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Abstract: One of the major challenges facing wind energy at the moment is its dependence on
dispatchable energy sources to match power supply to demand and provide an adequate spinning
reserve. There is no fundamental impediment for this to be done with wind energy when wind
conditions are such that sufficient wind power is available. It is, in fact, common for wind farms to
participate in primary and secondary frequency regulation via droop curves, curtailment, synthetic
inertia, proportional de-loading, and delta control. However, although the literature presents several
approaches to turbine-level control functions of this sort, it is not trivial to extract from it a readily
industrializable set of algorithms. Said extraction, focused on delta control and the addition of our
own contributions, is the purpose of this paper, where we propose an extension of popular torque
and pitch control algorithms, which allows delta control without the wind speed observers used by
other authors.

Keywords: wind turbine; delta control; proportional de-loading; de-rating; active power control;
ancillary services; curtailment

1. Introduction

We are interested in delta control algorithms, as defined by Table 1 in reference to the notation
used by Aho et al. [1], because they are used by several authors for frequency control [2–8]. Given a
de-rating command DRcmd [1], the wind turbine operates with a power reserve given by Table 1.

Table 1. Power reserve levels resulting from the de-rating command modes in [1].

Control Function Name (Based on [9]) Mode in [1] Power Reserve Notation in [1]

Power limitation 1 max [0, Pav − Pr] Pr = DRcmdPn

Constant delta control 2 min [Pav, Pδ] Pδ = (1− DRcmd) Pn

Proportional delta control 3 δPav δ = (1− DRcmd)

In Mode 1, a power limit proportional to rated power Pn is set: Pr = DRcmdPn. In practical
terms, available power Pav is the power the turbine can generate in normal operation given the wind
conditions. If Pav is larger than Pr, a power reserve of Pav − Pr exists. However, said reserve is not
controlled, and therefore, Mode 1 is not normally referred to as delta control [9]. We call it power
limitation, after Kristoffersen [9].

In Mode 2, the power reserve is actively controlled so that it remains constant at Pδ =

(1− DRcmd) Pn. Obviously, this is only possible as long as Pav > Pδ. This is referred to by Kristoffersen
as delta control [9]. Since, for a given value of DRcmd, the desired power reserve Pδ is constant in
Mode 2, we call it constant delta control, to distinguish it from Mode 3.

In Mode 3, the power reserve is actively controlled so that it remains proportional to available
power, with factor δ = (1− DRcmd). We therefore call it proportional delta control.
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Proportional delta control has been extensively discussed in the literature. Early works, such
as that of Ramtharan et al. [10], modified the maximum power point tracking (MPPT) generator
speed-torque curve to track a known, sub-optimal power coefficient. This results in operating points
within the turbine’s variable speed range moving to considerably higher speeds, as explained by Aho
et al. [1]. A number of authors have adopted the same approach [11–13] and recognized that the power
reserve is limited by the maximum allowable generator speed. Other authors have proposed a simple
extension to the modified MPPT curve, to achieve proportional delta control via a combination of
generator speed and blade pitch angle modifications [14]. This allows precise control of the tip-speed
ratio λ and the blade pitch angle β at different de-rating command values, which is relevant to turbine
dynamics and loads [14–17]. Its implementation is rather simple, as shown by Figures 1 and 2, where
the two black 1D look-up tables are sufficient. However, as explained in Sections 4.2 and 4.3, methods
based on the MPPT curve are no longer viable when generator speed or torque limits are reached.
Here, we propose an extension to said methods, which overcomes said difficulty. It is also shown by
Figures 1 and 2, in red. Note that it only requires two extra 2D look-up tables for proportional delta
control (Mode 3), both affecting the minimum pitch on Figure 2.

Figure 1. MPPT curve modification for delta control (our extension in red).

Figure 2. Minimum pitch modification for delta control (our extension in red).
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Constant delta control is typically pursued via estimation of available power. This requires
direct measurement of wind speed [18] or estimation thereof [1,19], with suitably slow estimator
dynamics [1]. This may be considered a drawback [20]. However, an alternative exists along the lines
of MPPT curve modification typical of proportional delta control techniques. Janssens et al. used a 2D
look-up table [21], which gave the generator power based on the generator speed and the de-rating
command. This is equivalent to substituting a 2D look-up table for the red one in Figure 1. In Section 5,
we simplify this to a 1D look-up table (as shown in Figure 1) and extend it to allow control over λ

and β, as in proportional delta control (for this, we use the red 1D look-up table in Figure 2). We then
extend it further to overcome generator speed and torque limitations, with the two 2D look-up tables
for constant delta control (Mode 2) in Figure 2.

Section 2 reviews previous work cited here. Section 3 presents the control algorithm we wish
to extend, which we subsequently extend for proportional and constant delta control in Sections 4
and 5, respectively, on a control-region-by-control-region basis, i.e., assuming that operating points
within each region (variable speed and torque, constant speed, constant torque) remain in said region
regardless of the power delta. Since this is not always the case, Section 6 describes the method used
here to produce look-up tables valid for any wind speed. A set of look-up tables thus produced has
been used to carry out the simulations presented in Section 7 as a proof of concept. Further discussion
and a detailed description of the materials and methods follow in Sections 8 and 9, respectively.

2. Literature Review

2.1. Proportional Delta Control

Aho et al. [1] used proportional delta control (Mode 3 in their algorithm) for primary
frequency control. Their technique is based on previous work by Ma and Chowdhury [22] and
Juankorena et al. [23], in which a simple modification of the MPPT curve was proposed. However,
Aho et al. recognized that said precedents ignored the turbine’s speed limitation and that said limitation
is relevant in practice because de-rating causes a considerable increase in generator speed (they give an
example in which, to produce 80% of available power, the turbine accelerates from 1000 to 1500 rpm).
This effectively sets a very restrictive limit on the range of de-rating command values and wind speeds
for which delta control can be achieved with their technique. They consequently made the power
command proportional to available power, thus reducing a delta control problem to a power limitation
problem. They estimated available power with a method by Østergaard et al. [24]. This requires
considerable low-pass filtering, which results in a slow response to changes in wind speed.

Ramtharan et al. [10] also proposed the same MPPT curve modification technique above and
realized the limitation imposed by the turbine’s speed limitation. They consequently applied a
four degree pitch offset in order to maintain a power reserve at the maximum generator speed.
This resulted in a power reserve that was not actively controlled and that was independent of the
de-rating command.

De Almeida et al. [11] also proposed the same MPPT curve modification technique above, in this
case without any consideration of the generator speed limits.

Zertek et al. [16] used proportional delta control to maintain an adequate power reserve for
primary response to frequency events. Their technique was based on an optimization of de-rated
operating points [25], for which they extended previous work [10,11] to modify the pitch angle
systematically, as well as the generator speed. However, they did not consider the generator speed
limits.

Astrain et al. [14] proposed a different optimization of de-rated operating points for a proportional
delta control algorithm, which worked on the same principle as those of Ramtharan et al. [10] and de
Almeida et al. [11]. They did not consider the generator speed limits either.

Vidyanandan and Senroy [12] and Loukarakis et al. [13] used the proportional delta control
method proposed by Ramtharan et al. [10] and de Almeida et al. [11] for primary frequency control
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via a droop curve, and commented briefly on de-rating command limitations posed by the generator
speed limits.

2.2. Constant Delta Control

Aho et al. [1] also used constant delta control (Mode 2 in their algorithm) for primary frequency
control. For this, they needed a wind speed estimation for the MPPT curve modification, as well as for
power limitation at the turbine’s speed limit.

Mirzaei et al. [19] proposed a model predictive control strategy for constant delta control
optimization. This method required knowledge of the wind speed, for which Lio et al. proposed the
use of LiDAR [18].

Zhu et al. [17] proposed a different, load-based delta control optimization at the farm level.
This required the farm controller to set the turbine-level power setpoint based on wind speed.

Janssens et al. [21] proposed a modification of the MPPT curve for constant delta control. It was
based on a simple 2D look-up table. The inputs to it were the desired power reserve and generator
speed. The result was a method very similar to that of Ramtharan et al. [10] or de Almeida et al. [11],
but it resulted in a constant power reserve, independent of the wind speed. Obviously, it suffered from
the same limitations as proportional delta control methods based only on the MPPT curve modification,
i.e., generator speed quickly increased with de-rating, and no reserve was possible once the maximum
generator speed was reached.

3. Torque and Pitch Control

Following Jenkins et al. [26], we consider a base turbine controller with two generator speed
regulators, e.g., PI controllers, one of which modifies the blades’ collective pitch angle, β, while the
other one modifies the generator torque Qe.

The generator speed setpoint for the pitch controller, ωβ, was always the maximum operating
speed, ωmax. The lower pitch angle saturation limit is:

βmin = βδ , (1)

where βδ is chosen to maximize the power coefficient; we use subscript δ, rather than the more usual
“opt” because we will use this torque for delta control in Sections 4 and 5.

On the contrary, the generator speed setpoint for the torque controller, ωq, is switched between
ωmax and the minimum operating speed, ωmin. The choice between the two is made based on the
proximity to the actual generator speed, ω, and the generator torque saturation limits, Qmax and Qmax,
are chosen so that:

Qmax =

{
Pn/ωmax , if ωq = ωmax ,

min [Qδ (ω) , Pn/ωmax] , if ωq = ωmin ,
(2)

Qmin =

{
min [Qδ (ω) , Pn/ωmax] , if ωq = ωmax ,

0, if ωq = ωmin ,
(3)

where Pn is the rated power, while Qδ (ω) is a function of ω, which is chosen to make the tip-speed
ratio converge to its optimal value; again, we used subscript δ rather than “opt”.

Figure 3 shows Pn, Qδ, ωmax and ωmin for two popular reference wind turbines.
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(a) (b)

Figure 3. Generator speed-torque curves of NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

3.1. Operation at Optimal Tip-Speed Ratio

The choice of Qδ (ω) is well established, e.g., in [27]. It is based on the following simple
turbine model:

J
ω̇

b
= Qa − b (Qe + Ql) , (4)

where J is the rotor inertia (including the hub, drivetrain, and generator rotor), b is the gearbox ratio,
Qa is the aerodynamic torque, and Ql is the torque due to mechanical losses.

The available aerodynamic power is:

Pav =
1
2

ρπR2U3Cp
(
λopt, βopt

)
, (5)

where ρ, R, and U are the air density, rotor radius, and wind speed, respectively, while λopt and βopt

are the tip-speed ratio and blade pitch angle, respectively, for which the power coefficient Cp is the
greatest. Operating at β = βopt is trivial; one need only choose βδ = βopt. However, λ cannot be
directly manipulated, or indeed measured, since it is defined as follows:

λ =
Rω

bU
. (6)

When operating at β = βopt, but in general, λ 6= λopt, the aerodynamic torque is:

Qa =
1
2

ρbπR2U3 Cp
(
λ, βopt

)
ω

. (7)

Using (6), we may rewrite (7) thus:

Qa =
1
2

ρπR5 Cp
(
λ, βopt

)
λ3

ω2

b2 . (8)

Note from (4) and (8) that λ = λopt becomes a fixed point if we choose:

Qe =
1
2

ρπR5 Cp
(
λopt, βopt

)
λ3

opt

ω2

b3 −Ql . (9)

Equation (9) is the most common MPPT algorithm for variable-speed wind turbines [26]. It is also
interesting to know whether (4), (8), and (9) lead to λ = λopt being asymptotically stable. To find out,
we use (6) to rewrite (4), (8), and (9) thus [27]:
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λ̇ =
1
2

ρπR4UJ−1λ2

[
Cp
(
λ, βopt

)
λ3 −

Cp
(
λopt, βopt

)
λ3

opt

]
. (10)

We then choose the following Lyapunov function candidate:

L =
(
λ− λopt

)2 . (11)

The derivation of (11) w.r.t. time and substitution of (10) yield:

L̇ = ρπR4UJ−1λ2 (λ− λopt
) [Cp

(
λ, βopt

)
λ3 −

Cp
(
λopt, βopt

)
λ3

opt

]
. (12)

From (12), the fixed point λ = λopt is asymptotically stable if:
Cp(λ,βopt)

λ3 >
Cp(λopt,βopt)

λ3
opt

, for λ < λopt ,

Cp(λ,βopt)
λ3 <

Cp(λopt,βopt)
λ3

opt
, for λ > λopt .

(13)

The fulfillment of these conditions may easily be verified from a turbine’s power coefficient curve,
as shown by Figure 4 for two popular reference turbines.

(a) (b)

Figure 4. Optimal tip-speed ratio stability criterion for NREL 5-MW (a) and DTU 10-MW (b)
reference turbines.

The choice of Qδ (ω) is therefore based on (9), i.e.,

Qδ =
1
2

ρπR5 Cp
(
λopt, βopt

)
λ3

opt

ω2

b3 −Ql . (14)

Note from (2), (3), and (14) that (9) is fulfilled as long as λ = λopt lies within ω ∈ (ωmin, ωmax),
and Qδ < Pn/ωmax, because Qe saturates at min (Qδ, Pn/ωmax).

3.2. Operation at Constant Rotor Speed

Once ωmin or ωmax is reached, it is no longer possible to operate the turbine at λ = λopt.
The tip-speed ratio at which the turbine operates now, λn, is determined by wind speed U, thus:

λn =
Rωn

bU
, (15)

where ωn is either ωmin or ωmax.
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It is still possible, however, to choose the pitch angle, β, which also influences efficiency. We are
therefore interested in finding βopt|λn , the optimal pitch angle for the tip-speed ratio at which we are
forced to operate.

When operating at λ = λn, the aerodynamic torque is:

Qa =
1
2

ρbπR2U3 Cp (λn, β)

ωn
. (16)

In steady state, (4) and (16) become:

Qe =
1
2

ρπR2U3 Cp (λn, β)

ωn
−Ql . (17)

We propose the use of a look-up table giving βopt|λn as a function of Qe, to set the minimum pitch
saturation limit. The choice of βδ is, therefore, made as follows:

βδ = βopt|λn (Qe) (18)

Figure 5 shows the βδ (Qe) curves for two popular reference turbines. To calculate them, we have
used Algorithm 1 for the range of wind speeds between cut-in and rated. As a result, we have two
vectors for each turbine, one with pitch angles and the other with the corresponding torque values.
This constitutes a usable look-up table.

(a) (b)

Figure 5. Optimal minimum pitch angle as a function of generator torque for NREL 5-MW (a) and
DTU-10 MW (b) reference turbines.

Algorithm 1 Calculate the βopt|λn (Qe) look-up table.

1: Choose a wind speed U.

2: From U, calculate λn via (15).

3: From U, λn and ωn, calculate Qe for β = βopt|λn via (17).

3.3. Operation at Constant Generator Torque

Larger, more powerful wind turbines operate at lower rotor speeds and, therefore, at higher
torques. This may result in a turbine’s torque limit being reached before its rotational speed limit,
when operating at the optimal tip-speed ratio. Such is the case, for example, of the DTU 10-MW
reference wind turbine [28], if operated in “constant torque control” mode, as described in [29]. As
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a result, there exists a wind speed range, just below rated, in which the turbine operates at constant
generator torque Pn/ωmax, yet at ω < ωmax and β = βδ. Then, instead of (17), we have:

Pn

ωmax
=

1
2

ρπR2U3 Cp (λ, β)

ω
−Ql . (19)

From (6) and (19),
Cp (λ, β)

λ
= 2b

Pn/ωmax + Ql

ρπR3U2 , (20)

and because the power output is Pnω/ωmax, we are interested in solutions of (20) that maximize
ω and, therefore, λ. Note that this is equivalent to maximizing Cp (λ, β), for every given value of
λ, and therefore, we are interested in using β = βopt|λ, i.e., the optimum pitch angle for a given
tip-speed ratio.

We propose the use of a look-up table giving βopt|λ as a function of ω, to set the minimum pitch.
The choice of βδ is, therefore, made as follows:

βδ = βopt|λ (ω) (21)

Figure 6 shows the βδ (ω) curves for two popular reference turbines. To calculate them, we have
used Algorithm 2 for the range of tip-speed ratios between cut-in and rated. As a result, we have two
vectors for each turbine, one with pitch angles and the other with the corresponding generator speed
values. This constitutes a usable look-up table. Note, from Figure 3a, that the NREL 5-MW reference
turbine does not operate at constant torque, so Figure 6a is constant at βopt for all ω.

(a) (b)

Figure 6. Optimal minimum pitch angle as a function of generator speed for NREL 5-MW (a) and DTU
10-MW (b) reference turbines.

Algorithm 2 Calculate the βopt|λ (ω) look-up table.

1: Choose a tip-speed ratio λ.

2: From λ, calculate wind speed U for β = βopt|λ via (20).

3: From U and λ, calculate ω via (6).

3.4. Operation at Constant Generator Power

Power limitation at rated power is often part of the torque and pitch control described in
Section 3.1. It is simply implemented by modifying (2) and (3) thus [1]:
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Qmax =

{
Pr/ω , if ωq = ωmax ,

min [Qδ (ω) , Pr/ω] , if ωq = ωmin ,
(22)

Qmin =

{
min [Qδ (ω) , Pr/ω] , if ωq = ωmax ,

0 , if ωq = ωmin ,
(23)

where we have generalized Pn to any power setting Pr.
Note that the dynamics are the same as in Section 3.1 for Qδ (ω) < Pr/ω, i.e., at wind speeds

insufficient to reach the power setting. However, at higher wind speeds, we have, instead of (9),

Qe = Pr/ω . (24)

From (4), (6), (7), and (24),

J
b2 ω̇ =

1
2

ρπR2U3 Cp
(
λ, βopt

)
ω

− Pr/ω−Ql . (25)

Equation (25) has a fixed point at ω = ω0 and λ = λ0 = Rω0/bU, which satisfies:

1
2

ρπR2U3Cp
(
λ0, βopt

)
−ω0Ql = Pr . (26)

Note that λ0 > λopt, because, although (26) has another solution at λ1 < λopt, it corresponds to
generator speed ω1, for which Qδ (ω1) < Pr/ω1, and therefore, (24) does not apply.

We are, again, interested in the stability of the fixed point at ω = ω0, so we choose the following
Lyapunov function candidate:

L = (ω−ω0)
2 . (27)

Derivation of (27) w.r.t. time and substitution of (25) yield:

L̇ = 2
ω−ω0

ω

b2

J

[
1
2

ρπR2U3Cp
(
λ, βopt

)
− Pr −Qlω

]
. (28)

From (28), the fixed point ω = ω0 is asymptotically stable if:{
Cp
(
λ, βopt

)
> Cp

(
λ0, βopt

)
, for λ < λ0 ,

Cp
(
λ, βopt

)
< Cp

(
λ0, βopt

)
, for λ > λ0

(29)

and: {
Ql (ω) ≤ Ql (ω0) , for ω < ω0 ,

Ql (ω) ≥ Ql (ω0) , for ω > ω0 .
(30)

Conditions (29) are always satisfied for any λ0 > λopt, and so are normally conditions (30) for
any ω0.

4. Proportional Delta Control

4.1. Proportional Delta Control with Constant Power Coefficient

Proportional delta control at certain wind speeds may easily be accomplished by modifying (14)
thus [14]:

Qδ =
1
2

ρπR5kδ
ω2

b3 −Ql , (31)
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where:

kδ =
Cp (λδ, βδ)

λ3
δ

. (32)

Here, λδ and βδ are such that:

Cp (λδ, βδ)

Cp
(
λopt, βopt

) = 1− δ , (33)

δ being the proportion of the available power to be kept as a reserve. This is implemented via two
look-up tables, giving kδ and βδ, respectively, as a function of δ.

Note that solutions of (33) are generally non-unique, which leaves one degree of freedom for the
choice of λδ and βδ on the basis of criteria other than those discussed here (see, for example, [15]).
Figure 7 shows two different {kδ, βδ} trajectories, over the Cp (λ, β) contour plots of two popular
reference turbines (note that the one on the right coincides exactly with Strategy 3 in [15]). The resulting
kδ (δ) and βδ (δ) look-up tables are shown by Figures 8 and 9, respectively.

(a) (b)

Figure 7. Power coefficients of NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

(a) (b)

Figure 8. kδ (δ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.
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(a) (b)

Figure 9. βδ (δ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

It is possible to prove that (31) leads to operation at λ = λδ the same way that it has been proven
that (14) leads to operation at λ = λopt.

4.2. Proportional Delta Control at Constant Rotor Speed

When, at higher or lower wind speeds, we are constrained to operation at λ = λn, the available
aerodynamic power is:

Pav =
1
2

ρπR2U3Cp

(
λn, βopt|λn

)
. (34)

We would like to choose βδ such that:

Cp (λn, βδ)

Cp

(
λn, βopt|λn

) = 1− δ . (35)

However, we do not know λn. We therefore propose extending the minimum pitch look-up table
method of Section 3.2 to δ > 0, via a two-dimensional look-up table giving βδ as a function of Qe and δ.
Figure 10 shows said tables for two popular reference turbines and the {kδ, βδ} trajectories shown by
Figure 7. To calculate them, we have used Algorithm 3 for the range of wind speeds between cut-in
and rated. As a result, we have two vectors for each turbine, one with de-rating command values
and the other with torque values. We also have a matrix with the corresponding pitch angles. This
constitutes a usable 2D look-up table.

(a) (b)

Figure 10. βδ (Qe, δ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.
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Algorithm 3 Calculate the βδ (Qe, δ) look-up table.

1: Choose a wind speed U.

2: From U, calculate λn via (15).

3: Choose a de-rating command δ.

4: From λn and δ, calculate βδ via (35).

5: From U, λn and ωn, calculate Qe for β = βδ via (17).

Note that the lines corresponding to δ = 0 are the same as those on Figure 5 and that the flat
regions, which correspond to the ωmin < ω < ωmax interval, are as dictated by the βδ (δ) curves
on Figure 9. Note also that the considerations in Section 6 apply here and that Figure 10 has been
produced via the methods described there.

4.3. Proportional Delta Control at Constant Generator Torque

When, at wind speeds just below rated, with some larger wind turbines, we are constrained to
operation at Qe = Pn/ωmax (see Section 3.3), the available aerodynamic power is:

Pav =
1
2

ρπR2U3Cp

(
λ, βopt|λ

)
. (36)

We would like to choose βδ such that:

Cp
(
λQ (1− δ) , βδ

)
λQ (1− δ)

=
Cp

(
λQ, βopt|λQ

)
λQ

, (37)

where λQ is the tip-speed ratio with δ = 0. However, we do not know λQ. We therefore propose
extending the minimum pitch look-up table method of Section 3.3 to δ > 0, via a two-dimensional
look-up table giving βδ as a function of ω and δ. Figure 11 shows said tables for two popular reference
turbines. To calculate them, we have used Algorithm 4 for the range of tip-speed ratios between cut-in
and rated. As a result, we have two vectors for each turbine, one with de-rating command values and
the other with generator speed values. We also have a matrix with the corresponding pitch angles.
This constitutes a usable 2D look-up table.

(a) (b)

Figure 11. βδ (ω, δ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.
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Algorithm 4 Calculate the βδ (ω, δ) look-up table.

1: Choose a tip-speed ratio λ.

2: From λ, calculate wind speed U for β = βopt|λ via (20).

3: From U and λ, calculate ω via (6).

4: Choose a de-rating command δ.

5: Calculate βδ for λQ = λ via (37).

Note that the lines corresponding to δ = 0 are the same as those on Figure 6 and that the flat
regions, which correspond to Qδ < Pn/ωmax, are as dictated by the βδ (δ) curves on Figure 9. Note
also that the considerations in Section 6 apply here and that Figure 11 has been produced via the
methods described there, where the non-flat sections on the left of Figure 11a are explained.

4.4. Proportional Delta Control at Constant Generator Power

For wind speeds above rated, it is necessary to limit Pr to Pn (1− δ).

5. Constant Delta Control

5.1. Constant Delta Control with Variable Rotor Speed and Generator Torque

If we want to keep a constant power, Pδ, as a reserve, the choice of λδ and βδ may appear less
obvious than in Section 4.1, because δ depends on Pav, which is not directly known:

δ = Pδ/Pav . (38)

As discussed in Section 2, this is often approached by means of an estimation of Pav. We do not
discuss the merit of such means. However, a different approach is possible, based solely on a look-up
table like that in Section 4.

Substitute (5) and (38) into (33) to get:

Cp
(
λopt, βopt

)
− Cp (λδ, βδ) =

2Pδ

ρπR2U3 . (39)

Because (39) makes explicit reference to U, it is not directly usable without a measurement or
estimation of the wind speed. We therefore rewrite (39) thus:

Cp
(
λopt, βopt

)
− Cp (λδ, βδ)

λ3 =
2b3Pδ

ρπR5ω3 . (40)

From (40), we would like to choose λδ and βδ so that:

Cp
(
λopt, βopt

)
− Cp (λδ, βδ)

λ3
δ

=
2b3Pδ

ρπR5ω3 . (41)

We therefore propose using two look-up tables, giving kδ and βδ, respectively, as functions of
2b3Pδ/ρπR5ω3. We may then use βδ in (1) and kδ in (31). Figures 12 and 13 show said look-up
tables for two popular reference turbines. To calculate them, we have used Algorithm 5 for the {λδ, βδ}
values on Figure 7. As a result, we have three vectors for each turbine, one with pitch angles, another
with MPPT curve gains, and another with the corresponding values of ratio 2b3Pδ/ρπR5ω3. This
constitutes two usable look-up tables.
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(a) (b)

Figure 12. kδ

(
2b3Pδ

ρπR5ω3

)
tables for NREL 5-MW (a) and DTU-10 MW (b) reference turbines.

(a) (b)

Figure 13. βδ

(
2b3Pδ

ρπR5ω3

)
tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

Algorithm 5 Calculate the kδ

(
2b3Pδ

ρπR5ω3

)
and βδ

(
2b3Pδ

ρπR5ω3

)
look-up tables.

1: Choose a tip-speed ratio λδ and a pitch angle βδ (for example, as in [15]).

2: From λδ and βδ, calculate kδ via (32).

3: From λδ and βδ, calculate 2b3Pδ
ρπR5ω3 via (41).

We are, of course, interested in the dynamic characteristics of (4), (31), and (41), from which we
now get, instead of (10),

λ̇ =
1
2

ρπR4UJ−1λ2

[
Cp (λ, βδ)

λ3 −
Cp (λδ, βδ)

λ3
δ

]
. (42)

There always exist λ0 ≥ λopt and β0 ≥ βopt such that (41) is satisfied for λδ = λ0 and βδ = β0,
so there is a fixed point of (42) at λ = λδ = λ0 and β = βδ = β0. We therefore choose the following
Lyapunov function candidate:

L = (λ− λ0)
2 . (43)
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Derivation w.r.t. time and substitution of (42) yield:

L̇ = ρπR4UJ−1λ2 (λ− λ0)

[
Cp (λ, βδ)

λ3 −
Cp (λδ, βδ)

λ3
δ

]
. (44)

From (44), the fixed point is asymptotically stable if:
Cp(λ,βδ)

λ3 >
Cp(λδ ,βδ)

λ3
δ

, for λ < λ0 ,
Cp(λ,βδ)

λ3 <
Cp(λδ ,βδ)

λ3
δ

, for λ > λ0 .
(45)

Whether or not these conditions are satisfied is determined by the nature of Cp, as shown by
Figure 14 for two popular reference turbines. Note that the fixed points, which correspond with the
crossing of each black line with its red counterpart, follow the trajectories shown by the red lines on
Figure 7, i.e., they move from λopt to around λ = 12, as δ changes from 0 to 1, on Figure 14a, while
they remain at λopt on Figure 14b. Note also that all black lines turn sharply up at lower λ, when the
trajectories on Figure 7 reach Cp = 0.

(a) (b)

Figure 14. Constant delta control stability criterion for NREL 5-MW (a) and DTU 10-MW (b) reference
turbines, with variable generator speed and torque.

5.2. Constant Delta Control at Constant Rotor Speed

When, at higher or lower wind speeds, we are constrained to operation at λ = λn, we would like
to choose βδ so that, instead of (41),

Cp

(
λn, βopt|λn

)
− Cp (λn, βδ)

λ3
n

=
2b3Pδ

ρπR5ω3
n

. (46)

However, we do not know λn. We therefore propose using a two-dimensional look-up table giving
βδ as a function of Qe and Pδ. Figure 15 shows said tables for two popular reference turbines and the
{kδ, βδ} trajectories shown by Figure 7. To calculate them, we have used Algorithm 6 for the range
of wind speeds between cut-in and rated. As a result, we have two vectors for each turbine, one
with de-rating command values and the other with torque values. We also have a matrix with the
corresponding pitch angles. This constitutes a usable 2D look-up table.
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(a) (b)

Figure 15. βδ (Qe, Pδ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

Algorithm 6 Calculate the βδ (Qe, Pδ) look-up table.

1: Choose a wind speed U.

2: From U, calculate λn via (15).

3: Choose a de-rating command Pδ.

4: From λn, Pδ and ωn, calculate βδ via (46).

5: From U, λn and ωn, calculate Qe for β = βδ via (17).

Note that the lines corresponding to Pδ = 0 are the same as those on Figure 5 and that the flat
regions that appeared on Figure 10 are no longer flat on Figure 15. Note also that the considerations in
Section 6 apply here and that Figure 15 has been produced via the methods described there.

5.3. Constant Delta Control at Constant Generator Torque

When, at wind speeds just below rated, with some larger wind turbines, we are constrained to
operation at Qe = Pn/ωmax (see Section 3.3), we would like to choose βδ so that, instead of (37),

Cp

(
λQ

Pav−Pδ
Pav

, βδ

)
λQ

Pav−Pδ
Pav

=
Cp

(
λQ, βopt|λQ

)
λQ

, (47)

where λQ is the tip-speed ratio with δ = 0. However, we do not know λQ or Pav. We therefore propose
extending the minimum pitch look-up table method of Section 3.3 to δ > 0, via a two-dimensional
look-up table giving βδ as a function of ω and Pδ. Figure 16 shows said tables for two popular reference
turbines. To calculate them, we have used Algorithm 7 for the range of tip-speed ratios between cut-in
and rated. As a result, we have two vectors for each turbine, one with de-rating command values and
the other with generator speed values. We also have a matrix with the corresponding pitch angles.
This constitutes a usable 2D look-up table.
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(a) (b)

Figure 16. βδ (ω, Pδ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

Algorithm 7 Calculate the βδ (ω, Pδ) look-up table.

1: Choose a tip-speed ratio λ.

2: From λ, calculate wind speed U for β = βopt|λ via (20).

3: From U and λ, calculate ω via (6).

4: From U and λ, calculate available power Pav via (36).

5: Choose a de-rating command Pδ.

6: From Pav and Pδ, calculate βδ for λQ = λ via (37).

Note that the lines corresponding to Pδ = 0 are the same as those on Figure 6 and that the flat
regions that appeared on Figure 11 are no longer flat on Figure 16. Note also that the considerations in
Section 6 apply here and that Figure 16 has been produced via the methods described there.

5.4. Constant Delta Control at Constant Generator Power

For wind speeds above rated, it is necessary to limit Pr to Pn − Pδ.

6. Look-Up Table Calculation

We have discussed, in Section 4, a proportional delta control method based on two 1D look-up
tables (for kδ and βδ, respectively) within the unconstrained generator speed and torque operating
region (which coincides with the region of optimal tip-speed ratio when δ = 0) and two 2D look-up
tables (for βδ (ω, δ) and βδ (Qe, δ), respectively) for the generator speed- or torque-constrained
operating regions. This description also applies to the constant delta control method discussed
in Section 5, with Pδ instead of δ. There are, however, some wind speeds, near the boundaries between
said operating regions, at which a wind turbine will operate in a different region depending on δ or Pδ.

Consider, for example, a turbine that does delta control via over-speed, as is the case of the NREL
5-MW reference turbine here, as shown by Figure 7a. Consider also a wind speed at which said turbine
operates at generator speed ωmin when δ = 0. Then, there is a δ > 0 over which said turbine, at said
wind speed, must operate at generator speed ω > ωmin. If the pitch angle is such that, at said generator
speed, Cp = (1− δ)Cp

(
λopt, βopt

)
, then power output will be more than 1− δ-times the power output

at δ = 0, because Cp < Cp
(
λopt, βopt

)
at generator speed ωmin for any β.

The same thing happens to all over-speed-based delta control methods, which always run into
ωmax for large enough δ, where no more over-speed is possible. Pitch-based delta control is necessary
then (hence, for example, Ramtharan et al.’s four degree pitch offset [10]).
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In this section, we will discuss a method to calculate the look-up tables introduced in
Sections 4 and 5 so that they are valid for any wind speed, regardless of the operating point moving
between regions, as just described. The method is described by Algorithm 8.

Algorithm 8 Calculate the βδ look-up tables.

1: Choose a wind speed U.

2: From U, calculate generator speed ω for λ = λopt via (6).

3: Limit ω to ensure that ω ∈ [ωmin, ωmax].

4: For U and ω, calculate tip-speed ratio λ via (6).

5: Calculate power coefficient Cp thus: Cp = Cp

(
λ, βopt|λ

)
, i.e., the optimum power coefficient given

the tip-speed ratio.

6: Calculate generator torque Qe thus: Qe = 1
2 ρπR2U3 Cp

ω −Ql.

7: Limit Qe to ensure that Qe ≤ Pn
ωmax

.

8: Re-calculate λ thus: λ = λQ : 2b Qe+Ql
ρπR3U2 =

Cp

(
λQ ,βopt|λQ

)
λQ

.

9: Re-calculate Cp as in Step 5.

10: Calculate power output P thus: P = 1
2 ρπR2U3Cp.

11: Re-calculate Cp thus:

Cp =


(1− δ)Cp , for proportional delta control ,

Cp = 2 P−Pδ
ρπR2U3 , for constant delta control .

12: Re-calculate λ thus: λ = λδ : Cp (λδ, βδ) = Cp, where βδ may be chosen freely, as discussed in

Section 4.

13: From U and λ, re-calculate ω via (6).

14: Limit ω as in Step 3.

15: Re-calculate Qe as in Step 6.

16: Limit Qe as in Step 7.

17: Re-calculate ω thus: ω = 1
2 ρπR2U3 Cp

Qe+Ql
.

18: From ω and U, re-calculate λ via (6).

19: Calculate pitch angle β thus: β = βδ : Cp (λ, βδ) = Cp.

Once the steps of Algorithm 8 have been carried out for the range of wind speeds of interest, one
is left with three vectors, with the values of β, Qe, and ω corresponding to different wind speeds and
one value of δ or Pδ. Repeating for different values of δ or Pδ, these vectors become matrices, and the
2D look-up tables giving βδ (Qe, δ) and βδ (ω, δ) or βδ (Qe, Pδ) and βδ (ω, Pδ) are ready. Figures 10, 11,
15, and 16 show said tables for two popular reference turbines.

It is also possible to interpret the results of Algorithm 8 as tables giving Qe (ω, δ) or Qe (ω, Pδ), as
shown by Figures 17 and 18. These are indeed the steady state operating points we expect from the
application of the control algorithms described in this paper, but they are not used in said algorithms
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directly. Instead, Qe is influenced via Qδ in (22) and (23). Qδ is calculated via (31), which uses kδ. 1D
look-up tables for kδ (δ) and kδ (Pδ) are given by Figures 8 and 12, respectively.

(a) (b)

Figure 17. Qe (ω, δ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

(a) (b)

Figure 18. Qe (ω, Pδ) tables for NREL 5-MW (a) and DTU 10-MW (b) reference turbines.

7. Results

In order to preliminarily test the methods proposed in this paper, it is easiest for us to modify a
free controller slightly [30], which we have recently produced for a research project. It was adapted
to the DTU 10-MW reference wind turbine [28]. As a first proof of concept, we carried out some
simulations with said controller and turbine model, which had constant speed and constant torque
operating regions. This allowed us to assess the performance of all our methods at a glance, provided
that we used a wide enough range of wind speeds. Unfortunately, we had no similar code for the
NREL 5-MW reference wind turbine [31], and it would be inefficient for us to produce one at the time
of writing.

Figures 19–21 show six FAST [32] simulations of the DTU 10-MW [28] reference wind turbine.
Three of them were carried out with proportional, the other three with constant delta control. In each
case, three different power deltas (including zero) were used. The power output of simulations
corresponding to δ = 0 and Pδ = 0, multiplied by 1− δ and minus Pδ, respectively, are plotted in
dashed lines for other values of δ and Pδ.

In Figure 19, the wind speed increased suddenly by 1 m/s every 100 s, so we can assess the
turbine’s steady state behavior at different operating points. Prior to 400 s, the wind speed was
low enough to force the turbine to work at the minimum generator speed (300 rpm). Note that,
for Pδ = 2 MW, the generator speed was lower prior to the 300-s mark. This is because the available
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power was less than 2 MW and suggests a further change to the control strategy, as discussed briefly
in Section 8.

Figure 19. DTU 10-MW reference turbine with proportional and constant delta control, wind
speed steps.

Between the 400-s and 500-s marks, the steady-state generator speed remained proportional to
wind speed, because the {λδ, βδ} trajectory on Figure 7b dictates a constant tip-speed ratio.

Between the 700-s and 800-s marks, the turbine worked at the maximum torque (198 kNm) for
δ = 0 and Pδ = 0, and the generator accelerated above the optimal tip-speed ratio. After the 800-s
mark, the generator worked at the maximum speed for all values of δ and Pδ.

In all cases (except, as already pointed out, when Pδ was larger than available power, prior to the
300-s mark), the delta control behavior was excellent, as indicated by the dashed and continuous lines
being very close to each other. However, an appreciable transient error appeared after the 700-s mark,
due to the generator accelerating more for δ = 0 and Pδ = 0 than for other values of δ and Pδ. This also
suggests a further change to the control strategy, as discussed briefly in Section 8.

In Figure 20, the wind speed slowly increased during the simulations, in order to visualize
quasi-steady-state turbine behavior easily over a wide range of wind speeds. Again, the delta control
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behavior was excellent, except for the case of constant delta control at low wind speeds, where not
enough aerodynamic power was available for a 2-MW power reserve; as a consequence, power output
remained at 0 and generator speed was too low. Note also that, after the 800-s mark, there was
an appreciable power delta error. This was because the generator speed was different for different
de-rating commands, as was the case between the 700-s and 800-s marks on Figure 19.

Figure 20. DTU 10-MW reference turbine with proportional and constant delta control, wind
speed ramp.

In Figure 21, a turbulent wind field produced via TurbSim [33] was used. The mean wind speed
was approximately 9 m/s, and the turbulence intensity was 30% (which is considerably larger than
the standard [34]), so that a wide range of wind velocities may be covered within a single simulation.
Note that, despite the high turbulence, the delta control behavior remained excellent. Again, as on
Figures 19 and 20, appreciable transient power delta errors appeared when the δ = 0 and Pδ = 0
simulations reached the maximum torque, due to generator speed being different for different de-rating
command values. Additionally, in the Pδ = 2 MW simulation, the controller could not maintain the
minimum generator speed when the wind speed was so low that a 2-MW reserve was impossible
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(around the 500-s mark). As mentioned above, these shortcomings suggest further changes to our
delta control technique, which we briefly discuss in Section 8.

Finally, it is noticeable that the power delta error was slightly larger when the power output was
decreasing, while it was practically perfect when the power output was increasing. This may merit
further investigation.

Figure 21. DTU 10-MW reference turbine with proportional and constant delta control, turbulent
wind field.

8. Discussion

It appears, from the results presented in Section 7, that the delta control algorithms discussed
in Sections 4 and 5 work as expected, at least for the DTU 10-MW reference turbine, which we have
used for our proof of concept in the wake of our work on the H2020 project CL-Windcon (see the
section on funding). This leaves us with a turbine control algorithm based on three look-up tables,
one of which is 1D, the other two 2D, and a method for calculating said look-up tables from a turbine’s
power coefficient and operational limits, with one design freedom: the {λδ, βδ} trajectory necessary
for Step 12 in Section 6. Said trajectory affects several aspects of turbine control:
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1. Over-speed-based strategies, such as the one shown on Figure 7a, require a change of rotor speed
for a change of δ or Pδ, which results in power transients to be studied. Specifically, the rotor
speed reduction coming from the reduction of the power reserve (due to part of said reserve being
summoned) during, for example, a grid under-frequency event, provides an extra energy reserve,
comprised of the reduction in the rotor’s kinetic energy. How to best extract and exploit said
energy is an interesting topic, strongly related to synthetic inertia methods, for future research.

2. Purely pitch-based strategies, such as the one shown on Figure 7b, result in the turbine’s operating
speed being independent of δ or Pδ for most wind speeds, as shown by Figure 20. This probably
minimizes power transients due to changes in the power reserve. Note, however, from Figure 20,
that the constant delta control is unable, when the wind speed is insufficient to maintain the
required power reserve, to maintain generator speed at ωmin. This suggests a change in the control
algorithm, according to which the generator speed setpoint for the pitch controller ωβ would be
switched between ωmin and ωmax, like the setpoint for the torque controller ωq. This would allow
the pitch controller to maintain generator speed at ωmin at low wind speeds, when generator
torque is saturated at zero due to Pδ being larger than available power.

3. As mentioned in Section 7, strategies that result in different generator speeds for different
de-rating commands result in transient power reserve errors due to changes in wind speed.
This is necessarily the case in the constant torque region (Sections 4.3 and 5.3) with the technique
proposed here. It may be interesting to modify said technique to ensure that the turbine’s
operating speed is independent of δ or Pδ for all wind speeds.

4. Pitch actions due to the βδ (ω, δ) and βδ (Qe, δ) (or βδ (ω, Pδ) and βδ (Qe, Pδ)) look-up tables may
have relevant effects on the pitch actuator’s duty cycle and on the generator speed regulators.
It is interesting to study said effects, as well as the influence of the {λδ, βδ} trajectory on them.

9. Materials and Methods

NREL’s FAST [32] was used to calculate Cp values and perform simulations. Wind turbine
model data for the NREL 5-MW [35] and DTU 10-MW [28] reference turbines were taken from [31]
and [36], respectively. OpenDiscon [30] commits c7c155629ee4767b8ac6176c9c3c86ecd0f82107 and
8abdf3d4d884a549e31aa8c3c803933149cdd1d7 have been used for proportional and constant delta
control, respectively, in the simulations of Section 7.
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