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Abstract: The viscosity data of two heavy oil samples X and Y, with asphaltene contents 24.8% w/w
and 18.5% w/w, respectively, were correlated with temperature and pressure using empirical models
and the artificial neural network (ANN) approach. The viscosities of the samples were measured
over a range of temperatures between 70 ◦C and 150 ◦C; and from atmospheric pressure to 7 MPa. It
was found that the viscosity of sample X, at 85 ◦C and atmospheric pressure (0.1 MPa), was 1894 cP
and that it increased to 2787 cP at 7 MPa. At 150 ◦C, the viscosity increased from 28 cP (at 0.1 MPa) to
33 cP at 7 MPa. For sample Y, the viscosity at 70 ◦C and 0.1 MPa increased from 2260 cP to 3022 cP at
7 MPa. At 120 ◦C, the viscosity increased from 65 cP (0.1 MPa) to 71 cP at 7 MPa. Notably, using the
three-parameter empirical models (Mehrotra and Svrcek, 1986 and 1987), the correlation constants
obtained in this study are very close to those that were previously obtained for the Canadian heavy
oil samples. Moreover, compared to other empirical models, statistical analysis shows that the ANN
model has a better predictive accuracy (R2

≈ 1) for the viscosity data of the heavy oil samples used in
this study.
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1. Introduction

Viscosity is a crucial parameter in engineering design and simulation, which is useful in the recovery,
production, and transportation operations of heavy and extra-heavy oils including bitumen [1–7].
In addition, extra-heavy oil (bitumen) exists under pressure in the reservoir [8], and viscosity
affects its mobility and production flow [9,10]. Thus, several efforts have been directed toward the
prediction of the viscosity of bitumen (and of mixtures with solvents) at various temperatures and
pressures [2–4,6–8,11–16].

The three-parameter empirical correlations for the viscosity–temperature–pressure relationship
originally developed for Athabasca and Cold Lake extra-heavy oil (bitumen), which was proposed
by Mehrotra and Svrcek [6,7], are probably the most popular functions that have been applied
for the prediction of the viscosity of compressed bitumen [12,16]. In an extension of the above,
Puttagunta et al. [8] proposed a modification of these correlations for the prediction of a new set of
viscosity data for various bitumen samples obtained from Canadian heavy oil deposits over a range of
temperatures between 20 ◦C and 120 ◦C and pressures between 0.1 MPa and 18 MPa. Other reported
functions for the prediction of viscosity of extra-heavy oil at different temperatures and pressures
include those that were used by Appeldorn [17], Alade et al. [14], Farobie et al. [18], and Barus [19]
that have been reviewed elsewhere in the literature [12,16].
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In recent times, artificial neural networks (ANNs) have been widely used in various physical
sciences and engineering applications as a tool for estimating the nonlinear relationship between
the input and output data due to their ability to approximate arbitrary nonlinear functions [20–22].
As illustrated in Figure 1, the operating mechanism and/or information processing methodology of
ANNs are believed to be inspired by the working process of the human brain; thus, they are capable of
learning from complex interrelationships between dependent and independent variables [18,21–24].
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Figure 1. A typical schematic of computational neuron adopted from a biological neuron (source:
adapted from Farobie et al. [18]).

In addition, an ANN represents a quick and efficient method to modeling the mathematical
relationships between the independent and dependent variables of a process [25–27]. Moreover, using
an ANN tool offers a number of advantages over the mechanistic models including the non-requirement
of the mathematical description of the phenomena involved. The technique has also been found useful
in solving various problems in different aspects of the petroleum industry [28–36].

The present effort aims at the viscosity modeling of extra-heavy oil using selected empirical
functions and an ANN tool with the main interest in validating the models and establishing their
accuracy for predicting viscosity at different temperatures and pressures compared to the ANN
prediction tool.

2. Materials and Methods

2.1. Materials

The bitumen samples used in this study were obtained from two different locations within the
bitumen belt in Ondo State, Southwest Nigeria, namely, Agbabu (sample X) at latitudes of 6◦ 39′

and 40’ N and longitudes of 4◦ 53′ and 25′ E and Loda (sample Y) at latitudes of 5◦ 45′ and 5◦ 50′

N and longitudes of 4◦ 00′ and 4◦ 20′ East. The Agbabu bitumen sample was a semi-solid extra
heavy oil which was scooped from an uncapped borehole. The sample to be used for the experiment
was dewatered by heating briefly in an environment-controlled oven (OFW-300B, Ettas, AS-ONE,
Tokyo, Japan) to liberate the free water content. Drying was done at 60 ◦C for 10 min in a container
purged with nitrogen gas. In the case of the Loda sample, bitumen was extracted from the outcrop
using toluene. The toluene was then removed by evaporation in the OFW-300B oven at 50 ◦C and
continuously weighed until the weight loss was negligible. As detailed in Table 1, the physico-chemical
properties of the samples are available elsewhere in the literature [37].
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Table 1. Properties of Nigerian oil sands and bitumen. API.

Properties X Y

Bitumen content (% w/w) 83.42 45.75
Water content (% w/w) 15.14 33.48
Mineral matter (% w/w) 1.44 20.76

Asphaltene (% w/w) 24.83 18.50
Molecular mass (kg/mol) 748 -

Specific gravity (S.G. 25 ◦C/25 ◦C) 1.02 1.01
API gravity 7.2 8.6

Source: Adebiyi and Omode [37].

2.2. Methodology

2.2.1. Measurement of Viscosity

The viscosity of the samples was measured at different temperatures and pressures using a high
pressure and temperature Viscopro2000 Cambridge viscometer (Model SPL372, PAC, Houston, TX,
USA) which is capable of measuring viscosity in the range of 0.2 mPas to 20,000 cP and at a maximum
temperature and pressure of 190 ◦C and 7 MPa, respectively (see Figure 2). The operating principle
is simply such that the instrument expresses the dynamic viscosity as a function of distance and
time taken by the piston to move through the chamber. Temperature was measured with a platinum
resistance temperature detector (RTD) mounted at the base of the chamber. About 10 mL of heavy
oil sample was fed into the sample container and was pushed to the sensor. The system was heated
to increase the temperature at intervals of 5 ◦C using the environment-controlled oven, and pressure
was increased using nitrogen gas. The viscosity of sample X with 24% w/w asphaltene content was
measured over a range of temperatures between 85 ◦C and 150 ◦C and a range of pressures between
atmospheric pressure and 7 MPa. Similarly, sample Y (18.5% w/w asphaltene) was measured over the
same range of pressure at temperatures between 70 ◦C and 120 ◦C and a range of pressures between
atmospheric pressure and 7 MPa.
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2.2.2. Viscosity Modeling

The viscosity data of the samples were fitted to the selected viscosity correlations. These include
the following:

Power law function, Alade et al. [14]:

µ = νTθP∅ (1)
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where µ (cP) is the viscosity at temperature T (◦C) and pressure P (mPa). The constants v, θ, and ∅ are
the system-specific empirical parameters.

Exponential function, Barus model [15,19]:

µp

µpr
= exp(β∆P) (2)

where µpr is the viscosity of compressed bitumen at reference or atmospheric pressure (Pr) and µp is
the viscosity of compressed bitumen at a particular pressure (P). The pressure difference ∆P = P− Pr.

The pressure effectivity constant, β (piezoviscous coefficient), is related to the temperature using
an exponential Equation:

β = exp
(
x1 + x2T + x3T2

)
where x1, x2, and x3 are the constants.

Empirical correlations previously developed for the Cold Lake and Athabasca bitumen, Mehrotra
and Svrcek [6,7]:

ln(µ) = exp(a1 + a2lnT) + a3P (3)

lnln(µ) = (a1 + a2lnT) + a3P (4)

where µ (cP) is the viscosity at temperature T (◦C) and pressure P (mPa). The constants a1, a2, and a3

are the system-specific empirical parameters.

2.2.3. Development of the ANN Model

Essentially, in the ANN modeling, the neurons are connected via a connection link with an
individual link having a weight that is multiplied with a transmitted signal in the network. The output
of the network is determined by an activation function such as the hyperbolic tangent sigmoid function
(tansig—Equation (5)), which is used for a nonlinear approximation.

tansig(n) =
2

1 + e(−2n)
− 1 (5)

For n number of nodes, a simplified expression relating the input xr to the output nj is given in
Equation (6).

n j = f
(∑n

r = 1
w jrxr + b j

)
(6)

In the above expression, the weighting coefficient (wjr) is applied to weaken or strengthen the
input signals into each neuron. The biases (bj) are activation thresholds added to the production of
inputs and their particular weight coefficients. The transfer or activation function shows the net output
of each neuron.

In this study, a multilayer feedforward neural network having temperature and pressure as the
input variables and viscosity as the output variable was implemented using the Neural Network
Toolbox in MATLAB (MATLAB 2016b, The Mathworks, Inc., Natick, MA, USA). The feedforward neural
network utilizes the Levenberg–Marquardt (LM) back propagation-learning algorithm. This learning
rule is an error minimization technique with backward error propagation (see Figure S1, Supplementary
Materials). The architecture of the ANN model is presented in Figure S2, (see Supplementary Materials).
For better performance, the input and output data were normalized between 0 and 1 using Equation (7).
The primary application of the LM algorithm is in the least-squares curve-fitting problem where it
has been primarily adopted as a standard technique. The Levenberg–Marquardt algorithm combines
two minimization methods: the gradient descent method and the Gauss–Newton method. It has



Energies 2019, 12, 2390 5 of 13

therefore been widely adopted as a training algorithm in the MATLAB ANN modeling due to its better
performance in terms of accuracy and speed compared to other training algorithms:

µnorm =
µac

µmax
(7)

where µnorm is the normalized value of viscosity, µac is any value of the viscosity, and µmax is the
maximum value of the viscosity.

2.2.4. Statistical Error Analysis

The accuracy of the empirical models as well as the ANN was evaluated using the statistical
parameters including the percentage deviation of error (%AAD), the root mean square error (RMSE),
and the coefficient of determination (R2), Equations (8)–(10), respectively. The arithmetic average of
the absolute values of the relative errors (%AAD) is an indication of the accuracy of the model. A low
value of %AAD shows better correlation and lower error for the predicted values of viscosity. The
RMSE is a measure of similar performance as indicated by the %AAD. The coefficient of determination
(R2) is a measure of the precision of fit of the data. The maximum value of the R2 is unity, and a high
value indicates a high degree of agreement between the experimental and predicted viscosities.

%AAD =
100
Nd

∑Nd

i = 1

∣∣∣∣∣∣µexp − µcal

µexp

∣∣∣∣∣∣ (8)

RMSE =

√
1

Nd

∑
i = 1

(
µexp − µcal

)2
(9)

R2 = 1−

∑Nd
i = 1

(
µexp − µcal

)2

∑Nd
i = 1(µmean − µcal)

2
(10)

3. Results and Discussion

3.1. Viscosity Data of the Oil Samples

The viscosity data for the X and Y samples measured at different temperatures and pressures
are presented in Table 2. They show clearly that the viscosity decreases with increasing temperature
at constant pressure, as expected. In other words, the viscosity increases with increasing pressure
at constant temperature. However, the magnitude of increase in viscosity with pressure decreases
slightly as the temperature increases. In addition, from the susceptibly due to the higher asphaltene
content of sample X (see Table 1), it can be observed that the viscosity is higher than that of sample Y.
Specifically, the viscosity of sample X, at 85 ◦C and atmospheric pressure (0.1 MPa), was observed as
1894 cP, and it increased to 2787 cP at 7 MPa. At 150 ◦C, the viscosity increased from 28 cP (at 0.1 MPa)
to 33 cP at 7 MPa.

Table 2. Correlation constants for the calculated viscosities of the oil samples.

Bitumen Samples X Y

a1 a2 a3 a1 a2 a3

Mehrotra and Svrcek I 24.359 −3.797 0.047 22.074 −3.430 0.025
Mehrotra and Svrcek II 23.651 −3.678 0.008 21.759 −3.376 0.004

v θ ∅ v θ ∅

Power law 3.47 × 1015 −6.326 0.074 2.3942 × 1013 −5.404 0.039
x1 x2 x3 x1 x2 x3

Barus (1893) −33.7638 0.55163 −0.00242 −0.72303 −0.04151 0.000116
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For sample Y, the viscosity at 70 ◦C and 0.1 MPa increased from 2260 cP to 3022 cP at 7 MPa. At
120 ◦C, the viscosity increased from 65 cP (0.1 MPa) to 71 mPas at 7 MPa. Furthermore, the viscosity
temperature profiles (at atmospheric pressure) of the samples are compared in Figure 3. The figure
ultimately shows that the data can be perfectly fitted (R2

≈ 1) using the power law function (µ = αTˆβ),
where α and β are the empirical constants (sample X: α = 2.93 × 1015 and β = −6.33; sample Y:
α = 1.68 × 1013 and β = −5.35).
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3.2. Viscosity–Temperature–Pressure (V-T-P) Modelling

The major objective of this study is to investigate the efficiency of available empirical models,
namely, the power law (Equation (1)), the Barus exponential function (Equation (2)), and the
three-parameter empirical functions (Equations (3) and (4)) compared to the artificial neural network
(ANN) model in predicting viscosity of the samples.

The experimental and calculated viscosity data using Equations (1)–(4) and the ANN are
presented in Figures 4–8, respectively (the plotted viscosity values and the error values are available
in the supplementary information: see Table S1a,b, Supplementary Materials, for the plotted
viscosity values and Table S2a,b, Supplementary Materials, for the error values). The correlation
constants for the models are presented in Table 2. The most popularly reported correlations for
the viscosity–temperature–pressure relationships of bitumen are the three-parameter empirical
Equations [6,7] developed for Canadian bitumen. Thus, the correlation constants for the three
parameter models obtained in this work are compared with those that have been reported for
Canadian bitumen.

From Table 2, for sample X (24.8% w/w asphaltene), the parameters a1, a2, and a3 are 24.359, −3.797,
and 0.047, respectively, using Equation (3) (Mehrotra and Svrcek, 1986). Then, using Equation (4),
the values are 23.651, 3.678, and 0.008, respectively. The average absolute percent deviation (%AAD)
absolute is 7.1712 and 7.078, for Equations (3) and (4), respectively. In the case of sample Y (18.5%
w/w asphaltene), the values are relatively lower compared to sample X. These are 22.074, −3.430, and
0.025, respectively, using Equation (3); and from Equation (4), the values are 21.759, −3.376, and 0.004,
respectively. The average absolute percent deviation (%AAD) = is 2.7183 and 1.8713, for Equations (3)
and (4), respectively. As mentioned above, lower values of correlation constants were obtained for
sample Y (which has lower viscosity) compared to sample X. With these observations, we can agree
with the previous reports by Mehrotra and Svrcek [7] that the compression of lighter extra-heavy oil or
bitumen yielded a slightly smaller increase in viscosity compared to the heavier one.
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Moreover, the correlation constants reported above closely compared with the previous values
reported for the Canadian bitumen samples [2,3,6,7]. Mehrotra and Svrcek [6], on the correlation of
compressed Athabasca bitumen over a range of temperatures between 40 and 120 ◦C and pressures 0.1
MPa and 10 MPa, reported the parameters a1, a2, and a3 as 23.4292, −3.6772, and 0.0345755, respectively,
using Equation (3) (%AAD = 2.8). From Equation (4), the values were reported as 22.8515, −3.5784,
and 0.005119, respectively, (%AAD = 2.8). Similarly, Mehrotra and Svrcek [7], on the correlation of
compressed Cold Lake bitumen over the same ranges of temperatures and pressures, reported that
the parameters a1, a2, and a3 were 22.6437, −3.56121, and 0.028779, respectively, using Equation (3)
(%AAD = 2.2). From Equation (4), the values were reported as 22.13520, −3.47381, and 0.004288,
respectively, (%AAD = 2.1). In addition, the duo of Nourozieh et al. [2] and Kariznovi et al. [3] reported
similar correlation constants obtained from their works on the viscosity of compressed Athabasca
bitumen measured over a range of temperatures up to 200 ◦C and pressures up to 10 MPa. Using
Equation (3), for three different bitumen samples, the parameters a1 ranged between 23.94318 and
25.65193, a2 ranged between −4.04208 and −3.76445, while a3 ranged between 0.031101 and 0.040273
(%AAD = 8.4). From Equation (4), the values were between 22.92858 and 24.84525, −3.90450 and
−3.59230, and 0.004704 and 0.007243, for a1, a2, and a3, respectively (%AAD = 3.4–9.2).

Furthermore, the correlation constants obtained from the other models including the ANN are
available in Table 3. The statistical parameter to compare the accuracy of the correlations to predict
the viscosity of the bitumen samples within the conditions of pressure and temperature operated are
presented in Table 3. Most notably, compared to the other models, the ANN model gives the least error
values calculated as %AAD of 2.4385 and 0.6609 for samples X and Y, respectively. From the other
models, the values of %AAD range between 1.8713 and 7.1712. In addition, using the ANN, the values
of RMSE were calculated as 16.4611 and 5.3377 for X and Y, respectively, while the values of RMSE
calculated from other models range between 44.584 and 161.374. Similarly, the highest coefficient of
determination, R2 = 0.9995, was calculated for X and R2 = 0.9999 for Y using the ANN compared to the
other models.
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For reference purposes, the ANN regression plots for sample X is presented in Figure 9; and as
shown in Figure 10, the best validation performance is 3.1428 × 10−6. Similarly, for sample Y, the ANN
regression plot is presented in Figure 11; and Figure 12 is the best validation performance (5.9684 × 10−6).

Table 3. Comparison of statistical parameters for the correlations.

Model Mehrotra and Svrcek I Mehrotra and Svrcek II Power Function Barus Function ANN Model

Bitumen Sample X Y X Y X Y X Y X Y

R2 0.9886 0.9937 0.9855 0.9942 0.9830 0.9943 0.9331 0.9968 0.9995 0.9999
RMSE 71.6074 60.1350 81.2810 57.7763 84.3289 57.3053 161.3737 44.5842 16.4611 5.3377
%AAD 7.1712 2.7183 7.0783 1.8713 7.5396 1.8898 7.6811 2.5827 2.4385 0.6609
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Figure 10. Best validation performance (for sample X).
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4. Conclusions

The viscosity data of two bitumen samples X and Y, with asphaltene contents 24.8% w/w and
18.6% w/w, respectively, were measured over a range of temperatures between 70 ◦C and 150 ◦C and
a range of pressures between atmospheric pressure and 7 MPa. The viscosity data were fitted to
empirical models including the three-parameter models developed for Canadian bitumen (Mehrotra
and Svrcek, 1986 and 1987). The data were found to fit adequately to these models at acceptable levels
of statistical indications. Moreover, compared to the empirical models, statistical analysis confirmed
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the superiority of the ANN approach for a better prediction of the viscosity data within the limit of
conditions operated in this study.
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