Scenario 1. * Values expressed in US Dollars ($)

Quantity NMFC MFC NMRC MRC

Value * 4837 3978 6200 5016

Consumer #1 #2 #3 #4 #5 #6

CC value 0.69 0.41 0.74 0.75 0.11 0.26

Regarding the privacy, we observe that the correlation coefficients between the initial consumers
and the final morphed load has departed from the value of 1 (i.e., two patterns are fully correlated).
In particular, we observe in Table 2 that the correlation values we obtain are lower than 0.76 implying
that the morphed load shows less similarity to the consumers. The highest correlation is exhibited
by consumers three and four whose correlation values are close to 0.75, followed by consumer one
whose value is close to 0.7. The rest consumers exhibit very low correlation, quantified as values lower
than 0.42, with consumer five exhibiting the lowest correlation that is equal to 0.11. Thus, we can
state with much confidence that the morphed pattern differs from the individual ones, and thus masks
the individual patterns. This difference, as quantified by correlation coefficient values, implies that
an enhancement in each individual consumer privacy has been achieved, hence, imposing inference
making of an individual’s consuming activities highly challenging.

To sum up, in this first testing scenario, the six consumers via their collaboration, which is
expressed in terms of load aggregation, attained to morph their initial anticipated load demand in
such a way that the new patterns provides lower cost and higher privacy compared to the case of the
individual non-morphed loads. This dual achievement was realized by evolving a multi-objective
problem, which identified the optimal tradeoff between the cost and privacy objectives utilizing
Pareto theory.

4.3. Further Results

In this section, the Pareto optimal morphing methodology is tested on a set of grid partitions
comprised of various consumer numbers. As in the previous scenario, the data are also real-world
data collected from smart meters deployed in Ireland [33]. In particular, our testing scenarios contain
partitions comprised of seven (Scenario 2), 10 (Scenario 3) and 15 consumers (Scenario 4). Each test
contains consumers of different load profiles, that have not been used in any of the other scenarios.
Obtained results are recorded and given in Tables 3–5 respectively. It should be noted that in our
previous work, i.e., [6,29], where we had focused only on consumption morphing for privacy issues,
we had showed that the values of privacy measure of groups consisted of 15 consumers and above
does not significantly get improved. In particular the studies showed that the more the consumers
the higher the privacy is enhanced—for values of two to 10—and above 10 consumers, we observe a
plateau in the privacy value curve [29], i.e., the values exhibited no significant increase. As a result, we
have selected our testing cases to include up to 15 consumers—based on our previous work [29].

Observation of the obtained results in Tables 3–5 confirms the findings of previous section.
The morphing of the aggregated pattern achieves lower overall consumption cost for the grid partitions.
This is something that we observe in all three studied scenarios. This decrease in cost is observed both
in forecasted cost and the actual (real) cost. Therefore, the presented methodology achieved lower cost
in all tested scenarios independently of the number of participating consumers, and their profiles.

For comparison purposes, we have also implemented two alternative approaches: Both approaches
define single objective problems. The first approach focuses on the privacy of the partition consumers,
and aims at optimizing only the privacy objective. The second approach focuses on partition’s electricity
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expenses, and aims at optimizing the cost objective. It should be noted that the optimization of the
single objective problems is performed with a simple genetic algorithm.

Table 3. Cost ($) and privacy (correlation) measure values computed for Scenario 2 (Seven consumers).

NMFC
($)

MFC
($)

NMRC
($)

MRC
($)

Average Correlation
(between Morphed

and Consumers)

Multi Objective
(Our Method) 6248 5077 8104 6577 0.427

Single Objective:
Consumer Cost 6248 5556 8104 7185 0.449

Single Objective:
Consumer Privacy 6248 5908 8104 7603 0.451

Table 4. Cost ($) and privacy (correlation) measure values computed for Scenario 3 (10 consumers).

NMFC
($)

MFC
($)

NMRC
($)

MRC
($)

Average Correlation
(between Morphed

and Consumers)

Multi Objective
(Our Method) 6607 5635 8293 7039 0.269

Single Objective:
Consumer Privacy 6607 6068 8293 7685 0.286

Single Objective:
Consumer Cost 6607 6978 8293 8756 0.298

Table 5. Cost ($) and privacy (correlation) measure values computed for Scenario 4 (15 consumers).

NMFC
($)

MFC
($)

NMRC
($)

MRC
($)

Average Correlation
(between Morphed

and Consumers)

Multi Objective
(Our Method) 30,421 25,792 39,385 33,073 0.327

Single Objective:
Consumer Cost 30,421 27,230 39,380 35,100 0.320

Single Objective:
Consumer Privacy 30,420 29,401 39,380 37,730 0.330

By examining the computed correlation coefficients for the three scenarios, we also observe an
enhancement of the consumers’ privacy. In Scenario 2, all of the correlation values are lower than
0.63, providing an average value of 0.42. In Scenario 3, the highest correlation computed among
consumers is equal to 0.8, which implicitly exhibits that all consumers have achieved a departure
from the maximum correlation value of one. In addition, we observe that the average correlation is
equal to 0.26 that implicitly exhibits that the final patterns show little resemblance with the initial
patterns. Lastly, in scenario 4 we observe that the all consumers with the exception of consumer 12,
whose cc value is 0.87, give correlation coefficients lower than 0.59. Notably, the average correlation
in this scenario is found to be equal to 0.32, which also exhibits the significant departure from the
max correlation of one. In sum, the morphing methodology contributes in enhancing the privacy of
individual consumers; an enhancement expressed as a decrease of the correlation between the initial
consumers’ loads and the final morphed pattern. The average correlation per scenario is illustrative of
the increased enhancement achieved by our methodology.
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In comparison with the single objective cases, we also observe that our approach achieves lower
electricity cost for the partition consumers, while it retains the average correlation between consumers
and the final morphed pattern at the same level or slightly lower. With regard to privacy the single
objective approach (i.e., in Tables 3–5 appears as “Single Objective: Consumer Privacy”) provides an
average correlation that is equal to 0.45, 0.29 and 0.33 for the scenarios of seven, 10 and 15 consumers,
respectively. The aforementioned correlation values are pretty close to the ones obtained with our
multi-objective approach demonstrating that utilization of multiple objectives does not deteriorate
the privacy driven morphing. Moreover, we observe that by focusing on privacy, the partition cost
significantly increases: This is observed in Tables 3–5 with respect to MFC and MRC values, where our
approach provides significantly lower costs. With regard to the cost driven approach, which optimizes
the cost objective (i.e., in Tables 3–5 appears as “Single Objective: Consumer Cost”), the obtained cost
values are higher than those taken with our presented multi-objective approach for all three scenarios.
Hence, those results validate the ability of our approach to optimize the consumption expenses of the
grid partition. Overall, the comparison of the multi-objective approach with the single objective ones
exhibits the ability of our presented approach to concurrently ensure low cost and high privacy in
the partition grid. Thus, we conclude that formulation of a multi-objective optimization problem that
concurrently handles cost and privacy is preferable to handling each of those objectives individually,
given that it provides equal or higher performance.

5. Conclusions

In this paper, we have presented a new methodology for morphing the load pattern of a
smart power grid partition. The partitions are assemblies of consumers that exploit the smart grid
communications to collaborate and pursue common goals. Their goals entail minimization of their
consumption expenses as well as enhancement of their consumption privacy.

The presented methodology achieves this set of goal by formulating a multi-objective problem.
The problem comprises of two objectives, namely, the cost and the privacy objective. The first objective
expresses the anticipated cost consumption for a day ahead of time, and the second measures the
distance of the final load pattern to the initial consumers’ anticipated load. The two objectives are
minimized by an evolutionary algorithm and more specifically the NSGA-II that identifies a solution
using the Pareto optimality theory. Furthermore, the presented work is compared to two single
objective optimization approaches: The first approach handles only the cost objective, whereas the
second approach handles the privacy objective. Comparison exhibited that our approach provides
equal or better performance as compared to the single objective cases. It should be noted that for
the privacy measure all three approaches provided very close values, proving that our approach
enhances the degree of privacy as much as the privacy objective approach does. With regard to cost,
the multi-objective morphing approach provided the lowest cost values in all tested cases. By combining
the above observations, we conclude that the lumping of the two objectives in a single formulation did
provide a better performance as compared to single objective problems. Therefore, we conclude that
NSGA-II utilizing the Pareto theory attained to concurrently secure low cost and to enhance privacy.

However, the current study exhibits some limitations. More specifically, the optimization problem
is based on the box constraints for each hour of the day. In this work, we assumed narrow intervals
within the morphed values may lie. In practice, these intervals may be totally different than the ones
assumed in this work, and depend on the characteristics of the grid and the consumers. Furthermore,
we assume that the consumers are able to form a partition via direct communication links, and that
the consumers trust each other (which is not always the case). Lastly, a limitation of our study has to
do with the number of customers contained in the partition: We assume that the number of partition
consumers remains constant at least for a whole day (since this is the anticipation horizon).

In the current work, the morphing methodology is tested on a set of real-world data taken from
smart meters deployed in the Irish power grid. Testing entails four scenarios where grid partitions are
comprised of six, seven, 10 and 15 consumers. Obtained results clearly demonstrate the effectiveness
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of the methodology in decreasing the partition’s consumption costs (both anticipated and real cost),
and enhancing the privacy of the individual consumers. Future work will focus on identifying and
expanding the set of objectives that a grid partition may pursue.
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