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Abstract: Highly nonlinear and nonconvex power flow analysis plays a key role in the monitoring,
control, and operation of power systems. There is no analytic solution to power flow problems, and
therefore, finding a numerical solution is oftentimes an aim of modern computation in power system
analysis. An iterative Newton-Raphson method is widely in use. While most times this method
finds a solution in a reasonable time, it often involves numerical robustness issues, such as a limited
convergence region and an ill-conditioned system. Sometimes, the truncation error may not be small
enough to ignore, which can make the iterative process significantly expansive. We propose a new
unified framework, based on the Kronecker product, that does not involve any truncation, and which
is bilinear to make it possible to incorporate statistical analysis. The proposed method is tested for
power flow, state estimation, probabilistic power flow, and optimal power flow studies on various
IEEE model systems.

Keywords: Kronecker product; power flow analysis; alternating least square problem

1. Introduction

Power flow analysis focuses on power systems in normal steady-state operation, as well as
transient stability, static voltage stability, and contingency studies. It is important for determining
dispatch, and in monitoring systems in terms of state estimation. It aims to find the complex voltage at
each bus, and the complex power flows at the ends of each line at the steady-state operating conditions,

in order to satisfy the Kirchhoff’s laws [1] that specify apparent power as v jI∗j = v j

(
eT

j Ybusv
)∗

. The use

of the power flow algorithm is extended to the state estimator, to provide the information necessary
to execute security analysis. In modern power system operation, various sources of uncertainty are
integrated, such as renewables and demand control [2,3]. For a reliable operation, the range of state
variables needs to be determined by mapping the uncertain injection through power flow methods.
Probabilistic power flow problems [4–8] estimate the system performance over wide range of the
dispatches. An interested reader may find [7] to be a useful review. Optimal power flow (OPF), a power
system operation tool introduced by Carpentier [9], is a highly nonconvex, and nonlinear problem.
Many approaches have been pursued to solve the nonlinear and nonconvex nature of a full OPF
problem [10–13]. However, the curse of dimensionality and the nonconvex nature of the problem make
it impossible for an algorithm to guarantee a convergence, and therefore, only heuristic approaches
have focused on finding a numerical solution [14,15]. Recently, various attempts have been made to
identify a solution, including the use of stochastic and probabilistic methods [16], such as simulated
annealing [17], direct Monte-Carlo sampling [18], mean field theory [19], and deterministic methods,
including a cutting plane [20], branch and bound (B&B) [21], and branch and cut [22]. To address the
nonconvex nature of OPF, Bai [23] introduced the conversion of the OPF problem into semi-definite
programming (SDP). Thereafter, Lavaei and Low [24] showed that the solution of SDP-OPF could
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be the global optimizer of the original OPF problem in the form of nonlinear programming, if—and
only if—the solution satisfies a rank requirement. Lesieutre and Molzahn [25] later presented a case
showing that the solution in [25] did not satisfy the rank requirement. Josz et al. [26] modified rank
relaxation and found the rank-satisfied solutions. However, this method cannot handle cases larger
than the five-bus system because of high runtime costs. For power system monitoring, the state
estimator aims to estimate the voltages that match with the sensor measurements, typically SCADA
(supervisory control and data acquisition) and PMU (phasor measurement units). The measurement
errors come from the synchronous measurement errors in voltages, current, and flows, as well as
from the data transfer and from asynchronous measurements. Therefore, the performance of the
state estimator may suffer from the linear approximation of Taylor series expansion to apply the
Newton-Raphson approach.

For a mesh power system with more than two buses, no analytic solution is found, and the
research activities have been focused on finding a numerical solution. While a non-iterative approach
such as holomorphic embedding [27] is possible, iterative approaches are usually pursued for their
computational efficiency, including the Newton–Raphson method, Gauss-Seidel method, and the
decoupled power flow method [1]. Recently, other heuristic approaches, like the genetic algorithm [28]
and particle swam optimization approach [29], are taken into consideration, but they also execute
Newton-Raphson updates in their inner loop. A typical disadvantage of the Newton-Raphson method
is the computational cost for factorizing and updating the Jacobian matrix during the iterative solution
process. The approach that the Newton-Raphson method takes is summarized as follows: at a given
point, one takes the Taylor series expansion of a nonlinear function; ignore second or higher-order
terms so as to construct a linear iteration equation A∆x + b = 0; the next step is computed by
solving the linear equation for ∆x. The advancement in modern computation, especially the efficient
methods of utilizing the structure of the Jacobian A, such as symmetry and sparsity, reduces this
computation cost significantly; as a result, the Newton-Raphson method is widely used in power
flow analysis. Even though the heuristic approaches based on the Newton-Raphson method finds
a numerical solution with a reasonable computation cost, there are several computational issues,
including numerical robustness and strong initial point dependence [1], either when A is ill-conditioned
at the iteration or when the second or higher order terms can be too large to ignore.

This paper is organized as follows. Section 2 introduces a unified framework for power flow
analysis. Section 3 presents a solution algorithm and the proof for the convergence. Section 4 shows the
results and discussions, and Section 5 presents conclusions. In this paper, for improving the readability,
variables are italicized, vectors are in the lower case and in boldface, and matrices are in the upper case
and in boldface. All the complex vectors are partitioned in a way that all the real components are listed
first, and then all the imaginary components follow.

2. United Framework

Even though power flow analysis is a backbone of power flow, optimal power flow, probabilistic
power flow, and state estimation, each problem has its own problem formulation. For example, f(v) = 0
for power flow problems; for the minimization for optimal power flow problems; for minimizing
the mismatch while satisfying power balance equations over uncertain power generation, as well as
demand for probabilistic power flow problems; and for the weighted least square in the discrepancy
between measurements and the estimates for the state estimation, etc. In Section 2, we propose a
unified framework to incorporate the problems and new solution method outlined in Section 3, to solve
the problem using the Kronecker product. The proposed algorithm is robust in terms of numerical
computation, and a local convergence is proven.

2.1. Power Flow Problems

To unequivocally define the state of a system, one should have the values for the voltages and
the injections at each bus (4N variables). Since one voltage angle is set to a fixed number at a voltage
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reference bus (zero in general), there are 4N-1 variables. For solving a set of nonlinear equations with
4N-1 variables, the necessary condition (not-sufficient condition) is to have 4N-1 independent equations.
At each bus, while two voltages and two power injections are unknowns, two power balance equations
(Kirchhoff’s laws) are provided, not including the slack bus, i.e., the 2N-1 equations. Therefore,
we need to assign 2N variables for the system. Even though it is not necessary to assign two variables
at each bus, we conventionally do. For example, we assign power injections at PQ buses, voltage
magnitude and real power injection at PV buses, and voltages at the slack bus. This conventional
approach is based upon the characteristics of the components that are directly connected to a bus.
However, as renewables are integrated into the grid systems, the definition of a bus with a renewable
generator is questionable. It can be a PV bus, since it is directly connected to a generator, but it
may experience difficulty in controlling voltage magnitudes. For some buses, it would be important
to control the reactive power injection for reliable system operation. Then the bus can be QV bus.
Therefore, in this study, we suggest that 2N variables over the system be assigned regardless of the
location. For an extreme case, we may assign two voltages and two injections at some buses, while
none is assigned for other buses. Power injections or voltage magnitude squares are as follows (see the
detailed derivation in Appendix A):[

vec
(
M j

)]T
(xPF ⊗ xPF) − ξ j = 0, j = 1, · · · , 2N − 1 (1)

where M and ξ are the matrix and the right-hand side, respectively regarding either the power injection
or the square of voltage magnitudes; and xPF = v. To prevent (1) from being an overdetermined system,
only 2N-1 equalities are imposed (one slack bus to compensate for the system-wide power balance).
For a case with distributed slack buses, 2N equalities are imposed, which results in a distributed
mismatch over the network. If there exists a solution to (1), the solution v is also a solution to the
following optimization problem, where

xsol
PF = argmin

xPF

‖


vec(M1)

T

...
vec(M2N−1)

T

︸               ︷︷               ︸
APF

(xPF ⊗ xPF) −


ξ1
...

ξ2N−1

︸      ︷︷      ︸
bPF

‖

2

= argmin
xPF

‖ APF(xPF ⊗ xPF) − bPF ‖2 (2)

A solution to (2) is also a solution to (1) if ‖ APF
(
xsol

PF ⊗ xsol
PF

)
− bPF ‖2

is 0. Therefore, (1) and (2)
are equivalent.

2.2. Optimal Power Flow Problems

OPF is a nonlinear and nonconvex problem, as follows:

min
|v|,θ,g

fOPF(g) s.t.
{

geq(|v|,θ, g) = 0
hin(|v|,θ, g) ≤ 0

(3)

min
xOPF

fOPF(xOPF) (4)

s.t.


[
vec

(
Mi

eq

)]T
(xOPF ⊗ xOPF) − ξ

i
eq = 0 i = 1, · · · , 2N + 4L[

vec
(
M j

in

)]T
(xOPF ⊗ xOPF) − ξ

j
in = 0 j = 1, · · · , 2N + 2L + 2G

and

xOPF =
(
vT gT f T zT

f zT
g zT

max zT
min ρ

T µT
f µ

T
g µ

T
max µ

T
min 1

)T
(5)

where, Equations (3) and (4) are the same problem, constructed on the polar coordinate system
(Equation (3)) and on the Cartesian coordinate system (Equation (4)). This problem is an NP
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(nondeterministic polynomial time) complete problem. Many heuristic approaches aim to find
a local solution to satisfy the Karush-Kuhn-Tucker (KKT) conditions [30] for Equation (3). Therefore,
the working problem for solving Equation (4) becomes:

xT
OPFMκxOPF − ξκ = 0↔ [vec(Mκ)]

T(xOPF ⊗ xOPF) − ξκ = 0 (6)

The KKT condition described in (4) is integrated into a bilinear least square problem [31]:

min
xOPF
‖


[vec(M1)]

T

...[
vec

(
MNKKT

)]T

︸                 ︷︷                 ︸
AOPF

(xOPF ⊗ xOPF) −


ξ1
...

ξNKKT

︸      ︷︷      ︸
bOPF

‖

2

= ‖AOPF(xOPF ⊗ xOPF) − bOPF‖2 (7)

where NKKT is the number of the KKT conditions. A detailed derivation of (3)–(6) is listed in Appendix B.

2.3. Probabilistic Power Flow Problems

The probability of power generation and power demand is generally continuous, and therefore
the purpose of probabilistic power flow problems is to determine the voltages that minimize the
mismatches between uncertain power injections and planned injections. In probabilistic power flow
studies, three approaches are most widely referenced—the analytical method, point estimation, and the
numerical approach. Analytical methods aim to get cumulants of output from cumulants of input,
based upon a linear approximation of AC power flow [8]. Although the approach is efficient for a
large-scale system, due to its reduced computation costs, the precision critically depends upon an
operation point chosen for the linearization. The other two approaches preserve the nonlinearity
to some extent. They start with modeling the stochastic nature of the problem as a deterministic
optimization problem with finitely many scenarios. Therefore, the computation efficiency may be
low on large-scale power systems. Monte Carlo simulation makes it possible to reduce the number
of scenarios to a manageable size. The sample average approximation gives a reasonably accurate
approximation of the true problem. For a fixed y ∈ Y and an independent identical distribution sample,
the sample average converges to the corresponding expectation, at a rate of ϑ

(
N−0.5

)
. Therefore,

in order to achieve a reliable result, Monte Carlo simulation methods can be very slow. Su suggested a
point-estimate method based on a 2m + 1 approach [32]. The shortcoming of this approach is that it
does not reflect the probability distribution, and therefore, the solution to the problem is not a good
approximation of the original problem. We propose a following optimization problem to minimize the
weighted mismatch, where the weight w reflects the probability distribution. Similar to the power flow
studies, the mismatches are either power injection or voltage magnitudes at bus j:

[
w1vec

(
M j

)]T

...[
w

N j
scenario

vec
(
M j

)]T

︸                       ︷︷                       ︸
A j

(xPPF ⊗ xPPF) −


w1ξ j

...
w

N j
scenario

ξ
N j

scenario

︸                   ︷︷                   ︸
b j

= 0→ A j(xPPF ⊗ xPPF) − b j = 0 (8)

where xPPF is voltage for this problem (xPPF = v), and N j
scenario is the number of scenarios at bus j.

Note that there can exist multiple power balance equations or nodal voltage magnitudes at the same
bus with multiple probabilities. For example, at bus 1—the only one wind turbine is connected
to—wind output is 70 MW with a probability of 25%, and 20 MW with a probability of 75%.
Then (8) in per unit basis of 100 MW base MVA includes; w25%

{
[vec(M1)]

T(xPPF ⊗ xPPF) − 0.7
}
= 0 and
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w75%
{
[vec(M1)]

T(xPPF ⊗ xPPF) − 0.2
}
= 0. Therefore, Equation (8) can be an overdetermined system,

and the solution xPPF may not result in a zero mismatch when all possible scenarios are taken into
consideration. The advantage of Equation (8) is that the variable xPPF = v is clearly separated from
inputs (data matrix and weight factor associated with probability).

2.4. State Estimation Problems

State estimation plays a central role in monitoring for reliable control power systems. Power flows
and voltage magnitudes are measured through asynchronous SCADA (supervisory control and data
acquisition) systems every 2–3 seconds. PMUs (phasor measurement units) are integrated to enhance
the real-time situational awareness under the smart grid umbrella. PMUs provide synchronized direct
measure of the voltages at 60 Hz. Significant studies have focused on the integration of PMU data
in the power system state estimator. To combine two sets of data, two approaches are most widely
used: (1) direct use of a PMU to get the voltages at observable buses, and then estimate them at the
other buses; and (2) incorporating the SCADA and PMU simultaneously [33,34]. For the first method,
inadequate estimate of voltages from PMUs using SCADA affects the performance.

All the methods descried above perform the traditional state estimation with SCADA and PMU
when both signals are available:

∂
∂v‖u− f un(v)‖22 = ∂

∂v‖(u− f un(v0)) −A(v− v0) − ϑ
(
‖v‖22

)
‖

2

2
= 0→ v = v0 +

(
ATA

)−1
AT(u− f un(v0)) (9)

where u is the measurement, either from SCADA or from PMU sensors. Equation (9) yields the
updated voltages from v0. The process in Equation (9) is repeated until the mismatch is small enough.
Equation (9) is an efficient approach for conventional state estimation with SCADA, but only when
the measurements are all in quadratic to voltages. When PMU measurements are combined so that
they linear to voltages, the truncation error lies in SCADA only. Therefore, Equation (9) may not be
able to estimate a proper state, and it is desirable not to truncate higher order terms. Suppose uPMU
and uSCADA are measurements from PMU and SCADA, respectively. Equation (10) is formulated to
minimize the measurement errors:

min
v
‖εSE‖

2
2 = min

v
‖ASE(xSE ⊗ xSE) − bSE‖

2
2 (10)

where εSE, ASE, and bSE are the weighted mismatch vector, weighted matrices associated with
measurements, and measurements, respectively; and xSE = [vT 1]T. A detailed derivation is listed in
Appendix C.

2.5. Summary

A unified model for power flow analysis—power flow, optimal power flow, probabilistic
power flow, and state estimation—is proposed. In the model, power flow analysis to identify a
solution xsol is shown in Equation (11):

xsol = argmin
x

‖A(x⊗ x) − b‖2 (11)

Note that A is sparse, since the matrices associated with A are originally sparse, and vectorization
of the matrices does not alter the sparsity.
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3. Solution Algorithm

3.1. Alternating Least Square Approach

Equation (11) can be further simplified with a property of the Kronecker product, (A⊗ B)(C⊗D) =

(AC) ⊗ (BD):

b−A(x⊗ x)↔
{

b− [A(x⊗ I)]x
b− [A(I ⊗ x)]x

(12)

Equation (12) is the recipe to apply an alternating least square (ALS) algorithm to solve (11).

Step I : min
x
‖b− [A(xl ⊗ I)] x‖ → x̂l

(
= [A(xl ⊗ I)]−1b

)
Step II : min

x
‖b− [A(I ⊗ x̂l)] x‖ → x̂l+1

(
= [A(I ⊗ x̂l)]

−1b
)

Step III : xl+1 = (1− α) x̂l + α x̂l+1, 0 < α ≤ 0.5

(13)

As noted before, A is sparse. Even though x is a dense vector, the Kronecker products with an
identity matrix—xl ⊗ I and I ⊗ x̂l—are sparse. The inner products A(xl ⊗ I) and A(I ⊗ x̂l) are also
sparse, which makes the numerical computations in Equation (13) efficient. Step III is imposed to
ensure consistency between the right and the left variable x. This simple step makes the computation
highly efficient. However, it is not possible to prove the convergence of this modified ALS. The left
and the right variable x should be consistent; however, the conventional ALS algorithm does not
guarantee the consistency. Therefore, the conventional ALS algorithm converges a suboptimal solution.
The modified ALS algorithm finds the solution regardless of choice of α (α = 0.5 for the results shown
in Figure 1).
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Even if the modified ALS finds the solution, it takes approximately 200 iterations. Multiple
initial points were tested to see if they result in a different solution; however, they all returned the
same numerical solution. As shown in Figure 1, it is clear that the proposed algorithm presented in
Section 3.2 outperforms the conventional ALS algorithm in terms of finding a proper solution and
computational efficiency, both in the quality of the solution and the lower number of iterations to
get to the solution. Therefore, the proposed Kronecker least-square approach is most suitable for
precise computation. The computation times of ALS, modified ALS, and the proposed method are
approximately 1000, 200, and 1 second, respectively. All computations were performed with a Dell
Precision M6700 (CPU: Intel Core i7-3840QM CPU @ 2.80 GHz).
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3.2. Newton-Raphson Method

The Newton-Raphson method is most widely used for solving nonlinear equations. It numerically
finds the next step by taking a Taylor Series expansion at the current step, and truncating quadratic
and higher-order terms. For example, with Ntot equations,

∆xl+1 = Ω−T[b−A(xl ⊗ xl)] where Ω = [(2A1xl) · · · (2ANtotxl)] (14)

where Ω is a concatenated matrix, of which the kth column vector is 2Akxl. Equation (14) may not be
numerically robust when the Jacobian matrix in the square bracket is ill-conditioned. To meet the linear
equality and inequality constraints in Equation (3), a partial update is proposed in the MATPOWER
Interior Point Solver (MIPS) [15]. The primal and dual variables in xOPF are updated separately in the
study [15]. While it heuristically seldom fails to find a solution, the convergence is not proven for the
method with the differentiation of the updating factors.

3.3. Proposed Method

At the lth iteration, let x̂l+1 be an optimizer to the following least square problem:

x̂l+1 = argmin
x
‖b−

1
2
[A(I ⊗ xl + xl ⊗ I)]x‖

2
(15)

It is advantageous to compute the matrix inside the square bracket in Equation (15), since it is
a linear update of a fixed matrix A with xl, compared to the computation of the Jacobian matrix of
the Newton-Raphson method in the polar coordinate system. In our interior-point method, at the lth
iteration, we update x to move in the direction toward x̂l+1, but only up to the ratio of αl, 0 < αl ≤ 0.5.

xl+1 ← (1− αl)xl + αlx̂l+1 OR xl + αl(x̂l+1 − xl) (16)

Furthermore, we constrain that αl approaches 0.5 as the number of iterations increases. In the
vicinity of the solution, similar to a linear approximation in the Newton–Raphson method, we can
assume that the change in x, xl+1 − xl, is sufficiently small. For example, where δ is a sufficiently small

number, ‖xl+1 − xl‖2

(
= αl‖x̂l+1 − xl‖2

)
≤

√
δ/‖Ã‖2. Therefore, the two-norm error in Equation (15) is:

‖εl+1‖2 = ‖b−A[(xl + ∆xl+1) ⊗ (xl + ∆xl+1)]‖2 ≤ 2αl‖b− 1
2 A(I ⊗ xl + xl ⊗ I)x̂l+1‖2 + (1− 2αl)‖εl‖2 (17)

where εl = b−A(xl ⊗ xl). Note that the second term in the bracket equals the half of the Jacobian in the
Newton–Raphson method in the Cartesian coordinate system. The two-norm error at (l+1)th iteration
in updating x depends on the choice of αl, as shown in Equation (17). Then, the error at the (l+1)th
solution generated by the algorithm is no greater than that at the previous iteration:

‖εl+1‖2 ≤ 2αl‖b− 1
2 A(I ⊗ xl + xl ⊗ I)x̂l+1‖2 + (1− 2αl)‖εl‖2

≤ 2αl‖b− 1
2 A(I ⊗ xl + xl ⊗ I)xl‖2 + (1− 2αl)‖εl‖2 = ‖εl‖2

(18)

The second inequality holds because x̂l+1 is the optimizer of convex problems in Equation (15),
where the feasible region includes xl. The proposed algorithm is outlined as

Algorithm

Set l = 0 (l: iteration index) and εth (tolerance in error)
(1) If ‖εl‖2 ≤ εth, terminate the process;
(2) Otherwise compute x̂l+1 using Equation (15);
(3) Update xl+1 ← xl + αl(x̂l+1 − xl) , l← l+1, go to Equation (1).
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3.4. Convergence of the Proposed Method

Suppose x∞ is a root of a Lipschitz continuous function F(x) = b − A(x⊗ x) = 0, and xl is
sufficiently close to x∞. For a vector εl where εl = x∞ − xl, we obtain

0 = F(x∞) = F(xl + εl) = b−A(xl + εl) ⊗ (xl + εl) = b−A(xl ⊗ xl)︸          ︷︷          ︸
F(xl)

−A(I ⊗ xl + xl ⊗ I)︸                 ︷︷                 ︸
J(xl)

εl −A(εl ⊗ εl) (19)

Note that Equation (19) does not involve the truncation of higher order terms. From Equation (16),
one finds xl+1 = (1− αl)xl − 2αl[J(xl)]

−1b, which leads to:

F(xl) =
1

2αl
J(xl)(xl − xl+1) (20)

Using Equation (20) in Equation (19) yields

J(xl)

(
xl − xl+1

2αl
+ x∞ − xl

)
−A[(x∞ − xl) ⊗ (x∞ − xl)] = 0

Then. by using the triangular inequality,

‖εl+1‖2 = ‖(1− 2αl)εl + 2αl[J(xl)]
−1A(εl ⊗ εl)‖2 ≤ ‖(1− 2αl)εl‖2 + 2|αl|‖[J(xl)]

−1A(εl ⊗ εl)‖2 (21)

For a sufficiently large l,αl becomes 0.5 and the second term is in quadratic. Therefore, the proposed
algorithm is super-linear.

We also propose a direct method that ensures αl is always 0.5, regardless of l. The only difference
between our interior-point and direct methods is how to choose αl. It is observed that because f (x)
is a Lipschitz continuous function, the norm of its inverse Jacobian matrix [J(x)]−1 is well-bound.
Consequently, using the Cauchy-Schwarz inequality [31], the proposed algorithm’s convergence
is quadratic:

‖εl+1‖2 ≤ (1− 2αl)‖εl‖2 + 2αl‖[J(xl)]
−1
‖2‖A‖2‖εl ⊗ εl‖

2
2 = ‖[J(xl)]

−1
‖2‖A‖2‖εl‖

2
2 = ϑ

(
‖εl‖

2
2

)
(22)

While the Newton-Raphson method relies on the Taylor series expansion and truncation of higher
order terms, this proposed algorithm does not involve any approximation, and the error reduces at
every iteration, regardless of the choice of an initial guess. Furthermore, it utilizes the numerically
stable optimization approach. As a result, the algorithm does not suffer the numerical stability issues
of the Newton-Raphson method when the data matrix is ill-conditioned.

3.5. Determination of αl for the Interior Point Method

The control variable x in OPF problems is comprised of state variables, shadow prices, and slack

variables, such as xOPF =
(
vT gT f T zT

f zT
g zT

max zT
min ρ

T µT
f µ

T
g µ

T
max µ

T
min 1

)T
. Among those, the shadow

prices of inequality constraints and the slack variables must be non-negative and part of term group G
for the elements. The proposed method strictly explores the feasible region, and we propose an interior
point approach by choosing a proper value for αl; xl+1 = xl + αl∆l where ∆l = x̂l+1 − xl, and group F is
defined where ∆ls are negative among group G. The value of αl is determined as follows:

αl = min
[

1
2

, min
F

(
xl
|∆l|

)]
− κ‖b−A(xl ⊗ xl)‖2 (23)
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where κ is a small scalar. As xl approaches the solution x∞, ∆l becomes zero. Since ‖̃b− Ã(xl ⊗ xl)‖2=

‖F(xl) − F(x∞)‖2 ≤ ‖J(x∞)‖2‖εl‖2, one finds the first term in (21) as:(1
2
− αl

)
‖εl‖2 = ‖b−A(xl ⊗ xl)‖2‖εl‖2 ≤ ‖J(x∞)‖2‖εl‖

2
2 (24)

As a result, near the solution, both the interior point method and the direct method have quadratic
convergence. As the algorithm converges (i.e., for a sufficiently large l), |∆l| becomes very small. As a
result, (23) guarantees that αl approaches 0.5.

3.6. Illustrative Examples

It is recognized that the convergence of the Newton-Raphson method can strongly depend upon
the choice of an initial point. Suppose we aim to find the roots of f(x) = x3

− 5x, and the initial
guess is 1. The NR process will oscillate between +1 and −1 with no progress, i.e., fail to find a
solution. The proposed approach can be extended to incorporate any polynomial function. Here is an
extension setup:

x3
− 5x = 0⇔ y2

1 − y2 = 0, y1y2 − 5y1 = 0

→


vec(A1)

T

vec(A2)
T

vec(A3)
T

(y⊗ y) =


0
0
1


where A1 =


1 0 0
0 0 −1/2
0 −1/2 0

, A2 =


0 1/2 −5/2

1/2 0 0
−5/2 0 0

, A3 =


0 0 0
0 0 0
0 0 1

, and y =


y1

y2

yend


For this example, NR will repeatedly visit +1 and −1 if at that iteration it finds a solution at either

+1 or −1. In the worst case, the NR process will not proceed at ±
√

5 (weak robustness). If the process
visits a point near ±

√
5, the number of iterations becomes very large (high computational costs). With a

starting point of x0 = 1, the performances of the Newton–Raphson method and of the proposed method
are illustrated in Figure 2, which clearly indicates that the proposed method converges in 3 steps when
the conventional Newton-Raphson process fails to do so.

Energies 2019, 12, x 10 of 22 

 

a starting point of x0 = 1, the performances of the Newton–Raphson method and of the proposed 
method are illustrated in Figure 2, which clearly indicates that the proposed method converges in 3 
steps when the conventional Newton‐Raphson process fails to do so. 

 

Figure 2. Comparison in the convergences of the Newton‐Raphson method and proposed methods. 

The convergence is achieved when the initial guess of x0 is greater than or equal to 3.5. When a 
smaller value was chosen, the proposed algorithm does converge even though it finds 0 instead of √5. Due to the curvilinear update, the number of iterations is lower than that of the linear update, 
such as with the Newton‐Raphson method. 

4. Numerical Examples 

4.1. Power Flow Studies 

Power flow studies were performed on the IEEE 30‐bus system, with various initial points 

v0 = 1T 0T( )T + β 0T 1T( )T  with the range for β in [−0.3, 0.3]. A MATPOWER package [15] was used for 

the Newton‐Raphson, fast decoupled power flow, and Gauss–Seidel methods; and a PSAT package 
[35] was used for the Iwamoto and Runge‐Kutta methods. The same initial points were used for all 
methods. Figure 3 shows the results of the power flow studies: when β = 0, all of the methods 
converged reasonably well (Figure 3a); when β = 0.2, the Runge‐Kutta method did not converge; 
when β = 0.3, the Runge‐Kutta and Newton‐Raphson methods did not converge. As mentioned in 
Section 2.1, Newton‐Raphson method is not numerically robust. The proposed algorithm always 
converges rapidly in all the cases. 

Figure 2. Comparison in the convergences of the Newton-Raphson method and proposed methods.

The convergence is achieved when the initial guess of x0 is greater than or equal to 3.5. When a
smaller value was chosen, the proposed algorithm does converge even though it finds 0 instead of

√
5.

Due to the curvilinear update, the number of iterations is lower than that of the linear update, such as
with the Newton-Raphson method.
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4. Numerical Examples

4.1. Power Flow Studies

Power flow studies were performed on the IEEE 30-bus system, with various initial points

v0 =
(
1T 0T

)T
+ β

(
0T 1T

)T
with the range for β in [−0.3, 0.3]. A MATPOWER package [15] was used for

the Newton-Raphson, fast decoupled power flow, and Gauss–Seidel methods; and a PSAT package [35]
was used for the Iwamoto and Runge-Kutta methods. The same initial points were used for all methods.
Figure 3 shows the results of the power flow studies: when β = 0, all of the methods converged
reasonably well (Figure 3a); when β = 0.2, the Runge-Kutta method did not converge; when β = 0.3,
the Runge-Kutta and Newton-Raphson methods did not converge. As mentioned in Section 2.1,
Newton-Raphson method is not numerically robust. The proposed algorithm always converges rapidly
in all the cases.Energies 2019, 12, x 11 of 22 
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4.2. Optimal Power Flow Studies

Optimal power flow studies were performed on the IEEE 3-bus, 9-bus, 24-bus, and 30-bus systems.
The MIP solver in MATPOWER is based on the Newton-Raphson method formulated in the polar
coordinate system (PCS), which is used for solving OPF in this study. OPF studies were performed using
the proposed method and the Newton-Raphson method on the Cartesian coordinate system (CCS).
Figure 4 illustrates the results. It is worthwhile to mention that structural properties of the matrices in
Equation (15), such as sparsity and symmetry, are not explored yet in this study. When the structure
properties are explored, it is possible to apply the proposed method for larger systems the same way as
is done using the Newton-Raphson method implemented in MATPOWER.Energies 2019, 12, x 12 of 22 
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24-bus (c); and 30-bus systems (d); as well as the computation times of the algorithms (e).



Energies 2019, 12, 2425 12 of 20

In all the cases where the methods successfully converge, the identified solutions are identical,
except for Newton-Raphson method in CCS for the IEEE-24 case (Figure 4c). For this case,
the Newton-Raphson method in CCS stays at a local solution. Different from the Newton-Raphson
method, the proposed method is numerically robust, and the convergence does not depend on the
choice of the initial point. As shown in the computation time illustrated in the bottom plot in Figure 4,
the computation time of the proposed method increases more slowly with respect to the size of the
system than that of the Newton-Raphson method in CCS (p = 1.96 for the proposed method vs. 2.22
for the Newton-Raphson CCS and 1.94 for the Newton-Raphson PCS, where computation time (∝ Np).

4.3. Probabilistic Power Flow Studies

Probabilistic power flow studies were performed on the IEEE 30-bus system. Five buses (4, 7, 16,
20, and 24) were selected for wind sites, and their wind outputs were assumed to be independent. For
each wind site, the buses’ outputs were normally distributed. For the computation, the distributions
were discretized into five blocks, and a probability distribution was assigned (3125 wind scenarios).
The sample size for the Monte Carlo simulation (MC) was 100, and m = 2 for the 2m + 1 method [32]
(Figure 5).
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Figure 5. Probabilistic power flow results: (top) real parts of voltages and (bottom) imaginary parts of
voltages. Black line: complete search; blue line: Monte Carlo simulation; green line: 2m + 1 method;
and red line: proposed method.

The computation times were 36.0, 3.26, 0.28, and 0.25 seconds for a complete search, MC, 2m + 1
method, and the proposed method, respectively. As shown in Figure 5, even for a small sample size
of MC, the range of voltages and average voltages were similar to those from a complete search, but the
computation cost is still large. While the 2m + 1 method reduces the cost significantly, the range and
average voltages are far from those of the complete search. The proposed method yields similar
voltages as from the complete search, while the computation cost is significantly reduced.
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4.4. State Estimation

PMU and SCADA data were artificially generated with various levels of errors using an IEEE
30-bus system. For estimating the state, three methods were applied: (1) direct use of a PMU signal,
in which voltages at the buses observed by PMU are directly computed, and those at other buses are
estimated with SCADA; (2) a hybrid method based on the Newton–Raphson method; and (3) the
proposed method (Figure 6). The methods to utilize both signals simultaneously outperformed the
direct use of PMU signal.Energies 2019, 12, x 14 of 22 
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Figure 6. Performances of the state estimators with various measurement errors; (top) errors from PMU
(phasor measurement unit) measurements, and (bottom) errors from SCADA (supervisory control and
data acquisition) measurements.

5. Conclusions

A unified formulation based on a Kronecker product for full AC power flow studies is proposed.
The solution algorithm and the proof of convergence are presented, and its performance on the studies
are compared against those of conventional methods. Future work will explore the structural properties
of the matrix associated with the bilinear least-square problem. Since the matrix is sparse, like that
used in the Newton-Raphson method, and has a similar symmetric structure, the computation time
would decrease accordingly.
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Nomenclature

Aj set of buses that are directly connected to Bus j
Ej voltage magnitude squares at j
Emin, Emax min. and max. of voltage magnitude squares
Fk matrix associated with power flow at k in the cardinality of 2N-by-2N
G number of generators
Ij complex current at Bus j
L number of branches
Ldem matrices indicating the locations of loads in the cardinality of N-by-G
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Lgen matrices indicating the locations of generators in the cardinality of N-by-N
N number of buses
NPMU number of PMU measurements
NSCADA number of SCADA measurements
P perfect permutation matrix
Sj matrix associated with power injections at j in the cardinality of 2N-by-2N
T Transpose
X̃, X̂ real and imaginary part of X
Ybus nodal admittance matrix
diag(·) diagonal matrix of the vector inside () transformed into a column vector
a2 quadratic cost coefficient
a1 linear cost coefficient
d vector of real and reactive power demand in R2N

ej jth column vector of an identity matrix
f real and reactive plow vector in R4L

flowk maximum power flow on Branch k
g real and reactive power generation in R2G

gmin, gmax min. and max. limits of power generation
j, k, m bus index, branch index, and generation index
ref angle reference bus where the imaginary part of the voltages is set to zero
u measurements
vec(·) vectorization of the matrix inside ()
v real and imaginary voltage vector in R2N

w weight factors associated with the measurements u
|v|, θ voltage magnitude and angle
zf slack variable corresponding to maximum flow inequality constraints
zg slack variable corresponding to max/min generation limit constraints
zmax slack variable corresponding to max voltage magnitude constraints
zmi slack variable corresponding to min voltage magnitude constraints
Ψ Lagrange function
ρ shadow price corresponding to an equality constraint
µf shadow price corresponding to maximum flow inequality constraints
µg shadow price corresponding to max/min generation limit constraints
µmax shadow price corresponding to max voltage magnitude constraints
µmin shadow price corresponding to min voltage magnitude constraints
* complex conjugate
↔ equivalent

Appendix A. Power Flow Problem

In power flow problems, real power injection and voltage magnitude are given for the PV bus; real and
reactive power injections are given for the PQ bus; and voltages are given in the slack bus. The real power balance
equation at all the buses, except for the slack bus, is expressed using the property of the Kronecker product [31],
xTMx = [vec(M)]T(x⊗ x):

vTS jv = eT
j

(
Lgeng− Ldemd

)
↔

[
vec

(
MRP

j

)]T
(v⊗ v) − ξRP

j = 0 (A1)

where MRP
j = S j and ξRP

j = eT
j

(
Lgeng− Ldemd

)
The reactive power balances are:

vTS̃ jv = eT
j

(
Lgen g̃− Ldemd̃

)
↔

[
vec

(
MIP

j

)]T
(v⊗ v) − ξIP

j = 0 (A2)

where MIP
j = S̃ j and ξIP

j = eT
j

(
Lgen g̃− Ldemd̃

)
.
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The square of the voltage magnitude is:

vT
(
e jeT

j + e j+NeT
j+N

)
v = E j ↔

[
vec

(
MVM

j

)]T
(v⊗ v) − ξVM

j = 0 (A3)

where MVM
j = e jeT

j + e j+NeT
j+N and ξVM

j = E j.
The imaginary part of voltage at the slack bus (reference angle constraint) is:

vTere f+NeT
re f+Nv = 0 ↔

[
vec

(
MVA

j

)]T
(v⊗ v) − ξVA

j = 0 (A4)

where MVA
j = ere f+NeT

re f+N and ξVA
j = 0.

Equations (A1)–(A4) have the same form that appears in Equation (1), when xPF = v.

Appendix B. Optimal Power Flow Problem

An optimal power flow problem is formulated in the polar coordinate system:

min
|v|,θ,g

fOPF(g) s.t.
{

geq(|v|,θ, g) = 0
hin(|v|,θ, g) ≤ 0

where fOPF is the system cost; geq is the equality constraints; and hin is the inequality constraint. In most OPF
studies, a quadratic cost function is considered, i.e., fOPF(g) = gTdiag(a2)g + aT

1 g. This objective function is
expressed in terms of x, defined in Equation (5) as

fOPF(x) =


v
g

yobj
1


T

0 0 0 0
0 diag(a2) 0 1

2 a1
0 0 0 0
0 1

2 aT
1 0 0

︸                            ︷︷                            ︸
Mobj


v
g

yobj
1

 = xT
OPFMobjxOPF

where yobj =
[

f T zT
f zT

g zT
max zT

min ρ
T µT

f µ
T
g µ

T
max µ

T
min

]T
.

Appendix B.1. Equality Constraints

In addition to Equation (A4), equality constraints are power balance equations (see Equations (A1) and (A2)),
the definition of power flows, and the reference angle constraint (see Equation (A4)). Using the definition of x in
Equation (5), there are N real power balance equations.

vTS jv− eT
j Lgeng + eT

j Ldemd =


v
g
y1
1


T


S j 0 0 0
0 0 0 −

1
2 ( I 0 )

TLT
gene j

0 0 0 0
0 −

1
2 eT

j Lgen( I 0 ) 0 0

︸                                                                 ︷︷                                                                 ︸
MRPB

j


v
g
y1
1



+eT
j Ldemd = 0↔ xT

OPFMRPB
j xOPF − ξ

RPB
j = 0↔

[
vec

(
MRPB

j

)]T
(xOPF ⊗ xOPF) − ξ

RPB
j = 0

(A5)

where g =
[
gT g̃T

]T
, y1 = yobj, and ξRPB

j = −eT
j Ldemd.
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Similarly, N reactive power balance equations are:

vTS̃ jv− eT
j Lgen g̃ + eT

j Ldemd̃ =


v
g
y1
1


T


S̃ j 0 0 0
0 0 0 −

1
2 ( 0 I )

TLT
gene j

0 0 0 0
0 −

1
2 eT

j Lgen( 0 I ) 0 0

︸                                                                 ︷︷                                                                 ︸
MIPB

j


v
g
y1
1



+eT
j Ldemd̃ = 0↔ xT

OPFMIPB
j xOPF − ξ

IPB
j = 0↔

[
vec

(
MIPB

j

)]T
(xOPF ⊗ xOPF) − ξ

IPB
j = 0

(A6)

where ξIPB
j = −eT

j Ldemd̃.
The power flows are also computed in terms of voltages. For example, the real injection flows are computed

as follows [15]:

− f Re
k + Re

(
v f rom

k I∗k

)
= −eT

k f + vTFkv =


v
g
f

y2
1


T

Fk 0 0 0 0
0 0 0 0 0
0 0 0 0 −

1
2 ek

0 0 0 0 0
0 0 −

1
2 eT

k 0 0

︸                                 ︷︷                                 ︸
MRPF

k


v
g
f

y2
1

 = 0

↔ xT
OPFMRPF

k xOPF − ξ
RPF
k = 0↔

[
vec

(
MRPF

k

)]T
(xOPF ⊗ xOPF) − ξ

RPF
k = 0

(A7)

and y2 =
[

zT
f zT

g zT
max zT

min ρ
T µT

f µ
T
g µ

T
max µ

T
min

]T
and ξRPF

j = 0.

There are 4L of the flows (real power injection/ejection flows and reactive power injection/ejection flows).

The equality constraints are in the form of
[
vec

(
Meq

)]T
(xOPF ⊗ xOPF) − ξeq = 0.

Appendix B.2. Inequality Constraints

The inequality constraints are maximum/minimum voltage magnitudes constraints, maximum/minimum
flow limits, and maximum/minimum generation limits. Therefore, the corresponding shadow prices and slack
variables have the same cardinality as the number of inequality constraints.

The 2N maximum/minimum voltage constraints are

vT
(
e jeT

j + e j+NeT
j+N

)
v− E j

max ≤ 0↔ vT
(
e jeT

j + e j+NeT
j+N

)
v + zVmax

j − E j
max

=


v
yI

3
zmax
yII

3
1


T

MVM
j 0 0 0 0
0 0 0 0 0
0 0 0 0 1

2 e j
0 0 0 0 0
0 0 1

2 eT
j 0 0

︸                                ︷︷                                ︸
MVmax

j


v
yI

3
zmax
yII

3
1

− E j
max = 0↔

[
vec

(
MVmax

j

)]T
(xOPF ⊗ xOPF) − ξ

Vmax
j = 0 (A8)

−vT
(
e jeT

j + e j+NeT
j+N

)
v + E j

min ≤ 0↔ −vT
(
e jeT

j + e j+NeT
j+N

)
v + zVmax

j + E j
min = 0

=


v

yIII
3

zmin
yIV

3
1


T
−MVM

j 0 0 0 0
0 0 0 0 0
0 0 0 0 1

2 e j
0 0 0 0 0
0 0 1

2 eT
j 0 0

︸                                   ︷︷                                   ︸
MVmin

j


v

yIII
3

zmin
yIV

3
1

+ E j
max ↔

[
vec

(
MVmin

j

)]T
(xOPF ⊗ xOPF) − ξ

Vmin
j = 0 (A9)

where ξVmax
j = E j

max, ξVmin
j = −E j

min, yI
3 =

[
gT f T zT

f zT
g

]T
, yII

3 =
[
zT

min ρ
T µT

f µ
T
g µ

T
max µ

T
min

]T
, yIII

3 =[
gT f T zT

f zT
g zT

max

]T
, yIV

3 =
[
ρT µT

f µ
T
g µ

T
max µ

T
min

]T
, respectively.
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The 2L maximum flow limit constraints are

f
2
k + f̃ 2

k − f low2
k = f T

(
ekeT

k + ek+LeT
k+L

)
f − f low2

k ≤ 0↔ f T
(
ekeT

k + ek+LeT
k+L

)
f + z fmax

k − f low2
k = 0

↔


yI

4
f

z f
yII

4
1


T

0 0 0 0 0
0 ekeT

k + ek+LeT
k+L 0 0 0

0 0 0 0 1
2 ek

0 0 0 0 0
0 0 1

2 eT
k 0 0

︸                                               ︷︷                                               ︸
M f low

k


yI

4
f

z f
yII

4
1

− ξ
fmax

k

=
[
vec

(
M f low

k

)]T
(xOPF ⊗ xOPF) − ξ

fmax

k = 0

(A10)

where ξ fmax

k = f low2
k , yI

4 =
[
vT gT

]T
and yII

4 =
[
zT

g zT
max zT

min ρ
T µT

f µ
T
g µ

T
max µ

T
min

]T
.

The 2G maximum/minimum generation constraints are generally expressed as linear box constraints, i.e.,
gmin ≤ g ≤ gmax, where gmin and gmax are the minimum and maximum limits of power generation. The constraints
are equivalent to gT

(
emeT

m

)
g−

(
gmin + gmax

)
eT

mg + gT
min

(
emeT

m

)
gmax ≤ 0. Therefore, the constraints are formulated

using the slack variable as follows:

gT
(
emeT

m

)
g−

(
gmin + gmax

)T
emeT

mg + zm
g + gmin

TemeT
mgmax = 0

↔



v
g
yI

5
zg
yII

5
1



T

0 0 0 0 0 0

0 emeT
m 0 0 0 −

1
2

(
gmin + gmax

)T
emeT

m
0 0 0 0 0 0
0 0 0 0 0 1

2 ek
0 0 0 0 0 0
0 −

1
2 emeT

m

(
gmin + gmax

)
0 1

2 eT
k 0 0

︸                                                                                        ︷︷                                                                                        ︸
Mg

m



v
g
yI

5
zg
yII

5
1


− ξ

g
m

=
[
vec

(
Mg

m

)]T
(xOPF ⊗ xOPF) − ξ

g
m = 0

(A11)

where ξg
m = gT

minemeT
mgmax, yI

5 =
[

f T zT
f

]T
, and yII

5 =
[

zT
max zT

min ρ
T µT

f µ
T
g µ

T
max µ

T
min

]T
.

Therefore, all the inequality constraints are in the form of [vec(Min)]
T(xOPF ⊗ xOPF) − ξin = 0.

The Lagrange function to Equation (4) is:

Ψ =
[
vec

(
Mobj

)]T
(xOPF ⊗ xOPF) +

∑
i
ρi

eq

{[
vec

(
Mi

eq

)]T
(xOPF ⊗ xOPF) − ξ

i
eq

}
+

∑
j
µ

j
ineq

{[
vec

(
M j

in

)]T
(xOPF ⊗ xOPF) − ξ

j
in

}
=

[vec
(
Mobj

)]T
+

∑
i
ρi

eq

[
vec

(
Mi

eq

)]T
+

∑
j
µ

j
ineq

[
vec

(
M j

in

)]T
(xOPF ⊗ xOPF) −

∑
i
ρi

eqξ
i
eq +

∑
j
µ

j
ineqξ

j
in


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The derivative of Lagrange function with respect to voltage is

∇vΨ = 2

2N+4L∑
κ=1

ρκMκ +
N∑

j=1
µ

j
max

(
e jeT

j + e j+NeT
j+N

)
+

N∑
j=1

µ
j
min

(
−e jeT

j − e j+NeT
j+N

)v = 0

→ eT
i ∇vΨ = 2eT

i

2N+4L∑
κ=1

ρκMκ +
N∑

j=1
µ

j
max

(
e jeT

j + e j+NeT
j+N

)
+

N∑
j=1

µ
j
min

(
−e jeT

j − e j+NeT
j+N

)v
= 2

(
ρT µT

max µ
T
min

)
Mi

eq
Mi

max
−Mi

max

v = 0 where Mi
eq =


eT

i Mk=1
eq

...
eT

i Mk=2N+4L
eq

, Mi
max =


eT

i e1eT
1 + eT

i e1+NeT
1+N

...
eT

i eNeT
N + eT

i e2NeT
2N



↔



v
yI

6
ρ
yII

6
µmax
µmin

1



T

0 0
(
Mi

eq

)T
0

(
Mi

max

)T
−

(
Mi

max

)T
0

0 0 0 0 0 0 0
Mi

eq 0 0 0 0 0 0
0 0 0 0 0 0 0

Mi
max 0 0 0 0 0 0

−Mi
max 0 0 0 0 0 0

0 0 0 0 0 0 0

︸                                                                      ︷︷                                                                      ︸
Mi

v



v
yI

6
ρ
yII

6
µmax
µmin

1



=
[
vec

(
Mi

v

)]T
(xOPF ⊗ xOPF) − ξ

i
v = 0

(A12)

where i = 1, 2, . . . , 2N, ξi
v = 0, yI

6 =
[

gT f T zT
f zT

g zT
max zT

min

]T
, and yII

6 =
[
µT

f µ
T
g

]T
.

Complementary slackness yields:

µi · zi = µTeieT
i z =


y7
z
ρ
µ
1


T

0 0 0 0 0
0 0 0 1

2 eieT
i 0

0 0 0 0 0
0 1

2 eieT
i 0 0 0

0 0 0 0 0

︸                               ︷︷                               ︸
Mi

CS


y7
z
ρ
µ
1

 =
[
vec

(
Mi

CS

)]T
(xOPF ⊗ xOPF) − ξ

i
CS = 0

where i = 1, · · · , 2N + 2L + 2G, ξi
CS = 0 and

y7 =
(
vT gT f T

)T
(A13)

The complementary slackness in (A13) is an equality constraint while the conventional KKT formulation for
an OPF formulation is expressed as an inequality constraint µi·zi ≤ εi where εi is a very small positive number
(See [15] for details).

Equations (A4)–(A13) are the KKT condition for an optimizer for the AC OPF, and they are in the form of
[vec(M)]T(xOPF ⊗ xOPF) − ξ = 0. The reason we do not include the shadow price of reference bus angle constraint
(A4) is that the corresponding shadow price is zero.

Appendix C. State Estimation Problem

The measurements (voltages and currents) from PMU are linear in terms of voltages: uPMU = MPMUv+ εPMU,
where MPMU and εPMU are the matrix and measurement error associated with the PMU measurements, respectively.
On the other hand, SCADA measurements (power injections (Equations (A5) and (A6)), flows (Equation
(A7)), and voltage magnitudes (Equations (A8) and (A9)) are in a quadratic relationship with the voltages:
ui

SCADA = vTMi
SCADAv + εi

SCADA. Their errors are expressed in terms of voltages, which we aim to estimate
as follows:

εi
PMU = ui

PMU −Mi
PMUv =

( v
1

)T
 0 −

1
2

(
Mi

PMU

)T

−
1
2 Mi

PMU 0

︸                                ︷︷                                ︸
MPi

( v
1

)
−

(
−ui

PMU

)
= [vec(MPi)]

T(xSE ⊗ xSE) − ξPi

ε
j
SCADA = u j

SCADA − vTM j
SCADAv =

( v
1

)T[
−M j

SCADA 0
0 0

]
︸                 ︷︷                 ︸

MSj

( v
1

)
−

(
−ui

PMU

)
=

[
vec

(
MSj

)]T
(xSE ⊗ xSE) − ξSj

(A14)

Their weighted error vector ε is defined as
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ε =




w1

PMUε
i
PMU

...
wNPMU

PMU ε
NPMU
PMU


w1

SCADAε
i
SCADA

...
wNSCADA

SCADAε
NSCADA
SCADA




=




w1

PMU[vec(MPi)]
T

...

wNPMU
PMU

[
vec

(
MPNPMU

)]T


w1

SCADA

[
vec

(
MSj

)]T

...

wNSCADA
SCADA

[
vec

(
MSNSCADA

)]T



︸                                       ︷︷                                       ︸
ASE

(xSE ⊗ xSE) −



ξP1
...

ξPNPMU
ξS1

...
ξSNSCADA

︸          ︷︷          ︸
bSE

(A15)
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