
energies

Article

Power Control and Fault Ride-Through Capability
Analysis of Cascaded Star-Connected SVG under
Asymmetrical Voltage Conditions

Muxuan Xiao, Feng Wang, Zhixing He *, Honglin Ouyang *, Renyifan Hao and Qianming Xu

National Electric Power Conversion and Control Engineering Technology Research Center, Hunan University,
Changsha 410082, China; xiaomuxuan@hnu.edu.cn (M.X.); wang_feng1994@126.com (F.W.);
hryf0315@sina.com (R.H.); hnuxqm@foxmail.com (Q.X.)
* Correspondence: hezhixing@hnu.edu.cn or hezhixingmail@163.com (Z.H.);

oyhl1405.ouyang@vip.sina.com (H.O.); Tel.: +86-731-8882-3964 (Z.H.)

Received: 8 May 2019; Accepted: 14 June 2019; Published: 19 June 2019
����������
�������

Abstract: The cascaded H-bridge static var generator (SVG) has been employed to provide reactive
power and regulate grid voltages for many years because of its good modularity, easy scalability,
and improved harmonic performance. A novel cluster-balancing power control method combining
negative-sequence currents and zero-sequence voltage is proposed to redistribute the unbalanced
active powers and eliminate the power oscillation under asymmetrical conditions. Simultaneously,
the dynamic performance of the SVG power balance control can be improved under asymmetrical
conditions with the zero-sequence voltage expression derived in this paper. On the basis of the
proposed method, the fault ride through capability of star-connected SVG under asymmetrical
conditions is compared among active power oscillation elimination (APOE), reactive power oscillation
elimination (RPOE), and balanced positive sequence current (BPSC) injection references calculation
strategies from the perspective of the zero-sequence voltage, maximum phase voltage, and maximum
phase current. The method provides the theoretical reference for power control under asymmetric
conditions and the analysis results show that under asymmetrical conditions, the current of BPSC
is minimal and symmetrical, while the RPOE has the least voltage and no zero- sequence voltage
needs to be injected. Finally, the results of simulation and experiment have been given to verify the
theoretical studies.

Keywords: star-connected SVG; asymmetric voltage; power balance; power oscillation elimination;
zero sequence voltage injection; fault ride through capability

1. Introduction

With the development of renewable energy sources and distributed generations, more and more
photovoltaic and wind power plants are connected to the power grid [1–3]. The use of renewable
energy can reduce environmental pollution and system losses, but it also brings a series of power
quality problems, such as voltage drop and flicker, current harmonic pollution, and three-phase
unbalance, which threaten the safety and economic operation of the power system [4–6]. To solve
these problems, reactive power and grid voltage support becoming more crucial [7,8]. The static var
generator (SVG) is an effective solution to supply reactive power for power systems to control the
power factor and regulate the grid voltage. The SVG based on a cascaded multi-level structure is one
of the most effective power quality solutions in high-voltage and high-capacity applications, due to
its advantages of modular structure, fast reactive power adjustment, transformer-less, and desirable
output performance [9–13].
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Although cascaded multilevel structure has the advantages of high voltage capacity and low
switching frequency [14,15], the cascaded SVG has no common DC bus and the DC-link capacitor of
each H-bridge module is separate, the power balance of each H-bridge module and each phase becomes
a critical issue, especially under asymmetrical voltage conditions. Generally, the three-phase cascaded
SVG has two typical structures: the cascade H-bridge star-connection and delta-connection [16].
The star-connection SVG are rated at phase voltage of the connected grid, it has fewer modules
compared to the delta-connected structure, and its virtual neutral point could be used to inject
zero-sequence voltage to maintain the inter-phase power balance. The study of this paper will focus
on the star-connected SVG.

Many researchers have discussed and explored the control and operation methods of star-connected
cascaded SVG. Power balancing is one of the most critical issues of cascaded SVG. Generally,
a hierarchical balancing control strategy is the main approach to deal with this issue, the hierarchical
strategy consists of three cascaded loops, namely, overall balancing control, cluster-balancing control and
sub-module balancing control. Among the three cascaded voltage control loops, the cluster-balancing
control is most complicated and crucial considering that the active power of each phase is not only
related to the difference of sub-module but also the unsatisfactory states, such as asymmetrical grid
voltages or the unbalance of phase currents. Several investigations have been carried out for the
cluster-balancing control methods. Generally, those methods can be arranged into two categories: the
zero-sequence voltage injection and the negative-sequence current injection. Zero-sequence voltage
injection was introduced to balance power by the virtual neutral point in [13,17–20]. In Reference [18],
the zero-sequence voltage injection technique was used to achieve the redistribution of the uneven active
power when the SVG provided negative sequence currents to compensate for the unbalanced currents
caused by an unbalanced load, while the positive sequence current and asymmetrical grid voltages
were not discussed, which could have an influence on the cluster voltage balancing control. To improve
the voltage balancing control performance, a general solution for the zero-sequence voltage considering
the negative-sequence voltage was provided in References [13,19,20]. In Reference [17], a simplified
zero-sequence voltage calculation method is proposed sine the calculation, which derived from the
equilibrium of the active power for each phase cluster, is quite complicated in the form of trigonometric
function. Further, the ability of cascaded star-connected SVG to exchange negative-sequence current
with grid was investigated based on the zero-sequence voltage expression in Reference [21].

In References [22,23], negative-sequence current injection method was proposed to balance the
inter-phase power. Since both the negative sequence current and voltage are used to transfer the
unbalanced active power of three phases, this method has better power regulation capability. However,
the negative sequence current would affect the power quality and grid voltage. The average power
balancing control was achieved by introducing the negative-sequence current in Reference [24], and
it showed that the star-connected SVG had a larger operation area with negative-sequence current
injection under the grid fault condition.

However, little attention has been paid to the reactive power control of star-connected SVG under
asymmetrical voltage conditions. Considering the asymmetrical conditions, SVG has several power
control strategies with different negative-sequence current references, include active power oscillation
elimination (APOE), reactive power oscillation elimination (RPOE) and balanced positive sequence
current (BPSC). Different negative-sequence current references need different zero-sequence voltages,
then, the reactive power support capacity of SVG varies with different power control strategies.
Therefore, it is essential necessary to investigate the reactive power control method and reactive power
support capability of cascaded star-connected SVG under asymmetrical voltage conditions. While,
the current research has not yet investigated the fault ride through capability of star-connected SVG
under asymmetrical conditions from the perspective of the zero-sequence voltage, the maximum phase
voltage and the maximum phase current.

In this paper, the reactive power control strategies of the star-connected SVG under asymmetrical
grid voltage conditions are investigated. Negative-sequence currents and zero-sequence voltage are
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combined to keep the inter-phase power balancing and eliminate the active power or reactive power
oscillation. On the basis of this, the fault ride-through capability of a star-connected SVG under
asymmetrical conditions is investigated, which could provide the theoretical reference for power
control under asymmetric conditions. This paper is organized as follows: The system configuration is
introduced in Section 2. The inter-phase voltage balancing control method is proposed by injecting
zero-sequence voltage in the dq frame in Section 3. The fault ride-through capability of the star-connected
SVG under asymmetrical conditions in three strategies is compared in Section 4. Simulation and
experiment results are offered to verify the proposed method in Section 5. Finally, conclusions are
drawn in Section 6.

2. System Configuration

The typical star-connected SVG topology, as shown in Figure 1, is composed of a cascade of n
sub-module units. uaO, ubO, ucO and ia, ib, ic are phase voltage and phase current of grid side, Lg is the
grid inductance, L is the AC inductor filter. N is the neutral point of star-connected SVG, uNO is the
zero-sequence voltage, and uaN, ubN, and ucN are the output voltages.
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Figure 1. Topology of the star-connected SVG.

According to the Kirchhoff’s current law:
(
L + Lg

)
dia
dt = ua − uaN(

L + Lg
) dib

dt = ub − ubN(
L + Lg

)
dic
dt = uc − ucN

(1)

Assuming that the DC capacitor voltage of three phases are Udca, Udcb, and Udcc, the expressions
of the three-phase energies are obtained according to the energy equations:

d
dt

(
1
2 CNU2

dca

)
= Pa = uaN · ia

d
dt

(
1
2 CNU2

dcb

)
= Pb = ubN · ib

d
dt

(
1
2 CNU2

dcc

)
= Pc = ucN · ic

(2)
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where Pa, Pb, and Pc are the powers of three phase. the instantaneous grid side voltages under
asymmetrical voltage conditions can be defined as:

ua

ub
uc

 =


U+ sin(ωt + ϕ+) + U− sin(ωt + ϕ−)
U+ sin(ωt− 2

3π+ ϕ+) + U− sin(ωt + 2
3π+ ϕ−)

U+ sin(ωt + 2
3π+ ϕ+) + U− sin(ωt− 2

3π+ ϕ−)

 (3)

where U+ and U− are the amplitude of positive sequence voltage and negative sequence voltage, ϕ+

and ϕ− are phase angle of positive sequence voltage and negative sequence voltage. The positive and
negative sequence voltages in the dq frame can be expressed as:{

u+ = u+
d + ju+

q
u− = u−d + ju−q

(4)

where udq
+ and udq

− are the dq components of positive-sequence voltage and negative-sequence voltage
respectively. Considering the unbalanced phase currents, the positive and negative-sequence currents
of phase currents can be expressed as: {

i+ = i+d + ji+q
i− = i−d + ji−q

(5)

where idq
+ and idq

− are the dq components of positive-sequence currents and negative-sequence
currents respectively. Assuming uq

+=0, based on Equations (3) and (4), phase voltage phasors can be
expressed as: 

ua =
(
u+

d + u−d
)
+ j

(
u−q

)
ub =

(
−

1
2 u+

d −
1
2 u−d −

√
3

2 u−q
)
+ j

(
−

√
3

2 u+
d +

√
3

2 u−d −
1
2 u−q

)
uc =

(
−

1
2 u+

d −
1
2 u−d +

√
3

2 u−q
)
+ j

(
+
√

3
2 u+

d −
√

3
2 u−d −

1
2 u−q

) (6)

Similarly, phase currents phasors can be expressed as:
ia =

(
i+d + i−d

)
+ j

(
i+q + i−q

)
ib =

(
−

1
2 i+d −

1
2 i−d +

√
3

2 i+q −
√

3
2 i−q

)
+ j

(
−

√
3

2 i+d +
√

3
2 i−d −

1
2 i+q −

1
2 i−q

)
ic =

(
−

1
2 i+d −

1
2 i−d −

√
3

2 i+q +
√

3
2 i−q

)
+ j

( √
3

2 i+d −
√

3
2 i−d −

1
2 i+q −

1
2 i−q

) (7)

Neglecting the active power loss caused by the parasitic resistance of inductor, the active power
in the abc frame can be obtained as follows:

pa =
1
2

(
u+

d + u−d
)
i+d + 1

2

(
u+

d + u−d
)
i−d + 1

2 u−q i+q + 1
2 u−q i−q

pb =
(

1
2 u+

d −
1
4 u−d +

√
3

4 u−q
)
i+d +

(
−

1
4 u+

d + 1
2 u−d

)
i−d +

(
−

√
3

4 u−d −
1
4 u−q

)
i+q +

( √
3

4 u+
d + 1
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)
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pc =
(

1
2 u+

d −
1
4 u−d −

√
3

4 u−q
)
i+d +

(
−

1
4 u+

d + 1
2 u−d

)
i−d +

( √
3

4 u−d −
1
4 u−q

)
i+q +

(
−

√
3

4 u+
d + 1

2 u−q
)
i−q

(8)

Applying the αβ transformation into Equation (8):
pα
pβ
p0

 =
√

2
3


1 −

1
2 −

1
2

0
√

3
2 −

√
3

2
1
2

1
2

1
2




pa

pb
pc

 (9)
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3. Power Balance Control under Asymmetrical Voltage Conditions

3.1. Zero-Sequence Voltage Derivation

Since the DC bus capacitor of cascaded star-connected SVG is independent in each phase, from
Equation (8), it can be seen that the active power generated by the asymmetric voltages and currents
is unbalanced, which will cause unbalanced capacitor voltages. Zero-sequence voltage injection
can redistribute the active powers by adjusting the position of the virtual neutral point. Figure 2
shows phasor diagram of star-connected SVG. Phase voltage and current phasors contain positive and
negative-sequence components. Without zero-sequence voltage, the N and O are coincident, while
the voltage phasors UaO, UbO, and UcO are not perpendicular to the current phasors Ia, Ib, and Ic in
three phases. Under this condition, the active power of three phases caused by the phase voltages
and currents are not zero and unbalanced. Zero-sequence voltage can be employed to redistribute the
unbalanced active power. After the zero-sequence voltage uNO is injected, the voltage phasors UaN,
UbN, and UcN become perpendicular to the current phasors Ia, Ib, and Ic, as shown in Figure 2 and the
active powers are rebalanced.
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In order to simplify the calculation, power analysis is performed in the αβ coordinate system.
According to Equations (9), after zero-sequence voltage is injected, the active power in the αβ frame
can be expressed as:

[
p fα
p fβ

]
=

√
2
3

 1 −
1
2 −

1
2

0
√

3
2 −

√
3

2




pa + pa0

pb + pb0
pc + pc0

 =
[

pα
pβ

]
+

[
pα0

pβ0

]
(10)

where pfα and pfβ are three phase active power components in the α-axis and β-axis, pα0 and pβ0 are the
active power components generated by the zero-sequence voltage in the α-axis and β-axis:[

pα0

pβ0

]
=

[
p fα
p fβ

]
−

[
pα
pβ

]
(11)

The inter-phase power balance control based on zero-sequence voltage injection is illustrated in
Figure 3. The unbalance of DC voltages in the αβ coordinate system is used as a feedback signal to
obtain the αβ axis power adjustment through the proportional-integral PI controller. Additionally, the
active power components produced by the phase voltages and currents are introduced as the power
feedforward to improve the dynamic performance of power balance control.
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Setting zero-sequence voltage phasor as:

uNO = x + jy (12)

Combining Equations (7) and (12), pα0 and pβ0 can be obtained as:
pa0 = 1

2

(
i+d + i−d

)
x + 1

2

(
i+q + i−q

)
y

pb0 =
(
−

1
4 i+d −

1
4 i−d +

√
3

4 i+q −
√

3
4 i−q

)
x +

(
−

√
3

4 i+d +
√

3
4 i−d −

1
4 i+q −

1
4 i−q

)
y

pc0 =
(
−

1
4 i+d −

1
4 i−d −

√
3

4 i+q +
√

3
4 i−q

)
x +

( √
3

4 i+d −
√

3
4 i−d −

1
4 i+q −

1
4 i−q

)
y

(13)

Applying the αβ transformation to Equation (13):

[
pα0

pβ0

]
=

√
2
3

 1 −
1
2 −

1
2

0
√

3
2 −

√
3

2




pa0

pb0
pc0

 =
√

3
8

[
i+d + i−d i+q + i−q
i+q − i−q −i+d + i−d

][
x
y

]
(14)

Combining Equations (11) and (14), the zero-sequence voltage can be derived as:

[
x
y

]
= 1

i+d ·i
+
d −i−d ·i

−

d +i+q ·i
+
q −i−q ·i−q

[
−i+d + i−d −i+q − i−q
−i+q + i−q i+d + i−d

]
[

i−d i+d i+q
i−q −i+q i+d

]
u+

d
u−d
u−q

−
√

8
3

[
P fα
P fβ

] (15)

3.2. Negative-Sequence Current References

In this part, the negative-sequence current references are calculated, three generalized current
references calculation strategies: APOE, RPOE, and BPSC are taken into account. According to
instantaneous reactive power theory, the instantaneous active power and reactive power provided by
SVG under asymmetrical conditions can be expressed as:{

p = P0 + Pc2 cos(2ωt) + Ps2 sin(2ωt)
q = Q0 + Qc2 cos(2ωt) + Qs2 sin(2ωt)

(16)
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According to Equations (6) and (7):

P0 = 3
2

(
u+

d i+d + u−d i−d + u+
q i+q + u−q i−q

)
Pc2 = 3

2

(
u−q i+d + u+

q i−d + u−d i+q + u+
d i−q

)
Ps2 = 3

2

(
u−d i+d + u+

d i−d − u−q i+q − u+
q i−q

)
Q0 = 3

2

(
u+

q i+d + u−q i−d − u+
d i+q − u−d i−q

)
Qc2 = 3

2

(
u−d i+d − u+

d i−d − u−q i+q + u+
q i−q

)
Qs2 = 3

2

(
−u−q i+d + u+

q i−d − u−d i+q + u+
d i−q

)
(17)

where P0 is the average values of instantaneous active, it is always used to compensate the total power
losses, and it is quite small comparing to the reactive power. Q0 is the average values of instantaneous
reactive power, it is always controlled to the reactive power reference. Pc2, Ps2, Qc2, and Qs2 are the
magnitudes of the oscillating terms. Since Equation (17) has four degrees of freedom, then, the resting
ones can be utilized to eliminate the active power or the reactive power oscillation. In fact, there are
many kinds of targets for power control include APOE, RPOE, and BPSC.

In order to eliminate the active power oscillation, the target active power oscillating magnitudes
are set to zero Pc2 = Ps2 = 0, then:

i+d
i+q
i−d
i−q

 =
2
3

P0

A


u+

d
u+

q
−u−d
−u−q

+
2
3

Q0

B


u+

q
−u+

d
−u−q
u−d

 (18)

where A = (ud
+)2
− (ud

−)2 + (uq
+)2
− (uq

−)2, B = (ud
+)2 + (ud

−)2 + (uq
+)2 + (uq

−)2, while SVG only
transmits reactive power, neglecting the average values of instantaneous active P0 and setting Q0 =

Qref, therefore, the phase current references are obtained as:
i+q =

−2Qre f
3B u+

d

i−d =
−2Qre f

3B u−q
i−q =

2Qre f
3B u−d

(19)

To eliminate the reactive power oscillation, the target active power oscillating magnitudes are set
to zero Qc2 = Qs2 = 0: 

i+d
i+q
i−d
i−q

 =
2
3

P0

B


u+

d
u+

q
u−d
u−q

+
2
3

Q0

A


u+

q
−u+

d
u−q
−u−d

 (20)

Similarly, the phase current references are expressed as:
i+q =

−2Qre f
3A u+

d

i−d =
2Qre f

3A u−q
i−q =

−2Qre f
3A u−d

(21)

For the BPSC injection, the negative sequence current references are set to zero. The active and
reactive power oscillating terms are uncontrolled. Therefore, the phase current references can be
expressed as: 

i+q =
−2Qre f

3C u+
d

i−d = 0
i−q = 0

(22)
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where C = (ud
+)2 + (uq

+)2.

3.3. Zero-Sequence Voltage Feed-Forward Reference

Active power balance can be realized by injecting a zero-sequence voltage for a star-connected
SVG. As shown in Equation (15), the zero-sequence voltage is not only related to the positive and
negative-sequence voltage but also determined by the currents. According to the previous analysis,
we can see that the zero-sequence voltage in APOE, RPOE, and BPSC are different. Since the
negative-sequence current references are calculated according the three generalized current references
calculation strategies, the feed-forward zero-sequence voltage reference can be calculated by submitting
the current references into Equation (15).

In APOE, combining Equations (15) and (19), the zero-sequence voltage can be expressed as:
x =

2u+d u+d u−d−2u+d u−d u−d +2u+d u−q u−q
u+d u+d −u−d u−d−u−q u−q

y =
−2u+d u+d u−q −4u+d u−d u−q

u+d u+d −u−d u−d−u−q u−q

(23)

In RPOE, the zero-sequence voltage can be obtained as:{
x = 0
y = 0

(24)

From Equation (24), it can be determined that there is no need to inject a zero-sequence voltage
in RPOE mode. The moral is that the active power generated by the positive-sequence voltage with
negative-sequence current is cancelled out by the one produced by the negative-sequence voltage with
positive-sequence current in each phase.

When in BPSC, the zero-sequence voltage can be simplified as:{
x = u−d
y = −u−q

(25)

3.4. Control Strategy for a Star-Connected SVG

Based on the above analysis, a power control strategy is presented for a star-connected SVG as
described in Figure 4. The power control strategy consists of phase current references calculation,
power balance control and current tracking control. The references of active current id+, id−, and
reactive current iq+, iq−, are calculated by Equations (19), (21), and (22) under different power control
modes. Three parts are included in power balance control: overall power balancing control, inter-phase
power balancing control and inner-phase power balancing control. The overall power balancing
control maintains the summation of all capacitor voltage stable. The inter-phase power balancing
control is achieved by injecting zero-sequence voltage component to redistribute the unbalanced
active powers, as shown in Figure 3. The inner-phase power balancing control maintains the voltage
balance of the sub-modules in each phase, sub-module capacitor voltage error is multiplied by each
phase current synchronization signal after the P controller to obtain the power balancing control
signal. The positive-sequence current component and negative-sequence current component are
controlled separately in decoupled dual synchronous coordinate system. A carrier-phase-shifted PWM
(CPS-PWM) modulation strategy is adopted in this paper.
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4. Fault Ride-Through Capability of a Star-Connected SVG

4.1. Comparison in Maximum Phase Voltage

From the perspective of voltage stress and current stress, the fault ride through capability of SVG
under three power control strategies will be compared and analyzed in following. As we know, the
zero-sequence voltage injection will shift the virtual neutral point, which may cause the phase voltage
to fluctuate, and even exceed a limit value that the SVG can be supplied. Thus, the maximum phase
voltage is compared to analyze the fault ride through capability for the three power control strategies:
APOE, RPOE, and BPSC.

The zero-sequence voltage injected for the three strategies are derived in the previous section,
and the amplitude are shown in Figure 5 with the variation of asymmetrical voltage conditions for
APOE and BPSC, while there is no need to inject for RPOE. From Figure 5, we can conclude that the
zero-sequence voltage in APOE is always higher than BPSC.
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According to the Kirchhoff’s voltage law, the positive and negative-sequence components of
output voltages uaN, ubN, and ucN in the dq frame can be obtained by summing grid voltages and
inductor voltages as follows:[

U+
d

U+
q

]
=

[
u+

d
u+

q

]
+ωL

[
i+q
−i+d

]
,
[

U−d
U−q

]
=

[
u−d
u−q

]
+ωL

[
−i−q
i−d

]
(26)

After injection of zero-sequence voltage, the three-phase voltage can be expressed as:

uxN = uxO + uON (27)

Maximum phase voltage amplitude is defined as:

Umax = max(UaN, UbN, UcN) (28)

where UaN, UbN, and UcN are three phase voltage amplitudes. Combining Equations (6) and (28), the
maximum phase voltage amplitude can be calculated as:

UaN =

√(
U+

d + U−d + ud0

)2
+

(
U+

q + U−q + uq0
)2

UbN =

√(
−

1
2 U+

d −
1
2 U−d +

√
3

2 U+
q −

√
3

2 U−q + ud0

)2
+

(
−

√
3

2 U+
d +

√
3

2 U−d −
1
2 U+

q −
1
2 U−q + uq0

)2

UcN =

√(
−

1
2 U+

d −
1
2 U−d −

√
3

2 U+
q +

√
3

2 U−q + ud0

)2
+

( √
3

2 U+
d −

√
3

2 U−d −
1
2 U+

q −
1
2 U−q + uq0

)2

(29)
In order to avoid over modulation, Umax should be satisfied:

Umax ≤MUdcre f (30)

where M is the maximum modulation index, in this paper, the CPS-PWM modulation strategy is used,
and the value of M is 1.

Based on Equations (3) and (30), we can find that the maximum voltage amplitude is affected by
the voltage unbalance factor k and negative sequence voltage phase angle θ. The relationship is as
shown in Figure 6. The maximum voltage amplitude Umax increases as the voltage unbalance factor
increases. Comparing Figure 6a–c, the RPOE can withstand greater voltage unbalance in the stable
range, and the maximum phase voltage amplitudes of the three methods exhibit periodic changes.

Figure 7a,b shows the trend of the maximum phase voltage amplitude varying with the voltage
unbalance factor k when θ is π/3 and 2π/3. It can be seen that with the increase of the voltage unbalance
factor, Umax of the RPOE shows the least upward trend and exceeds the limit value after k = 0.5 in π/3
and k = 0.38 in 2π/3. Moreover, the Umax of APOE is far greater than BPSC when θ is π/3, and SVG is
in the overmodulation state after k = 0.24, while APOE is approximately similar to BPSC when θ is
2π/3, overlapping in k = 0.38. The maximum phase voltage amplitude under three control strategies is
shown in Figure 7c as the variation of θ when k is equal to 0.2. As shown, the maximum incidents
happened when θ is 0, 2π/3, and 4π/3 for APOE, BPSC, and RPOE; by contrast, the minimal demands
happened when θ is π/3, π, and 5π/3 for APOE, RPOE, and BPSC.

4.2. Comparison of the Maximum Phase Current

Since negative-sequence current is employed to achieve inter-phase power balancing and eliminate
power oscillation, the phase currents may exceed the rated value, which will result in abnormal operation
of the SVG and cause over-current protection. While the three power control strategies have different
current values, the three-phase maximum phase current of the three power control strategies is
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compared to analyze the fault ride through capability. The standardized maximum phase current is
normalized as:

Imax,s =
|Imax|∣∣∣Ipu

∣∣∣ (31)

where Ipu = Qref/u+ is the amplitude value of positive-sequence current under symmetrical conditions.
According to Equations (3) and (17), we can conclude that the maximum current amplitude is highly
correlated to the voltage unbalance factor k and the negative sequence voltage phase angle θ. The
relationships are as shown in Figure 8. With the increase of unbalance factor, the maximum current
amplitude of APOE and RPOE increase gradually, which may cause overcurrent problems. In the low
unbalance factor, APOE has larger current value than RPOE, and RPOE has the largest current value in
high unbalance factor condition. The current obtained by BPSC is only related to the positive-sequence
voltage and reactive power reference, so it remains unchanged. Simultaneously, the maximum current
amplitude of the APOE and RPOE change periodically with a period of 2π/3.
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Based on the above analysis, it is known that the fault ride through capability of three power
control strategies, APOE, RPOE, and BPSC, are different. From the zero-sequence voltage point of
view, the RPOE does not need to inject the zero-sequence voltage, and the APOE needs the largest
amplitude. From the perspective of the maximum phase voltage, the APOE voltage stress is the largest
and the RPOE voltage stress is the smallest. In the view of maximum phase current, the current of
BPSC is symmetrical and the current stress of RPOE is the largest.
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5. Simulation and Experiment Results

In order to verify the proposed control strategy, and compare the fault ride through capability in
APOE, RPOE, and BPSC, a star-connected 10 kV/1 Mvar SVG simulation is performed in MATLAB
(R2011b, The MathWorks, Inc, Natick, MA, USA).and an experiment platform is built and verified
with RT-LAB. Parameters of simulation and experiment were listed in Table 1. The circuit structure of
SVG adopted for simulation and experiment shown in Figure 1. And the control strategies used for
simulation and experiment shown in Figure 4.

Table 1. Main parameters of the system.

Parameter Simulation Experiment

The grid line voltage/V 10k 380
DC voltage/V 10k 480

Cascaded number 10 4
AC filter inductor/mH 8 1

DC capacitor/uF 2200 1100
Carrier frequency/kHz 2 8

In the simulation, the negative voltage is injected between 0.3 s and 0.5 s, and its amplitude and
phase angle are set as 816 V and π/6. Under this condition, the unbalance grid voltage factor k is about
10%. Reactive power reference is set as 1 Mvar. The simulation results of the three cases were shown in
Figure 9. The simulation results of APOE are shown in the left side of Figure 9, that for RPOE are shown
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in the middle of Figure 9, and the others are the simulation results of BPSC. The asymmetrical grid
voltages are shown in Figure 9a. The instantaneous active and reactive power of SVG are presented as
Figure 9b and the phase currents of SVG are shown in Figure 9c. It can be seen that the active power
oscillation is eliminated for APOE and the reactive power oscillation is eliminated for RPOE, while the
phase currents are unbalanced both for APOE and RPOE. The phase currents are kept balanced while
both active and reactive powers have oscillation for BPSC. The three phase voltage amplitudes and
zero-sequence voltage of SVG are shown in Figure 9d,e, respectively. The phase voltage amplitude for
APOE had the maximum values because it employed the largest zero-sequence voltage. As shown in
Figure 9f, the capacitor voltage summations of the three-phase are kept balanced with the proposed
control method when the voltages became asymmetrical. Since zero-sequence voltage injection is
introduced in the proposed method, small voltage overshoots occur during the grid voltage dynamic
process, therefore, the proposed method shows good capacitor voltage control performance.
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Table 2 shows the quantitative comparison between analytical results and simulation results
where the amplitude and phase angle of the injected negative voltage are also set as 816 V and π/6.
The analytical result of zero-sequence voltage is obtained from Equations (23)–(25). The analytical
result of maximum voltage is obtained from Equations (3) and (30). The analytical result of maximum
current is obtained from Equations (3) and (17). It can be seen from the Table 2 that analytical results
and simulation results are very closely which verified the effectiveness of the theoretical analysis in
the paper.

Table 2. Comparison between analytical results and simulation results.

Items
APOE RPOE BPSC

Analytical Simulation Analytical Simulation Analytical Simulation

Maximum current 88 A 87 A 90 A 90 A 82 A 82 A
Maximum voltage 10.01 kV 10.06 kV 8.69 kV 8.67 kV 9.37 kV 9.40 kV

Zero-sequence voltage 1.66 kV 1.72 kV 0 0.02 kV 0.82 kV 0.85 kV

The experiment was operated on the RT-LAB device(Opal-RT, Montreal, QC, Canada), the power
devices were implemented in the RT-LAB platform from Opal-RT Technologies, the real control
hardware DSP-TMS320F2812 (Texas Instruments, Dallas, TX, USA) and FPGA-EP2C8 (Altera
Corporation, California, USA) are utilized in the main board to execute the control algorithm.
Experiment results of the system are divided to three columns shown in Figure 10. APOE is shown in
the left, RPOE in the middle, and BPSC in the right. According to the experiment results, comparison
of the three strategies is shown in Table 3.
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Table 3. Comparison of three strategies.

Items APOE RPOE BPSC

Active power No oscillation Oscillation Oscillation
Reactive power Oscillation No oscillation Oscillation
Phase current

Zero-sequence voltage
Unbalanced

58 V
Unbalanced

0 V
Balanced

29 V
Maximum voltage 401 V 355 V 376 V
Maximum current 28.5 A 29.2 A 25.7 A

Figure 10a shows the asymmetrical grid voltages, the voltages become asymmetrical after 5 0ms
after the negative sequence voltage was added. The negative voltage amplitude is set as 30 V and the
angle is set as π/6. Then the unbalanced degree of grid voltage is near 10%. Reactive power reference
is set as 12 Kvar in this experiment.

The instantaneous active power and reactive power for APOE, RPOE, and BPSC of SVG are shown
in Figure 10b. For APOE, the active power component is kept almost constant under asymmetric
conditions, so that the active power oscillation is eliminated for APOE. For RPOE the reactive
power oscillation is eliminated because the reactive power component is kept almost constant under
asymmetric conditions. However, for BPSC both active and reactive powers have oscillations Figure 10c
shows the phase current of SVG, the phase currents are balanced for BPSC, while the phase currents
obtained by APOE and RPOE are asymmetrical, and the phase current amplitude obtained by RPOE has
the largest value while it has minimum values as shown in Table 3. Figure 10d shows the three-phase
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voltage amplitudes of three cases, since the zero-sequence voltage is employed, the three-phase voltage
amplitudes has different values. While, the voltage amplitude for APOE has the maximum values,
which is consistent with the above analysis results. The capacitor voltages of one sub-module in
the three-phase are shown in Figure 10e, capacitor voltages are kept balanced with the proposed
control method even in the asymmetrical voltage conditions, small voltage step are occurred during
the dynamic process. The zero-sequence voltages calculated by the proposed method are shown in
Figure 10f. The zero-sequence voltage for APOE is the largest, while it becomes zero in RPOE.

6. Conclusions

The inter-phase power unbalanced problem of the star-connected SVG under asymmetrical
conditions is investigated. First, the unbalanced active power is analyzed in the αβ frame. Combined
with the phasor analysis, the zero-sequence voltage expression is derived. Then, a power balance
control method based on zero-sequence voltage feed-forward is given. The zero-sequence voltage
expression is calculated directly by the extracted positive and negative sequence voltage direct
component and current references, so that the dynamic performance of the SVG power balance control
can be improved under asymmetrical conditions. On the basis of this, from the perspective of the
zero-sequence voltage, maximum phase voltage and maximum phase current, the fault ride through
capability of star-connected SVG under asymmetrical conditions was compared in three strategies
include APOE, RPOE, and BPSC. The method provides the theoretical reference for power control
under asymmetric conditions. The analysis results show that under asymmetrical conditions, the
current of BPSC is minimal and symmetrical, while the RPOE has the least voltage and no zero-
sequence voltage needs to be injected. Finally, the results of simulation and experiment have been
given to verify the theoretical studies.
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