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Abstract: Using computational fluid dynamics (CFD), this study explores the effect of a different
number of awning windows and their installation locations on the airflow patterns and air contaminant
distributions in restrooms in K-12 (for kindergarten to 12th grade) public schools in Taiwan.
A representative restroom configuration with dimensions of 10.65 m × 9.2 m × 3.2 m (height)
was selected as the investigated object. Based on the façade design feasibility, seven possible awning
window configurations were considered. The results indicate that an adequate number of windows
and appropriate installation locations are required to ensure the natural ventilation effectiveness of
awning windows. The recommended installation configuration is provided.
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1. Introduction

In Taiwan, restrooms in K-12 public schools (kindergarten (K) and the 1st through the 12th
grade (1-12)) are frequently accessed and are open to the public, which hinders their management.
In particular, restrooms that have been in service for more than 20 years often exhibit problems, such as
poor ventilation, inadequate lighting, outdated layouts and designs and limited toilet spaces. Thus,
these restrooms have become a nuisance for school environment management. Poor-quality restrooms
create fear of using the restroom among teachers and students, which increases incidents in which
teachers and students are affected by acute or chronic diseases that can adversely affect their physical
and mental health.

There are few studies on bathroom and restroom ventilation that address the ventilation efficiency
of entire bathrooms and restrooms as well as the ventilation efficiency of their components (e.g., toilets
and fans). Investigating the ventilation of an entire bathroom and restroom, Tung et al. [1] analyzed a
new negative pressure wall-exhaust ventilation system (that differs from the traditional ceiling-exhaust
system) installed in a residential bathroom and restroom using a full-scale test. In the test, toilets
were deployed in several different patterns and positions. The test results indicated that the restroom
ventilation system could take advantage of a negative pressure difference to prevent the escape of
restroom malodor to an adjacent room. Increasing the ventilation volume or decreasing the distance
between vent and toilet could improve both the indoor pollutant removal rate and the ventilation
rate. From the perspective of energy efficiency, an air change rate of 8.5 h−1 was the optimal value.
Tung et al. [2] analyzed the effectiveness of three ventilation strategies for residential bathroom malodor
removal: (1) forced ceiling-supply and wall-exhaust systems, (2) natural window-inlet and forced
ceiling-exhaust systems and (3) forced ceiling-supply and ceiling-exhaust systems. The first strategy
achieved the best malodor removal. Yang and Kim [3] employed computational fluid dynamics (CFD)
to analyze the effect of changing the glass partition shape in an apartment bathroom on the bathroom
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ventilation. Their study provides a glass partition design for a bathroom (with a shower and restroom)
that can maintain excellent household hygiene.

Regarding the effectiveness of bathroom and restroom components, Seo and Park [4] designed
a new toilet ventilation system, in which a ring opening for odor suction was included under the
toilet seat. Malodor at the source was directly sucked out to reduce the escape of malodor into the
restroom. The effectiveness of this ventilation system was validated via testing and CFD simulation.
The test and numerical simulation results were essentially consistent. Dual openings at the rear of the
toilet with 4 mm2

× 4 mm2 odor suction holes represented the optimal design. The ventilation system
draws outdoor fresh air into the restroom via door opening. Sato et al. [5] analyzed the amounts of
volatile substances of human waste malodor (i.e., feces and urine). The substances were collected
via Tenax-TA, and their concentrations were determined by thermal-desorption cold-trap injector/gas
chromatography/mass spectrometry (TCT/GC/MS). The results revealed that approximately 90% of
malodor substances were fatty acids: acetic acid (65%), propionic acid (15%), butyric acid (6.5%),
i-Valeric acid and n-Valeric acid. Approximately 8% of these substances were N-containing compounds:
ammonia (6.5%), pyridine, pyrrole, indole, skatole and trimethylamine.

Kim and Yang [6] analyzed the ventilation effectiveness of exhaust fans installed in a residential
bathroom in Korea via field measurement. In the paper, construction and design methods were revised
to enhance the bathroom ventilation. Yin et al. [7] analyzed the effect of increasing the operational
pressure of a residential bathroom ventilation fan on the ventilation effectiveness. The survey objects
were more than 80 families who used AC-motor ventilation fans. The results revealed that the
performance of the exhaust fan was significantly penalized by an increase in external static pressure.
Choi et al. [8] provided statistics from bathroom ventilation fan tests from 2005 to 2013 and interpreted
these statistics based on the development trend of residential ventilation standards and guidelines.

Numerous studies have examined natural ventilation for buildings. Comprehensive reviews on
natural ventilation studies, including effects of building façade and ventilation opening, ventilation
shaft design, shape of louvered windows, apertures and vernacular element, the representative air
change rates, applications in multi-story buildings, the effect of thermal energy storage on night
ventilation efficiency, night ventilation effectiveness and design, etc., are found in the literature [9–15].
However, studies of the natural ventilation of restrooms, particularly restrooms in K-12 public schools,
are limited. In this study, restrooms in these schools in Taiwan are selected as the study subjects.
The effect of the installation quantity, position and opening angle of awning windows on the flow
pattern and air pollutant (NH3) distribution in restrooms with various wind speeds and directions are
analyzed via CFD.

2. Materials and Methods

2.1. Study Subject

Restroom indoor configurations differ due to their position, site area, orientation, and building
design. It is very common for public school buildings to have east-west orientation (facing the
south and the north) with restrooms at the opposite two ends under the requirement of the building
code of Taiwan, as illustrated in Figure 1a. After analyzing restrooms in 140 K-12 public schools in
Taiwan, a representative model restroom with the following dimensions is selected as the study subject:
10.65 m × 9.2 m × 3.2 m (height) (Figure 1). In Figure 1c, 1O indicates the aisle in the restroom, 2O is the
squatting toilet area in the women’s restroom, and 3O is the urinal area in the men’s restroom.

Currently, the windows that are commonly employed in school restrooms include horizontal push
windows, awning windows and blinds. In this study, based on Figure 1, a preliminary study of the effect
of the window configuration on the natural ventilation performance of a restroom (0.5 m/s north wind) is
conducted using CFD (discussed in a subsequent section). The results indicate that an awning window
has the best ventilation effect, followed by blinds. The order of ventilation effectiveness is described as
follows: awning window > blinds > horizontal push window (data not shown). The awning window
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has the following advantages: sufficient ventilation area and an adjustable opening angle to control
the ventilation area and deflect rain (which is particularly suitable for the typhoon and rainy season
in Taiwan). Therefore, the awning window (as illustrated in Figure 2) is selected as the window
configuration for the subject.
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1.0 m × 0.9 m. The position of the restroom window is varied. In this study, the awning window 
configuration is based on the north façade (Table 1), which is located on a certain floor and has seven 
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symmetrically. Whether a window frame is listed as a CFD simulation object affects the number of 
grids in the simulation and may significantly increase computing time. Therefore, the glazing 
dimensions are used as the dimensions of the ventilation opening; i.e., the window frame is ignored 
here. The installation of four awning windows comprises three designs (the black blocks in Table 1b–
d). The installation of eight awning windows consists of three designs (Table 1(e)–(g)). In addition, 
the installation of 12 awning windows has one design (Table 1(h)). The opening angles θ for the 
awning windows are 30°, 45° and 60°. The approaching wind speeds are 0.5 m/s, 1 m/s and 2 m/s. In 
Taiwan, the weather and climate are greatly affected by monsoons. In summer, the prevailing wind 
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Figure 2. Awning window examples.

The dimensions of the awning windows that are available in the market vary in the range of
0.4 m × 0.4 m–1.4 m × 1.0 m. The dimensions of the awning window that is investigated in this
study are 1.0 m × 0.9 m. The position of the restroom window is varied. In this study, the awning
window configuration is based on the north façade (Table 1), which is located on a certain floor and has
seven window configurations (W1–W7). The windows for men’s and women’s restrooms are installed
symmetrically. Whether a window frame is listed as a CFD simulation object affects the number
of grids in the simulation and may significantly increase computing time. Therefore, the glazing
dimensions are used as the dimensions of the ventilation opening; i.e., the window frame is ignored
here. The installation of four awning windows comprises three designs (the black blocks in Table 1b–d).
The installation of eight awning windows consists of three designs (Table 1e–g). In addition, the
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installation of 12 awning windows has one design (Table 1h). The opening angles θ for the awning
windows are 30◦, 45◦ and 60◦. The approaching wind speeds are 0.5 m/s, 1 m/s and 2 m/s. In Taiwan,
the weather and climate are greatly affected by monsoons. In summer, the prevailing wind is a
southwesterly or southerly monsoon, while in winter it is northeasterly or northerly monsoon. Thus,
the wind directions set in the CFD simulation include south and north winds. There is no heat source
in the restroom, and the toilet doors are closed to simulate the scenario when the restroom is in use.
Geometric data for the model under investigation are listed in Table 2.

Table 1. Quantity and position of installed awning windows (north facade).

Windows Configuration Legend Windows Configuration Legend
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Table 2. Geometric data for restroom under investigation.

Parts of the Model Geometric Data

Investigated restroom 10.65 m × 9.2 m × 3.2 m (height)
Dimensions of the awning window 1.0 m × 0.9 m (height)

Net ceiling height 3.2 m (Z direction)

The major cause of poor air quality in restrooms is the malodor of feces and urine. The smell
of feces and urine is primarily the smell of ammonia. In contrast, sewer malodor consists of mixed
chemical substances, such as hydrogen sulfide, methyl mercaptan, trimethylamine, dimethyl disulfide,
indole and methyl indole. This study focuses on the restroom flow field and the malodor concentration
field. Because the irritating odor of ammonia is believed to be a major contributor to the offensive odor
of human waste [5], the NH3 concentration in the malodor is analyzed. To simulate the very worst
condition, the generation rate of unpleasant odors (represented by NH3) was assumed to be 0.3 L/min
(0.2 g (NH3)/min) in this study. The pollution source area is set to 0.1 m × 0.1 m.
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A modified odor removal efficiency (ORE) [2,16,17] was employed to express the ventilation
performance of the whole restroom. A higher ORE indicates a lower concentration level, thus indicating
better ventilation efficiency for odor removal. The ORE is defined as:

ORE =
Ce−C0

Cp −C0
(1)

where Ce is the odor concentration at the exhaust, C0 is the indoor background concentration and Cp is
the average concentration at the height of the breathing zone.

2.2. Numerical Methods

Numerical simulations of the problem that is being investigated are performed via a finite volume
method to solve the governing equations with the previously discussed boundary conditions (Table 3).
The calculation domain (50 m × 50 m × 3.2 m) is shown in Figure 3a. The commercial CFD code
PHOENICS is used to simulate the airflow and NH3 distributions. The governing equations solved by
PHOENICS include a three-dimensional time-dependent incompressible Navier-Stokes equation, a
time-independent convection diffusion equation and a k-ε turbulence equation. The formulations of
these equations can be found in the PHOENICS manual [18] and in most CFD textbooks; thus, they are
not provided here. The empirical turbulence coefficients for the k-ε turbulence equation are assigned
as follows: σk = 1.0, σε = 1.22, σε1 = 1.44, σε2 = 1.92 and Cµ = 0.09. These values are widely accepted
in CFD k-εmodels. To bridge the steep gradients of dependent variables near a solid surface, a general
wall function is employed. Iterative calculation continues until a prescribed relative convergence of
10−3 is satisfied for all field variables of this problem.

When testing the grid independence of a mesh domain, the NH3 distribution at the user’s
squatting position (X = 0.925 m, Y = 1.2 m), which is based on different grid points, is used to
calculate the deviation percentages and determine a suitable grid point system for the calculation
(Figure 3b). Numerical simulation accuracy depends on the resolution of the computational mesh.
A finer grid produces more accurate solutions. In this study, a grid system with approximately
131 × 113 × 52 (769,756) cells is used for numerical simulations. Each cell in the investigated restroom
is about 0.1 m × 0.15 m × 0.06 m. An increase in the number of cells provides better information.
However, such an increase is accompanied by a significant increase in computational resources.

Table 3. Parameters specified in numerical calculation.

Walls, Ceilings, Doors, Awning Window Glazing Adiabatic

Outlet planes Zero static pressure

Quantity and position of installed awning windows Table 1

Opening angles of awning window 30◦, 45◦, 60◦

Wind directions North wind, south wind

Wind speeds (with logarithmic velocity profiles,
reference height = 10 m) 0.5, 1.0, 2.0 m/s

Toilet door Closed

Ambient air temperature 25 ◦C

Pollution source (NH3)
Volumetric flow rate = 5 × 10−6 m3/s

Mass percentage concentration of NH3 = 1 (kg NH3/kg air mixture)
Flow area = 0.1 m × 0.1 m

Ambient NH3 concentration 0 PPMV
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2.3. Model Validation

In this study, a reduced-scale model of the investigated restroom shown in Figure 1 is constructed
(Figure 4a). The material used for the model is 3-mm-thick gray hard cardboard and foam core
board. The model scale is 1:45. The opening in the model is simply an opening without an installed
window. A 4-inch fan is installed at the restroom entrance to simulate a south wind, and the airflow
velocity in the model was measured by a multifunction measuring instrument (Testo 435-1) with
an anemometer (Testo 0635 1535). There are seven measurement locations: at the two entrances
(two locations), the window opening centers (two locations), the aisle centers (two locations) and
the central toilet (one point). Each measurement location measures three heights: 1 cm, 3 cm and
5 cm. Next, CFD simulation with the same method mentioned in Section 2.2 is performed based on
this reduced-scale model, and the simulation result is compared with the reduced-scale test result.
As shown in Figure 4b, the difference between the CFD results and the experimental results is not
significant. Thus, the reliability of the simulation results was confirmed.
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3. Results and Discussion

3.1. Case Study: the Effect of Wind Direction

In Taiwan, the perennial wind direction pattern is south in summer and north in winter.
In this section, the indoor flow field and NH3 concentration distribution for different outdoor wind
directions are investigated using a case study with the following settings: awning windows installed
at the center of the exterior north wall (Table 1c, window configuration W2), an opening angle θ of 45◦

and an outdoor wind speed of 1 m/s.
Figure 5a shows the flow field in the aisle in the women’s restroom (Figure 1c, section A). A north

wind flows from the left side of the diagram toward the awning window. Guided by the inclined
window surface, outdoor air flows toward the indoor ceiling at an angle pointing to the upper right
(Figure 5a, symbol
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restroom (Figure 1c, section B). (c) NH3 concentration distribution in toilet area in the women’s 
restroom (Figure 1c, section B). (d) Flow field in urinal area in the men’s restroom (Figure 1c, section 
C). (e) NH3 concentration distribution in urinal area in the men’s restroom (Figure 1c, section C). 

The preceding analysis and Figure 6 reveal that the toilet area and the urinal area near the 
exterior wall have poor ventilation due to the flow field structure. Figure 6a shows that when users 
defecate in a squatting position, the NH3 concentration is high at the breathing zone height, in the 
area marked with a red dotted line (Z = 0.6 m). When men urinate in a standing position, Figure 6b 
shows that the NH3 concentration is high at the breathing zone height, in the area marked with a red 
dotted line (Z = 1.5 m). 

The Annex I 109.03 of “Information notices on occupational diseases: a guide to diagnosis 
(European Commission, 2009)” [19] indicates that the odor threshold of NH3 is about 20 ppm; 
exposure levels of NH3 that surpass 50 ppm will result in immediate irritation to the nose and throat; 
exposure level to 250 ppm is bearable for 30–60 min; and exposure level to 300 ppm is considered to 
be immediately dangerous to life and health. It is good to define an acceptable level of NH3 from 
which the ventilation performance of each case could be evaluated. However, the recommended 
values above cannot be well applied in quasi-steady-state problems raised in this study that urinating 
or defecating is within a limited time-period. More observation and discussion are needed. Besides, 
the generation rate of unpleasant odors set in this study presents the very worst condition; if a 
referenced threshold level was used and linked to our simulations, the results would be misleading. 
Such constraints limit this study to a relative comparison among cases. 

Figure 5. Indoor flow fields and NH3 concentration (PPMV) distributions for north wind (window
configuration: W2 (Table 1c); the opening angle θ is 45◦; the outdoor wind speed is 1 m/s). (a) Flow
field in aisle in the women’s restroom (Figure 1c, section A). (b) Flow field in toilet area in the women’s
restroom (Figure 1c, section B). (c) NH3 concentration distribution in toilet area in the women’s restroom
(Figure 1c, section B). (d) Flow field in urinal area in the men’s restroom (Figure 1c, section C). (e) NH3

concentration distribution in urinal area in the men’s restroom (Figure 1c, section C).

The preceding analysis and Figure 6 reveal that the toilet area and the urinal area near the exterior
wall have poor ventilation due to the flow field structure. Figure 6a shows that when users defecate in
a squatting position, the NH3 concentration is high at the breathing zone height, in the area marked
with a red dotted line (Z = 0.6 m). When men urinate in a standing position, Figure 6b shows that
the NH3 concentration is high at the breathing zone height, in the area marked with a red dotted line
(Z = 1.5 m).

The Annex I 109.03 of “Information notices on occupational diseases: a guide to diagnosis
(European Commission, 2009)” [19] indicates that the odor threshold of NH3 is about 20 ppm; exposure
levels of NH3 that surpass 50 ppm will result in immediate irritation to the nose and throat; exposure
level to 250 ppm is bearable for 30–60 min; and exposure level to 300 ppm is considered to be
immediately dangerous to life and health. It is good to define an acceptable level of NH3 from which
the ventilation performance of each case could be evaluated. However, the recommended values above
cannot be well applied in quasi-steady-state problems raised in this study that urinating or defecating
is within a limited time-period. More observation and discussion are needed. Besides, the generation
rate of unpleasant odors set in this study presents the very worst condition; if a referenced threshold
level was used and linked to our simulations, the results would be misleading. Such constraints limit
this study to a relative comparison among cases.
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is formed, which results in a low NH3 concentration in the restroom (Figure 7c). Because the main
stream is close to the ceiling and the flow speed is low, stagnant air and high NH3 concentrations result
in the spaces at the bottom
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.
Figure 7d shows the flow field in the urinal area in the men’s restroom (Figure 1c, section C). Main

stream A flows into the room via the south exterior door (right side of the diagram). Near the north
wall (left side of the diagram), part of the flow flows out the window, but the majority of the flow flows
downward along the wall surface (B). Affected by the partition board, flow B turns right and exhibits
a pattern of horizontal flow (C). Then, it turns upward at the partition wall (D) and forms a major
counter-clockwise circulation (BCD). This large circulation surrounds the urinal area, which results in
a high NH3 concentration in this area (Figure 7e).

The preceding analysis and Figure 8 show that as a result of the flow structure, the toilet areas
and urinal area near the indoor partition wall have inferior ventilation. Figure 8a shows that when
users defecate in a squatting position the NH3 concentration is high at the breathing zone height, in the
area marked with a red dotted line (Z = 0.6 m). When men urinate in a standing position, the NH3

concentration is high at the breathing zone height, in the area marked with a red dotted line (Z = 1.5 m)
(Figure 8b). A possible solution is to add a vertical guiding board to the ceiling in the area with inferior
ventilation (red blocks in Figures 6 and 8). In this manner, part of the main stream flow is guided into
an area with poor ventilation, and the NH3 is carried away. Although this issue is not the focus of this
study, it warrants for future investigation.
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standee’s breathing zone). 
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When window configuration W2 is employed, an arbitrary opening angle (30°–60°) under the two 
wind conditions is acceptable; opening angle 45° is proposed. When window configuration W5 is 
adopted, the 30° and 60° opening angle configurations are recommended for spring/summer and 
autumn/winter respectively (marked in light yellow and light blue in Figure 9). 

 
Figure 9. Odor removal efficiency for the cases with 0.5 m/s south wind and 2.0 m/s north wind. 

Figure 8. NH3 concentration (PPMV) distributions at heights of squatter and standee breathing zones
for south wind (window configuration: W2; the opening angle θ is 45◦; the outdoor wind speed is
1 m/s). (a) Height Z = 0.6 m (height of the squatter’s breathing zone). (b) Height Z = 1.5 m (height of
the standee’s breathing zone).

3.2. Findings and Design Recommendation

The previous section explains how the ventilation performance of each restroom is analyzed via
flow pattern observation and the NH3 concentration distribution. Due to page length limitations,
this paper cannot elaborate the restroom ventilation effectiveness of each window configuration. Instead,
the modified odor removal efficiency (ORE) was used to investigate the ventilation effectiveness in each
case. Figure 9 shows the ORE for the cases with 0.5 m/s south wind (commonly seen in spring/summer)
and 2.0 m/s north wind (autumn/winter). This figure reveals that the window configuration (W1–W7)
has a major impact on the ventilation of the restrooms; this impact significantly exceeds the effect of
other parameters (wind speed, wind direction and opening angle). When window configuration W2 is
employed, an arbitrary opening angle (30◦–60◦) under the two wind conditions is acceptable; opening
angle 45◦ is proposed. When window configuration W5 is adopted, the 30◦ and 60◦ opening angle
configurations are recommended for spring/summer and autumn/winter respectively (marked in light
yellow and light blue in Figure 9).
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Design recommendations for the installation quantity and position of awning windows are listed
in Table 4. K-12 school restrooms could adopt window configuration W2 for the north walls with
an opening angle of 45◦ for all seasons. Window configuration W5 is also recommended. However,
here, different seasons require different opening angles. In spring and summer with low-speed wind,
the window should be opened 30◦. Such a configuration could also prevent rain from entering the room
during the rainy season in summer. In autumn and winter with stronger wind, the window should
be opened 60◦. However, the cost of the W5 window configuration is high. In addition, some of the
windows are located in high positions and are thus difficult to open. Therefore, window configuration
W5 is not our first recommendation.

Table 4. Recommended awning window configuration and opening angle.

Recommendation Window Configuration Season Opening Angle

First recommendation

W2
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4. Conclusions

In this study, the restrooms in K-12 public schools in Taiwan are selected as the study subjects.
The effect of awning window quantity and installation position on airflow pattern and air contaminant
(NH3) distribution in the representative restroom is analyzed using CFD. The research findings are
summarized as follows.

1. In autumn and winter, the north monsoon wind flows into the awning window from the north.
Guided by the inclined window surface, it flows toward the indoor ceiling at an angle that is
oriented upwards. It then flows to the south exterior door along the ceiling. In spring and
summer, a south monsoon occurs, and a reverse indoor flow pattern is observed. This north-south
flow becomes the main stream that drives restroom indoor circulation at the bottom (and along
both sides).

2. In the toilet areas in the men’s and women’s restrooms and the urinal area in the men’s restroom,
if the air flow into these areas forms a circulation pattern in the main stream and the flow speed is
sufficiently high, the air circulation will carry air pollutants from the areas to the top of the space,
where they flow out of the restroom after merging with the main stream. If these conditions are
not satisfied, the air in the areas will stagnate, and the air pollutant concentration will be high.
Under a south wind in summer, the flow at the bottom of the main stream is affected by the
urinal partition board and partition wall and forms a large circulation surrounding the urinal
area. This circulation causes poor ventilation in this area.

3. Based on the ventilation performance analysis using the modified odor removal efficiency (ORE),
we suggest that K-12 school restrooms use window configuration W2 in their north walls (as shown
in Table 4). The opening angle should be set to 45◦ for all seasons.
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The modeling and simulation results are limited to the urban and building morphologies chosen
with the specific wind environments. At other conditions, recommendations given in the paper
may not be applicable. The surroundings would greatly affect the magnitude and direction of
the approaching wind. The interior partition design and layout would also affect the ventilation
performance. Although investigation on other themes (surroundings, outside environments, interior
partitioning, buoyancy effect, link to IAQ studies, etc.) are not what we are exploring in this study but
is worthy of further consideration.
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