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Abstract: A levelized cost of energy (LCOE) is a methodology for comparing power generation costs
in the transition to renewable energy (RE). However, the major limitation of evaluating RE based on
the LCOE is that it does not consider indirect costs, such as the environmental and curtailment effect.
This paper proposes the real LCOE (rLCOE) approach that accounts for indirect and direct generation
costs. The mathematical approach to estimating indirect costs is derived from economic theory.
The indirect effects, which quantify all benefits generated due to RE, is related to the variability of the
share RE in the energy generation mix. The rLCOE enhances the accuracy of the economic comparison
of power generation costs and the derivation of the optimal quantities of RE because external effects
are incorporated into the LCOE principles. This approach has taken into account electricity demand,
fuel prices, and environmental costs for each energy source to adequately compare generation costs.
Simulations have been performed to demonstrate the application of the *LCOE approach in the
Korean power market. Here, the unit variation of costs with the RE share were analyzed. The results
show that indirect cost savings of an additional unit of RE begin to fall in scenario 3 in contrast to the
result of LCOE approach indicating higher generation costs with RE share, especially, the proportion
of RE in the generation mix is higher than 20%. Thus, the optimal power generation can be evaluated
using the rLCOE approach.

Keywords: real LCOE; indirect costs; renewable energy; market value; social welfare

1. Introduction

1.1. Background and Literature Review

The world is facing substantial environmental and energy challenges, one-third of the world’s
population still does not have access to electricity, and that some developing countries have a plan
to use fossil fuels as the major source of energy. Although this trend has existed, an economical
and environmental source of electricity is required to fulfill the environmental regulation. However,
there are some challenges with the feasibility of electricity generation from different sources, particularly
as renewable energy (RE) is added to the grid. What is the real cost of transitioning to renewable
energy? What is the optimal power mix for accommodating RE into the power grid efficiently?

To respond to these questions, various methodologies have been proposed to calculate the optimal
RE share regarding low-carbon emissions [1-5]. Specifically, these studies have been conducted in
terms of integrative and distributive generation planning. Reference [1] proposed the integration
for distributed generation approach and determined an optimal investment plan to fulfill physical,
economic, and operational constraints. In Reference [2], an integrated planning approach was also
addressed and the probabilistic distribution was used for calculating the carbon footprint of distribution
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systems that included both direct and indirect emissions. Especially, reference [3] used an active-reactive
optimal power flow containing carbon footprint allocation while considering transmission losses.
In References [4,5], the carbon emission flow model that was introduced helps to clearly allocate carbon
emission mitigation among different energy sources. However, these research approaches focused on
single or hybrid systems, thus limiting their ability to consider the indirect effects of power systems as
an economic principle.

On the other hand, levelized cost of energy (LCOE) is widely used as a methodological approach
capable of comparing the profitability of different power sources while also calculating the optimal
RE share. Policy makers in particular use LCOE to estimate and respond to the above-mentioned
questions. The LCOE represents the cost of the entire life cycle per unit of power generation. Thus,
it enables the comparison of generation costs of RE and non-renewable energy (NRE) [6]. RE sources
show high fixed costs and low variable costs, while NRE sources have different fixed-to-variable-cost
ratios. When the LCOE of RE is lower than that of NRE, it is conducive to the deployment of RE, and
its penetration rate is accelerated [7].

There have been extensive studies on the use of LCOE in the electricity market. The effect of
the variability of RE on system integration cost was analyzed in Reference [8]. Here, the author
emphasized that the LCOE cannot demonstrate the economics of RE. In Reference [9], the electricity
generation should respond to variable demand and cannot maintain uniform quality due to its
variability. Therefore, the amount of electricity generated by RE can be different each time. Since the
amount of RE generation is determined by an externality such as wind and solar density, the LCOE
represents a variable value [10]. However, the LCOE neglects the temporal variability of electricity [11].

More recently, some important pioneering works have developed an effective economic approach
to determining the LCOE [12-15]. An extended LCOE that applies economic theory has been utilized
to evaluate power generation costs in [12]. Here, if the LCOE of RE is equal to the marginal economic
value, it can be considered economically efficient under the conditions of a perfect market. In [13],
the marginal system LCOE was proposed to formalize the arguably vague concept of integration costs.
Here, the integration cost in terms of marginal LCOE has been estimated for RE penetration levels as
high as 60% [13,14]. Furthermore, in [15], results indicated the same economic effect was achieved,
assuming a perfect market where the marginal cost is equal to the market value. However, the above
works did not evaluate indirect effects including environmental costs and the curtailment effect, as
based on economic theory. Therefore, it is recommended that future studies continue to operationalize
and measure the indirect effects of RE.

Meanwhile, other recent studies have considered a social value of the power market. In Reference [16],
the economic assessment could account for both the cost and the social value of the technology. Social
value became integral to understanding the representation of risk in the large wind power industry.
This paper inspired critical costs modeling for wind energy projects including market risk mitigation
strategies that included a review of social impacts. Especially, in [17], the authors recognize that
indirect effects could cause market distortion and noted that it is difficult to assess indirect effects
because a chain of cross-market price effects is involved. At the same time, the magnitudes, types, and
interactions of economic distortions can also affect their size. That is the reason why many empirical
results acknowledge the existence of indirect effects as a special case. For example, a decline in the
share of RE in California as a result of market distortion effects was identified by [18,19]. Namely,
the economic value of wind power is significantly reduced when the wind share increases from 0% to
60%. The authors proved the difficulty of comparing the LCOE of RE sources accurately. Thus, our
research assumes a perfect market to reflect the economics of RE and evaluates external costs from an
economic perspective. It reinforces the necessity of an improved approach to evaluating RE sources.
Finally, our research conducted an in-depth analysis of power market factors including an indirect
effect replacing NRE with RE penetration levels.
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1.2. Contribution and Paper Organization

Our research proposes a new rLCOE approach that includes all of the economic, social, and indirect
costs associated with RE. While based on the LCOE principle, this approach also reflects indirect effects.
There is no unified definition for indirect costs in economic theory [20]. Thus, continued efforts are
required in order to expand an effective approach for the estimation of indirect costs that are related to
the economics of RE. Consequently, our work shows the mathematical expression for overall cost based
on economic theory, so that the YLCOE is constructed as the sum of the generation costs including
total indirect costs. The main purpose of rLCOE is to evaluate RE and NRE more efficiently. In fact,
our approach can also reflect the market perspective. In summary, the main contributions of this work
are categorized as follows:

(1) The evaluation of power generation costs using the LCOE is constructed to be applicable to
the comparison of generation sources. The rLCOE is intuitive and incorporates existing LCOE
principles while expanding it to reflect external costs.

(2) The rLCOE is linked to the economic concept of the market value, in contrast, the LCOE is
only based on and limited to the current operation of the power system. More importantly, the
estimation of the cost of the power system considers both direct and indirect effects; both are
related to economic theory.

(3) The indirect effect is related to the variability of RE. It can be quantified in terms of all benefits
generated due to RE using the rLCOE approach.

(4) It can explain the most important factors affecting the unit generation cost while analyzing the
effect of the RE share through rLCOE.

(5) All social welfare (SW) measures that incorporate the indirect effects from the RE share can be
calculated, and differences from the existing methodology can be presented.

Unlike the existing LCOE approach, the rLCOE can account for indirect costs and directly calculate
the costs incurred from RE. For example, the electricity price reflects the marginal cost and estimates
the total cost derived from the current market environment. The rLCOE and indirect costs are derived
as a quantitative expression, which can be applied to estimate market costs. The indirect costs of high
RE shares can be evaluated as a range of costs with variability in accordance with fuel costs. Although
indirect costs can be varied with growing RE shares, it can also present an economic barrier in terms of
the expansion of the proportion of RE in the power generation mix.

This paper is organized as follows: In Section 2, the rLCOE is conceptually defined and quantified
using a mathematical formulation that reflects economic formulas. In Section 3, we conceptualize the
correlation between rLCOE and market value. Section 4 presents the methodology to estimate the
changes in market values caused by changes in several key factors including demand and fuel costs.
In Section 5, the methodology is applied to the Korean power market to evaluate the impact of RE on
the grid in terms of market value, and conclusions are drawn in Section 6.

2. rLCOE Analysis

The LCOE is commonly applied to compare different power generation. The LCOE is expressed
in terms of the unit cost ($/kWh) of electricity generation when the present value of expected profits
from electricity sales is equivalent to the present value of all expected costs during the lifecycle [8].
The LCOE has several improvements as a cost metric, such as its ability to standardize costs into an easily
comprehensible format across technology types [21]. Ultimately, it has become the standard formulation
for cost comparisons and is applied by public authorities and many other stakeholders. Although
it is widely used, the LCOE only examines the factors affecting the total direct costs of generating
electricity, which cannot include indirect costs like environmental effects [22]. For that reason, previous
research emphasizes that both direct and indirect costs should be considered to overcome the limitation
of the LCOE [23]. In addition, recent studies of indirect costs of power generation have estimated

"o

different cost components using a bottom up approach. Namely, “air pollutant costs”, “water pollutant
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costs”, “human impact costs”, and “system costs” have been examined [12,24]. It is assumed that these
components add up to total indirect costs, even though it is hard to consider all components.

For solving these problems, in our work, total environmental costs and indirect benefits are
derived using a top-down approach. The rLCOE calculation is formulated as Equation (1) for including
the direct and indirect plant costs as follows:

Y IC+0C

(1+1)"
AP

(1+r)"

rLCOE = +A, 1)

where 7 is the lifetime of the plant; IC is the initial investment costs, OC is the O&M (operating and
maintenance) costs, AP represent the annual energy production at year t; r means the discount rate;
and A indicates the indirect costs. The indirect costs A is given by:

d
A= ECNRB )

Equation (2) denotes the marginal indirect benefit including the environmental cost of increasing
RE capacity instead of NRE. It is to be noted that opportunity costs are a form of indirect costs. Here,
A represents marginal indirect benefit when the NRE is escalated as Cngg, cost of NRE, while a RE
generation Egr is varied. Thus, the simplified *LCOE can be calculated as:

rLCOE = LCOE + A. (©)]

However, it is difficult to determine the indirect benefit when RE are added to the power market.
Therefore, our research tried to formalize the rLCOE so that it was in line with Equation (3). We defined
that the opportunity costs of a power source were all additional costs of NRE when RE was introduced.
Since indirect costs cannot be measured or estimated directly, instead, a single system, with and
without RE, need to be compared to identify additional indirect costs. For the RE case, the annual
power demand E; in an electricity market is given by:

Et = ENre + ERE, 4)

where Engp denotes NRE electricity generation, E; is total electricity generation, and Egg is RE
generation. E; is partly supplied by Egg. The resulting Exrg needs to be provided by dispatchable
power plants.

Referring to Equation (4), E; is partly supplied by RE and NRE and total costs can be formulated as:

Ct = Cnre — Cre, ®)

Cre = t Ct(0). (6)

Here, C; is the total cost, divided into the generation costs of RE and all other costs for NRE,
Ct(0) is the average costs in a system without NRE. Since indirect costs of RE are designated as not
being part of generation costs of RE, they can emerge from comparing the Cygrg with and without
RE. Unfortunately, the absolute difference of the costs can contain direct and indirect costs. Thus,
it is important to define the specific costs per unit of NRE. This reconciles the problem of different
values of NRE and RE. In Equation (6), indirect costs can stand for the difference of specific costs in the
NRE system increased by Exgg when RE generation is volatile. The specific indirect costs Cyre/ENRE
typically increase without RE.
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Equation (6) comprises the additional costs in the NRE when introducing RE. The *rLCOE can be
evaluated with any power energy mix and it can estimate indirect costs comparing cases with and
without RE.

3. Evaluation of Social Welfare Using rLCOE

The rLCOE can be expressed as the marginal cost of an additional RE.

Ct g min, (7)
d
G =0 ®)

In Equations (7) and (8), the cost-optimal deployment of RE is reached. This occurs when the total
costs of a power mix are minimal when the share of RE varies. According to Equations (6)—(8), the total
costs can be expressed as:

E
Ct = Cre + CNRE - E—tCt(O). )
RE
Inserting this into the optimal Equation (9) indicates:

d d d 1 d

dERE Cr = dExE Cre + dERE CNRE dEgr dEre (0).

(10)

In Equation (10), the interpretation of these terms gives the meaning for the evaluation of RE.
The first summand is the marginal generation costs of RE expressed by rLCOERg and the second
summand is the marginal indirect costs of NRE. The third summand is equal to 0 when RE is not
present. Note that NRE creates indirect costs that have to be included in total costs C;. Accordingly,
the third summand equals the average indirect costs of the system as follows:

1
0 = rLCOERg 4+ rLCOENRE — E—Ct(O). (11)
t

Using Equation (11), the optimal condition is evaluated as follows:

Ci(0)
. rLCOERg + rLCOENRE, (12)
t
VLCOERE = —TLCOENRE. (13)

It can be seen from Equations (12) and (13) that the optimal deployment of RE is given by the
point where the absolute value of r*LCOERE is equal to the rfLCOEngE. In Equation (13), the left-hand
side can be explained as the marginal economic costs of RE, while the right-hand side can be seen
as the value of RE because it represents the opportunity cost of covering power demand with NRE
generation. In other words, RE deployment is optimal where the marginal economic costs of RE meet
with their value, which is in line with economic theory.

Figure 1 illustrates the rLCOE approach depending on RE and NRE deployment. Firstly, Figure 1a
depicts the correlation between rLCOE and RE deployment whereby indirect costs increase with higher
RE deployment and can be negative, in particular if the penetration of RE is low. Figure 1b shows the
relationships between rLCOE and market value when RE deployment varies. Here, the intersection of
increasing rLCOE of RE and average costs in NRE gives an optimal quantity expressed as E*. By adding
indirect costs to LCOE, *LCOE can be used to derive the optimal share of RE in the power generation
market. In order to account for indirect costs and the market value of RE, an equivalent perspective
can be explained as the marginal cost savings in the NRE when increasing the RE deployment.
According to [25], SW is related with the quality of life that includes factors such as the condition of
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the environment (air, soil, water) and essential social services. In general, an increase in SW results in a

decrease in social costs [26].

d
SW = 27 —Cne. (14)

Equation (14) assumes marginal indirect costs, which can be explained as the cutback of the
market value equal to SW. It can be compared to the average costs of NRE that correspond with the
annual electricity price in a perfect market. The reduction of the market value is not only driven by the
variability of RE, but can also be interpreted as the economic costs of variability. Inserting Equation (2)
into (14), the optimal condition Equations (15) and (16) can be rephrased as follows:

d C(0)
A=—2C = - SW, 15
g CNRE E, (15)
_A=SW. (16)
$/kWh
m
g ‘
c
o
=

Fre

Electricity generation

(a)

$/kWh

Average cost
of NRE

~_| Market value
of RE

Fre

Generation costs

E*

Electricity generation
(b)

Figure 1. The principle of rLCOE with optimal RE deployment. (a) Relationship with yLCOE and RE
deployment. (b) Correlation with rfLCOE and market value.
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The market value decreases with RE penetration. The optimal deployment of RE is given by the
point where the market value of RE equals their marginal generation costs. To sum up, the methodology
of accounting for indirect costs leads to the derivation of optimal levels of power generation from RE.
It measures all the quantitative impacts of the variable power mix. In addition, it can calculate indirect
costs expressed as market value. The market value of RE has the opposite effect to costs, which might
be induced, in particular, during hours of high RE supply [19,27]. Since it is noted that the market
value can be obtained from actual prices, it allows the quantification of indirect costs from market
prices, if markets can be assumed to be perfect.

4. Estimation of Indirect Costs

4.1. Sensitivity Analysis

The Korean power market has been operated as a cost-based pool [28]. The market price is not
only determined by the fuel cost, but because RE has a very low marginal cost, it can reduce the price
of power. In this research, variation of the fuel costs, and variation of the electricity demand can be
regarded as significant parameters for the sensitivity analysis.

Sensitivity analysis considers the level of uncertainty of the output that can be evaluated in
terms of different sources of uncertainty in its inputs. Sensitivity analysis can be conducted using
three different approaches: (i) Mathematical; (ii) statistical; and (iii) graphical [29]. The mathematical
method assesses the sensitivity of a result to the change of an input using multiple input values.
The statistical method involves conducting simulations in which inputs are set probability distributions
and the variance in inputs is assessed based on the output distribution. The graphical method gives a
representation of the sensitivity of outputs with respect to input changes in the form of graphs and
charts. Mathematical sensitivity analysis will be conducted in our work. Although it does not address
the variance in the output with respect to the volatility in the inputs, it can assess the effect of variation
in screening important inputs. In addition, this method can be used for verification, and to distinguish
inputs that requisite more advanced research. The mathematical sensitivity analysis is given by:

. 1%
Sensitiviy_value = aEtTCrLCOE, 17)

where FC denotes fuel costs, and E; is equal to total power demand.

4.2. Procedure of Proposed rLCOE Approach

The flowchart shown in Figure 2 illustrates our rLCOE analysis. SW can be obtained to determine
the optimal RE mix in each scenario. The procedure for simulation is as follows:

Step 1: Initialize inputs and generate the scenario.

(1) Start with an initialization of inputs, which include CAPEX, OC, and the capacity factor.

(2) Generate a scenario based on the portion of RE capacity.

(3) Formulate total *LCOE with indirect factors. Total indirect cost will change according to
each scenario.

Step 2: Evaluate SW by solving the rLCOE given in each scenario.

It is based on the result from *LCOE. Note that it can be checked whether the overall indirect cost
of the power market is within the defined limits. If not, the rLCOE is infeasible. The scenario should be
repaired, and step 2 can be repeated.

Step 3: Compare the rLCOE.

Each scenario is solved for *LCOE to obtain the figure for SW, which leads to the lowest total cost
including indirect costs. After that, the sensitivity analysis can be conducted and the optimal RE mix
comparing the scenario results can be printed and the procedure is finished.
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Figure 2. Proposed process of the *LCOE approach.

5. Case Study

5.1. Data Description and Scenario Assumptions

The market price of power is determined by a number of different factors such as demand, power
mix, fuel, CO, price, and RE penetration. Since the future values of these factors can be determined
by a policy framework at the country level, it is important to generate scenarios that appropriately
follow government policy. In our work, the demand and the installed power capacity have been used
in the 8" power supply plan in Korea [30]. Since this plan includes a target level of power capacity,
generation mixes, and subsidy programs for the next 14 years (2018-2031), they are considered using
the proposed *LCOE approach. Figure 3 shows the example of the power supply plan representing
the average annual electricity demand with the growth rate. The growth of electricity demand is
assumed to be 2.1%, which indicates that electricity demand has entered a low growth phase. The RE
generation capacity in the power supply plan follows the RE target. Our study sets the proportion of
RE with reference to the RE 3020 plan [31]. It assumes an increasing share of RE penetration in Korea,
for instance, the total RE share in the generation mix rises to 20% by 2030. The variability of RE is
also considered in this work. The data of yearly power generation profiles for RE are taken from the
Korean Power Exchange [32]. In order to evaluate the effect of increasing RE generation to market
price, our study took into account the historical average variations of RE utilization.
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Figure 3. Electricity demand and growth rate for rLCOE in Korea.

In Korea, the market price is determined by the marginal cost of the power plant [33], and then
it can be linked to the international crude oil price. Since Asian LNG (Liquefied Natural Gas) is
usually contracted from the Middle East, this contract type is mainly based on the crude oil price [34].
In our work, fuel costs are applied using assumptions based on IEA (International Energy Association)
forecasts. Figure 4 shows the crude oil and gas price forecasts of the World Energy Outlook released by
IEA [35]. The IEA data shows that crude oil prices rise to $124/bbl. by 2040, and LNG prices go up to
$12.4/mmBTU.
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Figure 4. IEA market price projection. (a) Crude oil price; (b) Asian LNG price.

The annualized total costs can be also computed for the proposed approach. Table 1 depicts the
cost parameter of the energy source. It shows the fixed costs of each energy source and indicates other
parameters used to compute the annualized costs. The annualized costs, which are inputs to the model,
are used from cost estimates of the initial investment costs and fixed operational and maintenance
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costs. The interest rate is assumed to be 5%. The variable costs are computed from the cost estimates of
the variable O&M and fuel costs.

Table 1. Adapted cost parameters of the energy source for rLCOE from [36].

Energy Source IC! ($/kW) VOC?Z ($/MWh) FOC?3 ($/kW/yr)  FC*? ($/MWh)

Gas 760 0.8 50 30
Coal 1400 0.0 80 8
Nuclear 5100 0.0 160 8
Wind 1400 0.0 44 0
Solar 600 0.0 19 0

1 Initial investment costs, 2 variable O&M costs, 3 fixed O&M costs, and # fuel costs.

Table 2 indicates the emission pollutants factors of the energy sources representing marginal
damages. These data were used to calculate the total indirect costs. It determines the emission quantity
and pollutant costs for rLCOE. Certainly, coal and crude oil have high CO, emission factors; gas
generates fewer emissions than other fossil fuels.

Emission costs are calculated by the average emission factor, which refers to the unit power
plant energy consumption in power plants and the amount of emissions of CO,, SOy, NOy, and fine
dust. Total emissions are multiplied by the unit’s fuel consumption, net calorific value of fuel, and
emission factors, and are then divided by the total electricity consumed. The calculation Equation (18)
is as follows:

o My Fi X NVC; X My;

fr o~ o (18)

where M, denotes total emissions of x(i), Q is the total electricity generation (MWh), F; is the fuel
consumption of a unit i (unit of mass or volume), and NVC; is the net calorific value of fuel i (energy
content, GJ/unit of mass or volume). In general, prior research has calculated the quantity of pollutants
emitted using power plant and unit costs taken from descriptive statistics of the data set in [37-39].
The marginal costs of pollutants in Table 2 were maintained from prior literature. Although we used
the existing data set, we focused on developing a methodology derived from economic theory showing
mathematical expressions for estimating indirect costs.

Table 2. Pollutant generation and cost from various generation plants for 1 GW/year [37].

Energy Source Quantity (Ton) Cost (USD)

Crude oil CO, 5,000,000
SO, 40,000
NOy 25,000
Fine dust 25,000
Coal CO, 6,000,000
SO, 120,000
NOy 25,000
Fine dust 300,000
Gas CO, 3,000,000
SO, 20
NOy 13,000

In order to verify the proposed approach, Table 3 shows RE capacity and generation in each
scenario. Scenario 1 was the base case so that the indirect costs of RE capacity could be determined
using the base case as a reference. In scenario 1, RE capacity was assumed to increase to 20% of total
consumption according to RE 3020 plan [40]. Scenario 2 was the low case including 24 GW of additional
RE capacity until 2030, resulting in 13% RE share of total consumption. By comparing scenario 1 with
scenario 2, the indirect cost of RE penetration at a low level in Korea could be computed. Finally, scenario
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3 represented the high case of RE generation equal to 51% of total consumption. The comparison of
this scenario with scenario 1 indicated the indirect costs of RE at this level of penetration.

Table 3. RE capacity and generation in each scenario.

Year 2018 2022 2026 2030 2031

Electricity generation (TWh)  34.4 116.6 179.0 251.6 252.0
RE Capacity (GW) 11.3 23.3 38.8 58.5 58.6

Electricity generation (TWh)  34.4 86.6 115.6 150.1 150.3
RE Capacity (GW) 11.3 17.3 25.1 349 35.0

Electricity generation (TWh) 34.4 176.7 305.9 454.6 4554
RE Capacity (GW) 11.3 35.3 66.3 105.7  105.9

5.2. Simulation Results

5.2.1. Impact of RE on the Grid

The Korean electricity market is operated as a cost-based pool. Since RE sources have very
low marginal cost, which means low variable FC, it is dispatched first and thereby, reduces the
demand for NRE sources. If power demand decreases, a power plant with a lower marginal cost
can determine the market electricity price. Due to this principle, the larger the proportion of RE
installed, the lower the electricity market price can be expected in day-ahead power market. Figure 5
illustrates the total power capacity and generation for the electricity demand with increasing shares of
variable renewables in electricity generation. Since the total capacity of base load plants was defined,
the utilization rate of NRE could be varied according to the reduction in power demand produced by
RE. As shown in Figure 5a, the capacity of NRE was volatile in the cost-based pool, varying between
37%-51%. This can be explained by the relatively higher fuel price, which means NRE was not
utilized, as well as the availability of sufficient flexibility due to existing NRE generation. In Figure 5c,
especially, as the proportion of RE in total consumption rose to 51%, the dispatchable generations
were curtailed significantly. As a result, the share of coal generation decreases from 67% (Scenario 1)
to 26% (Scenario 3). The share of gas in total generation also decreased from 13% (Scenario 2) to 0%
(Scenario 1-3). Although the total dispatchable capacity was decreased in the day-ahead market,
the total reduction of demand could be regarded as low compared to the increase in RE capacity.
This was because the low contribution of RE generation to accommodate peak load results in only
a slight reduction in total capacity required for the NRE, whereas the capacity factors of generators
decreased significantly as a utilization effect. Additional RE capacity in scenarios 1 to 3 increased the
impact of demand curtailment when the RE utilization was stable as shown in Figure 5d. Consequently,
the increase of RE capacity amplified the effect of decreasing electricity demand. The investments and
total dispatchable capacity for the NRE on the day-ahead market could be decreased.

Figure 6 shows the simulation results of generation costs including the initial investment cost,
variable O&M cost, and fixed O&M cost of total power source with increasing RE shares. The investment
cost of RE was assumed to be $1400/kW, in line with currently realized costs [37]. In case of lower
RE capacity, the total OC and FC were in the range of $19-24/MWh and $3-18/MWh for 21%-59% RE
shares. The largest part of these costs comes from OC, which increased with increasing RE penetration.
The FC decreased with increasing shares of RE. As shown in Figure 6b, an interesting finding was
that the fuel cost of total generation decreased by 64% when a 59% increase in share of RE generation
occurred. The additional RE capacity allowed peak demand to be reduced when NRE generation was
low. Thereby, the total power capacity required a decline on the day-ahead market. This reduced
the variable and indirect costs significantly by 50%-74%. However, the IC of the RE investments was
higher than the total reduction of FC. Therefore, most of the net benefit of RE investments for reducing
the total environmental and variable cost of RE was computed from the reduction of FC. It can be noted
that the measure of the decrease in costs depends on the relative availability of RE generation capacity.
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5.2.2. Market Value of RE

Another impact of variable RE was the increase in the market value, which was determined as
the hourly weighted average price in the Korean power market. Since RE has very low marginal cost,
RE reduces the market prices. As a result, their market value increases with RE penetration. Figure 7
shows the market value with increasing shares in total RE consumption. In scenarios 1 and 2, rLCOE
decreased with lower RE penetration and it reached $28/MWh at 34% share and $26/MWh at 21%
share, respectively. On the other hand, in scenarios 3, *fLCOE of the power market was low and it was
$27/MWh at 59% share because RE was utilized during peak hours and had a limited impact on the
market value. An increase in RE penetration reduced the *LCOE via a decrease in average fuel costs.
Thus, the effect of variable RE results in a difference between the average market price and the average
fuel costs curtailed by RE during peak hours. The increase in the market value of RE affected the
profitability of the power market in a positive way, which may imply a further reduction in the average
market price for variable RE. That is, the market price decreased when the utilization of RE increased.
Conversely, in scenarios 1 and 2, LCOE increased with higher RE penetration and reached $30/MWh
at 34% share and $29/MWh at 21% share, respectively. In scenarios 3, LCOE was at its highest with
$31/MWh at 59% share. The LCOE of scenario 1 was higher than that of scenario 2, the main reason
being that the indirect effect was not considered in the LCOE approach. Scenario 3 indicated that
despite a higher proportion of RE, the total cost increased. However, the *LCOE approach considered
environmental and curtailment effects, and included other benefits when the NRE was not operating.
The SW was increased from $1/MWh at scenario 2 to $4/MWh at scenario 1, and it was decreased to
$3/MWh in scenario 3. According to these results, the market value of renewables increased in the
Korean power market. Although the environmental costs had little impact on the electricity market,
FC was the largest single component that mainly determines the magnitude of total indirect effects.
Therefore, our work showed three main results for RE. First, the largest cost driver at moderate shares
was the reduction of NRE, even though the residual capacity mix optimally adapted to RE deployment.
Fortunately, these costs were saturated at higher market shares of RE. Second, with an increasing share
of RE, overproduction costs occurred and grew rapidly. These costs drove the convex shape of indirect
effects. Finally, SW began to fall for high RE shares. According to optimal shares, the RE showed
positive indirect effects due to a high FC of NRE.

MWh
*/ 32 ) mrlLCOE [4LCOE

30
28
26
24
22
20

Unit cost

NN

Scenario

Figure 7. rLCOE and LCOE results in each scenario.

5.3. Sensitivity Analysis

In this research, the two inputs could be varied in mathematical sensitivity analysis: (1) The FC
and (2) the electricity demand. The market price and RE capacity were varied according to the scenario
assumption, thereby yielding one high-sensitivity and one low-sensitivity cost for each technology.

Figure 8 shows results of the sensitivity analysis with the fuel cost and electricity demand.
It contained the indirect cost and the rLCOE values for the different combinations of costs for RE and
NRE, respectively. It also corresponded to the range of indirect costs derived from the sensitivity
analysis. For the rLCOE values, each cost combination was shown as a varying line, where the *LCOE
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varied with fuel price. According to Figure 8a, all the combinations of each scenarios followed the
same linear shape, where the sharp increase in YLCOE came at a penetration level of scenario 1 with
low RE share. When the portion of RE was low, the cost change was large because the effect of demand
reduction was small. On the other hand, scenarios 1 and 3 show that the utilization rate of NRE, having
a high variable cost, was kept low due to the high proportion of RE. Figure 8b shows the results for
rLCOE from the sensitivity analysis of the electricity demand data input. These Figure 8a,b show that
the high RE penetration represents the high curtailment of electricity demand, and low NRE generation
could reduce the rfLCOE.
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Figure 8. Sensitivity analysis. (a) Generation costs with variable fuel costs. (b) Generation costs with
variable demand.

6. Conclusions

Policy makers generally use LCOE to compare power sources for energy conversion and review
economic feasibility. However, LCOE is not an ideal approach because it does not consider indirect
costs. Comparing RE and NRE, LCOE tends to overestimate the economic viability of the power market
whenever the share of RE increases. In order to overcome these limitations, this research proposed
a new rLCOE approach, which was the sum of the LCOE and the marginal indirect costs per unit of
electricity generation using the marginal cost of RE. Unlike the existing LCOE comparison, the r*LCOE
could determine the optimal power generation, which could facilitate a proper economic evaluation of
RE. In order to standardize the rLCOE, it was necessary to define indirect costs mathematically based
on economic theory. To validate the approach, a case study was performed on the existing electricity
market in Korea. The following conclusions were drawn from this case study:
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(1) Inthe proposed approach, the indirect costs decreased with an increase in the market value of the
power market as the proportion of RE increased. Using the rLCOE approach, the simulation results
of scenarios 1, 2, indicate that the rLCOE decreased with lower RE penetration and increased in
scenario 3 with a higher RE share, respectively. On the other hand, LCOE increased with higher
RE penetration and scenarios 3 shows the highest LCOE. This indicates that an increase in RE
penetration reduced the rLCOE via a decrease in the average fuel costs of curtailment effect.

(2) The rLCOE and the total costs were significantly reduced by the RE supply, which could be an
accelerator for RE capacity expansion. It means that RE capacity could be expanded until the SW
of RE becomes stagnant. However, if the market value ceases to increase due to a high proportion
of RE, no further installation will be necessary. Although the difference between rLCOE and
LCOE was increased from scenario 2 to scenario 1, the value was decreased in scenario 3. Since
indirect benefits decrease with a growing share of RE in the market, it could be an economic
barrier to deploying RE with higher shares.

(3) Our work indicates that the largest cost driver in the electricity market is the reduction of NRE,
even though the residual capacity mix optimally adapts to RE deployment. With an increasing
share of RE, indirect costs occurred and grew rapidly. According to optimal shares in scenario 2,
RE shows positive indirect effects due to a high FC of NRE.

Therefore, the *fLCOE effectively resolved the challenge of integrating RE and could guide
policy makers in realizing a cost-efficient energy transformation with potentially high proportions
of RE in the electricity market. In the future we plan to extend our research design to include
additional considerations such as changes in market price in response to the interaction of additional
indirect effects.
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