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Abstract: Parabolic trough collector (PTC) technology is currently the most mature solar technology, 
which has led to the accumulation of relevant operational experience. The overall performance and 
efficiency of these plants depends on several components, and the heat transfer fluid (HTF) is one 
of the most important ones. Using molten salts as HTFs has the advantage of being able to work at 
higher temperatures, but it also has the disadvantage of the potential freezing of the HTF in pipes 
and components. This paper models and evaluates two methods of freeze recovery, which is needed 
for this HTF system design: Heat tracing in pipes and components, and impedance melting in the 
solar field. The model is used to compare the parasitic consumption in three molten salts mixtures, 
namely Solar Salt, HiTec, and HiTec XL, and the feasibility of this system in a freezing event. After 
the investigation of each of these subsystems, it was concluded that freeze recovery for a molten salt 
plant is possible. 
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1. Introduction 

Today, current trends in energy supply are unsustainable from environmental, economic, and 
social points of view, and stricter low-carbon economy policies push this demand further. Therefore, 
the development of advanced energy technologies is very much needed [1,2]. Crucial players to 
achieve such sustainable development goals are renewable energies, and in this new scenario 
concentrated solar power (CSP) is one of the most interesting alternatives [3,4]. 

Parabolic trough, linear Fresnel, tower, and parabolic dish are the main different options in CSP 
technology, depending on how the focus of sunrays and the position of the receiver is implemented 
(Figure 1). Line focus systems track the sun with mirrors arranged in one axis (parabolic trough and 
linear Fresnel systems), while point focus systems use two axes (tower and dish systems). On the 
other hand, the receiver can be fixed (linear Fresnel and tower systems) or mobile (parabolic trough 
and dish systems). 

Parabolic trough collector (PTC) systems concentrate the sun in a parabolically curved trough-
shaped reflector. The receiver is a tube located along the inner side of the collector [5]. The heat 
transfer fluid (HTF), usually synthetic oil, is heated by the energy concentrated in the receiver, where 
it flows through the tube along the trough collector and is then used to generate electricity in a 
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conventional steam turbine generator after a heat transfer exchange with a secondary HTF, 
water/steam. 

    
Figure 1. Main concentrated solar power (CSP) technologies [2]. 

The tower technology uses large sun-tracking mirrors, also called heliostats, to focus the sunlight 
on a receiver that is located at the top of the tower to produce electricity from the sun [5]. The HTF is 
usually molten salt or water/steam, and it is heated when it flows through the receiver. Again, it is 
used in a conventional steam turbine generator to produce electricity, either directly or by using a 
heat exchanger. 

The linear Fresnel technology [6], on the other hand, uses mirrors mounted on trackers on the 
ground that are flat or slightly curved. The mirrors reflect sunlight to a receiver tube located above 
them. Sometimes, a small parabolic mirror is placed on the receiver to increase the focus of the sunlight. 

The last technology is parabolic dish systems, in which the concentrator is a dish with a 
parabolic-shaped focus point, with the receiver located at the focal point [5]. The sun is tracked with 
a two-axis structure where the concentrators are mounted. The receiver is usually mounted next to 
the heat engine that uses the collected heat to produce electricity on site. Here, Stirling and Brayton 
cycle engines are used. 

The HTF, thermal energy storage (TES), and power cycle can be selected from different options 
in each technology. One of the most important components to achieve high overall performance and 
efficiency in CSP systems is the HTF [7]. The main requirements for a proper HTF were summarized 
by Benoit et al. [8], based on the review of existing and potential HFTs used in CSP receivers. To 
increase the efficiency of the cycle, the HTF should be able to work in a wide working temperature 
range and should present high thermal stability. If this is accomplished, the cost of the solar field, 
which is the main saving factor in a CSP plant, is reduced. Next, in order to increase the heat transfer 
between the HTF, the TES material, and the power block driving fluid, and in addition to withstand 
high pressure and temperature changes, the HTF should have good thermophysical properties. 
Finally, the HTF should be non-hazardous, have a low corrosive behaviour, and should be cost-
effective. More information about different types of HTF suitable for CSP plants and other high 
temperature applications (such as liquids, supercritical fluids, and gases) is presented in other studies 
[7,9,10], such information on their cost and thermal and physical properties. 

CSP technology with a PTC system is currently the most mature solar technology, leading to the 
accumulation of relevant operational experience [11]. The most widely used heat transfer fluid (HTF) 
in parabolic trough plants is a eutectic mixture of the organic compounds biphenyl oxide and 
diphenyl oxide [12–14]. The operation temperature of the solar thermal power plant is limited to up 
to 400 °C when using an organic HTF [14,15], since when operating above this temperature the HTF 
degrades [15]. 

Significantly higher efficiency of the solar thermal power system can be achieved if a more stable 
HTF is used, such as binary or ternary mixtures of nitrate salts within the needed operating 
temperature [15–17]. These eutectic mixtures would allow operating temperatures of 500 °C or higher 
[10,16]. The most widely considered candidates are Solar Salt, HiTec®, and HiTec XL® [12,18]. Solar 
Salt is a binary salt mixture of 60 wt.% NaNO3 and 40 wt.% KNO3. HiTec is a ternary mixture of alkali-
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nitrates/nitrites, and finally, HiTec XL is a ternary mixture of sodium, potassium, and calcium nitrates. 
Their melting properties are given in Table 1. 

Table 1. Properties of the three heat transfer fluid (HTF) candidates [12,19,20]. 

Solar Salt 
Composition (by weight) 60% NaNO3, 40% KNO3 
Freeze Temperature, °C 220–238 (non-eutectic range at this mixture) 

Density, kg/m3 2090 − 0.636 × T (°C) 
Specific heat, J/kg C 1443 + 0.172 × T (°C) 

Dynamic Viscosity, Pa·sec (22.14 − 0.120 × T (°C) + 2.281 × 10 −4 × (T (°C))2 − 1.474 × 10−7 × (T (°C))3)/1000 
Thermal conductivity, W/m°C 0.443 + 1.9 · 10−4 × T (°C) 

Hitec® 
Composition (by weight) 40% NaNO2, 7% NaNO3, 53% KNO3 
Freeze Temperature, °C 142 (eutectic point) 

Density, kg/m3 2080 − 0.733 × T (°C) 
Specific heat, J/kg C 1.56 

Dynamic Viscosity, Pa·sec 0.00622 − 0.0000102 × T(°C) 
Thermal conductivity, W/m °C 0.588 − 0.000647 × T (°C) 

Hitec XL® 
Composition (by weight) 7% NaNO2, 45% KNO3, 48% Ca(NO3)2 
Freeze Temperature, °C 120 (eutectic point) 

Density, kg/m3 2240 − 0.8266 × T (°C) 
Specific heat, J/kg C 1536 − 0.2624 × T (°C) − 0.0001139 × (T (°C))2 

Dynamic Viscosity, Pa·sec 1,372,000 × (T (°C)) −3.364 
Thermal conductivity, W/m °C 0.519 

The biggest drawback of these nitrate salt mixtures is that they freeze inside the tubing in the 
system, since their melting points vary from 120 °C to 220 °C. Therefore, freeze protection has to be 
considered in any PTC plant. On the other hand, HiTec XL and HiTec have a lower melting point, 
therefore the problem of freezing is easier to control. On the other hand, the thermal stability of these 
mixtures is lower than Solar Salt [10,12,19,20]. 

The benefit of using molten salts as heat transfer fluids results from the increase in the allowable 
maximum operating temperature [15,21]. However, molten salts with the desired thermal stability 
limit have freezing/melting points well above ambient temperature. As such, a freeze protection and 
recovery system (freeze P/R) is needed for three key functions: 

1. Pre-heat plant for initial salt fill, or pre-heat loops for fill after maintenance. 
2. Prevent freeze events for the duration of the plant life. 
3. Recovery from freeze events for the duration of the plant life. 

Preheating of the plant is required to prevent the formation of salt plugs during the initial plant 
fill and to minimize thermal shock to piping and equipment. Preheating will be needed on a loop 
level to refill the loop with salt after maintenance has been performed on a loop. Once the plant is 
filled with salt, the system will then be used to prevent freeze events by maintaining a temperature 
above the freeze point of the salt, should such situations arise. If a plug or blockage does form 
anywhere in the plant, the system will apply heat to the affected zone to prevent a larger freezing 
event and/or melt the frozen zone. The freeze P/R system is not intended to provide heating under 
normal operation of the plant. 

The freeze protection/recovery system proposed in this paper includes two main sections: Heat 
tracing and impedance heating [22,23]. Heat tracing involves the application of heat trace cables to 
all plant surfaces that might be compromised in a freeze event. This includes all pipes, headers, joints, 
and valves [24]. If the plant undergoes a freeze risk, the salt in these areas must be melted. Since no 
external energy hits these components during normal operation, heat tracing is the only practical 
option of introducing a heat input. 
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Impedance melting is accomplished by applying a voltage over a necessary number of absorber 
tubes in the solar field. This voltage, given a resistivity of the tube, induces a current in the absorber 
tube that results in a heat generation term. 

A good understanding of the working philosophy of freeze protection systems is needed to 
minimize the parasitic consumption of solar plants, being one of the criteria to select the final HTF in 
the parabolic trough collector plants. Different modelling studies have been published for state-of-
the-art of PTC plants [11,25]. However, state-of-the-art PTC plants have never been the subject of a 
specific feasibility study of heat tracing systems when using high melting point salts as a HTF. The 
work carried out in this document describes the freeze protection systems used in parabolic trough 
plants with three mixtures of molten salt, and the modelling for their implementation and 
optimization in the plant performance model. 

2. Heat Tracing 

2.1. Heat Trace System Description 

The scope of the heat trace study was to develop the capability of predicting heat tracing 
requirements for salt HTF plants. Heat tracing is accomplished by the application of resistive heating 
cables being applied to the surface to be heated. These cables produce large heat generation terms 
when a direct electrical current is applied to them. This heat generation term can be used for freeze 
recovery or system preheating. Figure 2 shows several ways heat trace cables are mounted to different 
piping elements, such as pipes, valves, and joints. 

 
Figure 2. Several mounting configurations for heat trace cables based on the type of pipe element 
(valve, joint, or pipe). 

The only type of heat trace cable that can withstand the required exposure temperatures over 
250 °C are those using mineral insulated (MI) cable. Mineral wool thermal insulation with an 
aluminium jacket will be used on all traced piping. Mineral wool insulation will be used on valve 
bodies and bonnets with removable blankets on the actuators. The system has one redundant cable 
per heat trace zone and this redundant cable will be on header and feeder piping, but not loop and 
drop-down piping. The systems were designed with the premise that feeder pipes and headers must 
never freeze. 

2.2. Model Description 

The schematic shown below in Figure 3 shows a cross section of the pipe, the heat transfer 
mechanisms that result in heat losses from the heat transfer fluid, and the location of heat addition 
from the heating system. 
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Figure 3. Schematic and heat transfer mechanisms through insulated pipe. 

The heat tracing system will be placed directly onto the surface of the steel pipe. While the 
heating cables are in discrete locations, they will be approximated as being evenly distributed over 
the entire surface of the pipe. Insulation will then be placed around the pipe and heat tracing system. 
The insulation will, if necessary, consist of high temperature insulation at the inner surface, followed 
by lower temperature insulation. If the cost of insulation is high, a multilayer configuration can be 
used, using a first layer of greater performance and cost that is in contact with the cable, and a second 
layer of lower cost on the external side. The two layers of insulation will ensure that the insulation 
functions properly at high temperatures but also cuts down on the overall cost of the insulation. 
Finally, an aluminium cladding will effectively seal the pipe and provide insulation from 
precipitation and protect it from unforeseen abuse during operation. The heat transfer fluid will flow 
through the pipe, resulting in heat loss through the pipe walls and out to the ambient surroundings. 

The total length of heat trace cable necessary for headers, valves, joints, and pipes is calculated 
based on the preheat and melting conditions and pipe diameters. 

The heat from the HTF will be lost through convective heat transfer with the inner pipe surface. 
This heat will then be transferred by conduction through the pipe wall, insulations, and the 
aluminium cladding. Finally, the heat is lost to the ambient surroundings by radiation and convective 
heat transfer. In addition, the potential for internal heat addition is supplied by the heat tracing 
system. This heater will be able to supply heat to the pipe walls. The schematic in Figure 4 shows the 
thermal circuit. In practice, heat loss also occurs at the pipe supports, but this will be ignored for this 
optimization. It is also worth noting that the radiation losses are to the sky, while the external 
convection losses are to the surroundings. For this subroutine, it has been assumed that both the 
radiation and convection losses occur to the ambient surroundings, as indicated in Figure 3. The 
dashed line indicates that the outer insulation is an option that may be necessary. 
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Tsalt = Temperature of the HTF (K) 
T1 = Temperature at the inner radius of the pipe (K) 
T2 = Temperature at the outer radius of the pipe (K) 
T3 = Temperature at the outer radius of the high temperature insulation (K) 
T4 = Temperature at the outer radius of the lower temperature insulation (K) 
T5 = Temperature at the outer radius of the aluminium cladding (K) 
Tamb = Temperature of the surrounding air (K) 
R’conv,1 = Thermal resistance of pipe against heat convection ((m·K)/W) 
R’pipe = Thermal resistance of pipe against heat conduction ((m·K)/W) 
R’ins,1 = Thermal resistance of inner insulation against heat conduction ((m·K)/W) 
R’ins,2 = Thermal resistance of outer insulation against heat conduction ((m·K)/W) 
R’Al = Thermal resistance of aluminium cladding against heat conduction ((m·K)/W) 
R’conv,2 = Thermal resistance of ambient environment against heat convection ((m·K)/W) 
R’rad = Thermal resistance of ambient environment against radiation ((m·K)/W) 
q’heater = Heat addition from heating system (W/m) 

Figure 4. Circuit schematic of pipe heat transfer. 

The equations for the thermal resistances are: 𝑅 , =        𝑅 =  ( )
        𝑅 , =  ( ),        𝑅 , =  ( ),  𝑅 =  ( )

          𝑅 , =        𝑅 =  
(1) 

where: 

r1 = Inner radius of the pipe (m) 
r2 = Outer radius of the pipe (m) 
r3 = Outer radius of the high temperature insulation (m) 
r4 = Outer radius of the lower temperature insulation (m) 
r5 = Outer radius of the aluminium cladding (m) 
kpipe = Thermal conductivity of the pipe (W/(m·K)) 
kins,1 = Thermal conductivity of the high temperature insulation (W/(m·K)) 
kins,2 = Thermal conductivity of the lower temperature insulation (W/(m·K)) 
kAl = Thermal conductivity of the aluminium cladding (W/(m·K)) 
h1 = Convection heat transfer coefficient between the pipe and HTF (W/(m2·K)) 
h2 = Convection heat transfer coefficient between the cladding and the air (W/(m2·K)) 
hrad = Radiation heat transfer coefficient (W/(m2·K)) 

The thermal conductivities vary with temperature and thus will be evaluated at the midpoint 
temperature of the respective material. The equations for the convection and radiation heat transfer 
coefficients are: ℎ =      ℎ =     ℎ = 𝜀𝜎(𝑇 + 𝑇 )(𝑇 + 𝑇 ) (2) 

where: 

ksalt = Thermal conductivity of the HTF (W/(m·K)) 
kair = Thermal conductivity of air (W/(m·K)) 
Nusalt = Nusselt number of the salt 
Nuair = Nusselt number of the air 
εAl = Emissivity of the aluminium cladding 



Energies 2019, 12, 2340 7 of 20 

 

σ = Stefan–Boltzmann Constant = 5.67·10−8 W/m2·K4 

The Nusselt number of the salt varies depending on whether the HTF is experiencing laminar 
or turbulent flow. The flow of a fluid through a pipe is said to be laminar if the Reynolds number is 
less than 2300. The Reynolds number for the salt must be calculated to determine the appropriate 
Nusselt number equation. The Nusselt number of the air is dependent upon whether the pipe is 
experiencing forced or natural convection. The equations for the Nusselt numbers of the salt and the 
ambient air are: 𝑁𝑢 , = 4.36 (3) 

Dittus-Boelter [26] 𝑁𝑢 , = 0.023𝑅𝑒 𝑃𝑟    for  .  /  

Churchill and Bernstein [26] 𝑁𝑢 , = 0.3 + . / /
. / / 1 +  / /

 for 𝑃𝑟 · 𝑅𝑒 ≥ 0.2 

Churchill and Chu [26] 

𝑁𝑢 , = 0.6 + . /
. / /  for 𝑅𝑎𝑎𝑖𝑟 ≤ 1012 

where: 

Resalt = Reynolds number of the HTF 
Reair = Reynolds number of the air 
Raair = Rayleigh number of the air 
Prsalt = Prandtl number of the HTF 
Prair = Prandtl number of the air 
Lpipe = Length of the pipe (m) 
n = 0.4 for heating and 0.3 for cooling 

Another consideration in the insulation optimization subroutines is the heating system that will 
be located on the pipe surface. This heating system will be operated when the temperature of the heat 
transfer fluid approaches freezing temperatures. The time it takes for the salt to approach freezing 
temperatures, given a specific ambient air temperature and initial salt temperature, is calculated by 
a complex transient conduction equation. The optimization subroutine utilizes the lumped 
capacitance model assumption, which allows for a more simplified approach. This model assumes 
that the internal temperature of an object is constant throughout, so the rate at which that object will 
cool will be faster than that of the transient model. This is true because under the lumped capacitance 
model the temperature of the object will linearly decrease with time (assuming the object is hotter 
than its surroundings), while the transient model follows a curve more closely approximated by 
exponential regression. If the pipe can be approximated using lumped capacitance, this may be too 
conservative, but it will indicate whether the salt within the pipe will freeze. Assuming lumped 
capacitance, the time for the salt to approach freezing temperatures can be calculated from the 
equation below: 𝑡 = 𝜋𝜌 𝐶 , 𝑟 𝑅 𝑙𝑛 𝑇 − 𝑇𝑇 , − 𝑇  (4) 

where: 
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t = Time to freeze (s) 
ρsalt = Density of the HTF (kg/m3) 
Tinitial = Initial temperature of the salt (K) 
Tfreeze,safe = 30 K above the freeze temperature of the salt (K) 
R’thermal = Thermal resistance over temperature range ((m·K)/W) 

This calculation will also be conservative, since this equation assumes that the salt is stagnant 
within the pipe. In the molten salt plant this will never occur, as the salt will always be flowing. This 
equation will therefore yield a time that is much less than the time it would take for flowing salt to 
approach freezing temperatures, which is on the safe side for evaluating the freezing risk. 

Assumptions 

The properties of air vary according to temperature and pressure. For the purposes of this study, 
the average temperature will be determined from a data file containing hourly weather data during 
the year. The data file contains columns detailing the temperature, wind velocity, and direct normal 
insolation every hour during a year for a specific location. The atmospheric pressure will be assumed 
constant (at 1 atm). These values will then be used to determine the necessary air properties. 

The properties of the heat transfer fluid are measured with respect to temperature variance. The 
properties of the heat transfer fluid will be evaluated using the inlet temperature as the bulk 
temperature of the fluid. The properties of the ambient air will be evaluated at the film temperature 
between the air and the surface of the aluminium cladding. 

Several assumptions and simplifications will be made to perform this heat transfer analysis of 
the CSP pipes. These assumptions are listed below: 

1. The system is in a steady state 
2. Uniform HTF temperature (per length unit) 
3. All materials have uniform properties throughout (radially) 
4. One dimensional heat transfer in the pipe (radially) 
5. Negligible contact resistances 
6. Heating system only contributes a heat input (no insulating properties or contact resistance) 
7. Radiation and convective heat losses occur at the same temperature 
8. Insulation has been applied appropriately and contains no leaks or discontinuities 
9. External humidity has a negligible effect (no evaporative cooling or heat transfer effects) 
10. When wind is present, it is a cross-flow 

Heat tracing is used to preheat the pipes in the solar field, including the feed pipes and headers 
for both the cold and hot salt. It is important to understand the transient behaviour of their warm-
up. Furthermore, it is important to understand the transient melting behaviour of the salt in the tubes. 
If the salt would freeze in the feed pipes and headers, it would be necessary for the heat tracing to be 
sufficiently large to melt the salt in a reasonable amount of time (Figure 5). 
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Figure 5. Thermal networks used for modelling melting (left) and preheating (right). 

The model was created in Engineering Equation Solver (EES) using a thermal network between 
the three components. During preheating, the heat introduced by the heat tracing can either flow 
through the insulation and into the ambient environment, or it can be stored in the pipe and 
insulation. This creates a system of differential equations that must be solved. During melting, the 
salt consumes the generated heat. Although this creates another differential equation, the solution 
method is the same for both. 

A fourth order explicit Runga–Kutta (RK) numerical estimation is used to simultaneously solve 
the 2 or 3 differential equations. This is done using the four step RK estimation process. The result is 
the temperature of the pipe, insulation, and salt at each time step. 

The temperature of the salt is recorded until melting occurs. At this point the model records the 
amount of heat absorbed by the salt and records how much of the salt is melted. Using this method, 
the total time taken to heat the salt from cold to fully molten can be calculated. 

3. Impedance Heating 

3.1. Impedance System Description 

Electric heating of the heat collection elements will be provided by an impedance heating 
system. The system passes a high current, at a low voltage, through the stainless steel pipe in the heat 
collection element. The power in the electric current is converted to thermal energy as the product of 
its resistance (R) and the square of the current (I). The impedance heating system for the receiver 
tubes will consist of a standalone panel and transformer. Each system is designed to heat a total 
length of 141.66 m of receiver tube with a 2 mm wall thickness constructed of 316 Ti Stainless Steel. 
The resistance of the receiver tube is assumed to be 0.0015 V/m. This means that there will be one 
system per collector and eight systems per loop. 

There are two possible configurations of an impedance heating system: End-point and mid-
point. Figures 6 and 7 show the differences between the two systems. It is preferred that the mid-
point system be used because this system is non-intrusive and does not require any electrical isolation 
on the receiver tube that must be in contact with salt and high temperatures. The end-point system 
will only be considered if an isolating flange that can work under salt conditions is discovered. 

Rcond
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Rcond

RconvRrad

qht

Insulation

Pipe

Salt

Rcond

Rcond

RconvRrad

qht

Insulation

Pipe

Vacuum
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Figure 6. End-point electrical connection (Adapted from [27]). 

 

Figure 7. Mid-point electrical connection (Adapted from [27]). 

When designing the impedance heating system, there are two factors to consider: Pipe electrical 
resistance and the power factor. The pipe resistance is fixed by the materials and pipe size and will 
dictate how much current will flow through the pipe with a given voltage. The power factor is a non-
dimensional factor that is the ratio of the real power flowing over the apparent power in a circuit. 
The power factor affects generators and motors more, but as the return cable is lengthened, the eddy 
current is lost and the signal becomes less stable, resulting in a lower power factor. 

The impedance system rating will be adequate to preheat the heat collection elements from 
ambient temperature to the standby temperature within 60 min. The system ratings will be based on 
the theoretical heat loss through a heat collection element with an intact vacuum at an ambient 
temperature of 5 °C and a wind speed of 10 miles per hour, plus an allowance of 10 percent to account 
for heat losses which are higher than expected. 

The scope of this section is to determine the extent of the melting abilities of impedance heating. 
Impedance heating works by generating a heating term in the absorber tubes in the solar field. This 
heat generation term is formed when a voltage is applied across the tubes. This voltage, applied to 
the pipes with a finite resistivity, causes a current through the pipes generating a heating term. 
Uniform heating is produced both concentrically around the pipe circumference and along the entire 
pipe length since the current characteristics are uniform. The transformer, fed from a commercial 
power source, produces the correct voltage to give adequate heat and safe operating conditions. The 
number of transformers is of critical importance to the overall system cost. To this end, the total 
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number of transformers and the system voltage of each are found, and augmentation of the absorber 
material to induce a large current is also investigated. 

3.2. Model Description 

The Forristal receiver tube model was modified to support several necessary features for the 
validation of molten salt in field designs [28]. This mainly consisted of adding several heat transfer 
fluid choices and the ability for the pipes to be heated by impedance heating with DC current. Figure 
8 shows the new resistive thermal network used to model impedance heating. 

 
Figure 8. Updated thermal resistance network for the heat collection element (HCE) thermal losses 
model. q·i,p = impedance heat generation at thermodynamic centre of pipe wall. q·i,s = impedance heat 
generation in salt. 

Like the Forristal model, this model assumes the thermal mass of only the HTF and solves for 
the temperature at each node. This is an acceptable assumption for impedance heating because of the 
low time constants of the metal tube with respect to the time constant of the HTF. It can be assumed 
that, due to the even nature of the heating provided by the induced current, that the pipe temperature 
reaches steady state very quickly. 

Assumptions 

The model makes several key assumptions. First, that the melting time is the time required to 
bring the solid salt from solid to liquid. Because initial sensible heating and post-melting over heating 
are not captured, the times are underestimates of what the final melting time will be. More minor 
assumptions include no thermal capacitance of the glass or pipe material, constant thermal properties 
evaluated at the melting temperature of the salt or ambient temperature, no thermal contact 
resistance between the solid salt and pipe wall, simple radial melting (no angular dependence), no 
axial thermal conduction in the pipe, salt or glass, a concentration ratio of 80, an optical efficiency of 
77.3% (ASTR0 trough with RioGlass® Mirrors), and 2008 SCHOTT PTR ® 70 collector tubes. 
  

Glass 

Annulus 

Pipe 
Salt 
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4. Results and Discussion 

4.1. Results and Discussion for the Heat Tracing System 

First, results for the pre-heating regime were generated. Based on the pipe diameter and the 
required pre-heat temperature, the heat trace system can be calculated. The results presented in 
Figure 9 show that the heat trace requirements increase with the nominal pipe diameter as expected. 
Some variation is observed based on the non-linearity of schedule 40 pipe thicknesses. 

 
Figure 9. Required heat trace systems for different levels of preheating for the full range of schedule 
40 piping, with a wind speed of 5 m/s and an ambient temperature of 15 °C. 

The results in Figure 10 show the transient behaviour of the system during a freeze recovery. As 
the salt HTF begins to melt, the temperature value reaches the constant value of the phase change 
temperature. The figure shows the temperature transients for the pipe, insulation, and internal salt 
during the freeze recovery process for each candidate salt using a heat trace system. This is designed 
for an 8 h preheat to 100 °C for a 48” pipe, with a wind speed of 5 m/s and an ambient temperature 
of 15 °C. The line type denotes the HTF type and the colour/symbol denotes the system component. 
The melting process is finished when the lines stop. 

Further investigation of the melting time was performed. Figure 11 shows that because the 
model first sizes the system based on a user specified preheating time and then solves for melting 
transients, the melting rate is adversely affected by the initial preheating temperature that is specified 
per HTF. The system heat trace rating is proportional to the specified preheating temperature per 
each HTF, where the system melting performance drops off significantly as the specified preheating 
temperature is decreased. 

The model has been integrated with the preliminary field pipe sizing model to generate the total 
heat trace system required for a molten salt HTF plant. The total model generates the optimal 
diameters for each pipe segment. Then, using a subprogram, the number of heat trace cables is 
calculated for each segment to satisfy the preheating requirements. The largest available heat trace 
cables output 0.05 W/m at their maximum operation. Since the code generates the required heating 
in W/m as well, it is a division criterion to arrive at the total number of heat trace cables for any pipe 
section. Multiplying by the length of each segment, we arrive at the total length of heat trace cable 
required in the plant, where redundant heat trace cables are added to the system to allow for fast 
recovery from failed heat trace cables. Redundant cables are calculated so that there are always at 
least 50% more cables then necessary. If the number of cables on the pipe is less than four, then two 
redundant cables are added. The redundant cables are not wired and are only connected if a cable on 
the same pipe fails. The total number of cables, redundant and wired, can be used to generate the 
total heat trace system cost. 
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Figure 10. Temperature transients for the pipe, insulation, and internal salt during the freeze recovery. 

 
Figure 11. Effect of initial preheating temperature on melting time and the heat trace rating for a 
system with a 48” pipe using Solar Salt. 

The results in Tables 2–5 show that HiTec and Solar Salt both require 141,892 m of heat trace 
cable, while HiTec XL requires 143,592 m. The values for HiTec and Solar Salt are the same because 
the heat trace cables come in discrete numbers and rounding causes the slight difference in required 
power to be lost. HiTec XL heat trace system requirements are larger because the pipe sizes for a 
HiTec XL based system were found to be slightly larger than the other two salts. Heat trace system 
sizes are a function of the pipe sizes and the HTF properties, but, because pipe sizes are only a 
function of HTF properties, the heat trace system size can also be considered a function of HTF 
properties. 
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Table 2. Plant heat trace specifications for a HiTec XL-based plant with 388 collector loops. 

Nominal Pipe 
Size (in) 

Total Heat Trace 
Power Cold 
Pipes (kW) 

Total Heat 
Trace Power 

Hot Pipes (kW) 

Total Heat Trace 
Cable Length Cold 

Pipes (m) 

Total Heat Trace 
Cable Length Hot 

Pipes (m) 
4 64 62 904 904 
6 355 331 4250 4250 
8 1107 1045 11,748 11,748 
10 1921 1828 20,656 20,656 
12 2349 2231 22,464 22,464 
16 550 529 5684 4872 
18 676 652 6902 6090 

Plant Total 
7022 6678 72,608 70,984 

13,700 143,592 

Table 3. Plant heat trace specifications for a Solar Salt-based plant with 388 collector loops. 

Nominal Pipe 
Size (in) 

Total Heat Trace 
Power Cold 
Pipes (kW) 

Total Heat 
Trace Power 

Hot Pipes (kW) 

Total Heat Trace 
Cable Length Cold 

Pipes (m) 

Total Heat Trace 
Cable Length Hot 

Pipes (m) 
4 88 86 1248 1248 
6 391 365 4680 4680 
8 1138 1074 12,072 12,072 
10 1857 1767 19,968 19,968 
12 2217 2106 21,204 21,204 
16 550 529 5684 4872 
18 676 652 6902 6090 

Plant Total 
6917 6578 71,758 70,134 

13,496 141,892 

Table 4. Plant heat trace specifications for a HiTec-based plant with 388 collector loops. 

Nominal Pipe 
Size (in) 

Total Heat Trace 
Power Cold 
Pipes (kW) 

Total Heat 
Trace Power 

Hot Pipes (kW) 

Total Heat Trace 
Cable Length Cold 

Pipes (m) 

Total Heat Trace 
Cable Length Hot 

Pipes (m) 
3 16 15 280 280 
4 68 66 968 968 
6 391 365 4680 4680 
8 1138 1074 12,072 12,072 
10 1857 1767 19,968 19,968 
12 2217 2106 21,204 21,204 
16 550 529 5684 4872 
18 676 652 6902 6090 

Plant Total 
6913 6574 71,758 70,134 

13,488 141,892 

Table 5. Comparison of heat trace systems for three candidate salts for a plant with 388 collector loops. 

Salt Total Heat Trace Power (kW) Total Heat Trace Cable Length (m) 
HiTec XL 13,700 143,592 
Solar Salt 13,496 141,892 

HiTec 13,488 141,892 
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4.2. Results and Discussion for the Impedance System 

What is most significant to the sizing of an impedance heating system is its performance in off 
design conditions, such as during the night or in times of low solar irradiation. Figure 12 shows the 
melting time at different impedance voltages for a nominal system. An asymptotic behaviour is seen, 
where the salt is not able to be melted until a certain voltage threshold is reached. The effect of the 
high melting temperature of Solar Salt is observed on its ability to be melted. A much higher 
impedance voltage is needed to overcome the higher levels of heat loss due to the higher required 
melting temperature. 

 
Figure 12. Melting time as a function of the total solar collector assembly impedance voltage with the 
following system configurations: Solar radiation = 0 W/m2, wind speed = 5 m/s, glazing intact, vacuum 
intact. 

Figure 13 shows the melting time for a system with a compromised vacuum. Very high voltages 
are necessary to melt HiTec or HiTec XL, and no voltage under 90 volts can overcome the heat loss. 
The IEEE Std 844-2000 (IEEE Recommended Practice for Electrical Impedance, Induction, and Skin 
Effect Heating of Pipelines and Vessels) standard voltage limit of 80 volts hinders meeting this 
standard while still melting any of the salt options. This suggests that multiple transformers may be 
needed per solar collector assembly (SCA) to supply enough energy to cause melting. 

Tubes with no glazing were also studied, but no voltages were found that were capable of 
melting any of the salt options. For this reason, no graph is presented. 

The effect of wind speed on melting time was also considered. However, it was found that wind 
speeds of even 15 m/s had little (less the 5%) effect on the melting time. For the nominal tube, melting 
is possible for any operational wind condition. For a tube with broken or no glazing, melting is 
difficult or impossible without solar radiation. 

The material of the absorber was also analysed in this study. Currently ASTM 310 stainless steel 
is proposed. This material offers an appropriate resistivity value, but it could be improved. Since 
impedance heating is dependent on the square of current to determine power, materials with lower 
resistivities tend to perform better as heat generators. An analogy is shown below to help understand 
this trend. Given a large battery with two terminals, if the terminals are connected by something with 
high resistivity, like wood or plastic, no heat is generated. However, if the cables are connected to a 
material with low resistivity like copper, the wire will glow and generate large amounts of heat. 
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Figure 13. Melting time as a function of the total solar collector assembly impedance voltage with the 
following system configurations: Solar radiation = 0 W/m2, wind speed = 5 m/s, glazing intact, air in 
annulus at 1 atm, ambient temperature = 15 °C. 

Figure 14 shows the melting time relative to the current system configurations for various 
stainless steel types. A 10–15% decrease in the melting time can be achieved by switching to 201 or 
301 stainless steel. While this is an improvement, this change does not improve the overall situation 
significantly. 

The goal of the model development was to design the system necessary to supply adequate 
impedance heating to recover from a freeze event. To do this, an operational target was developed. 
The metrics used in the target are summarized in Table 6. 

One day was chosen as a melting time as a standard time from a commercial plant. Lost vacuum 
was chosen as the worst case because it is assumed that any collectors with broken envelopes would 
be repaired prior to melting. On the other hand, lost vacuums are not easy to diagnose and are often 
only replaced at infrequent intervals. Therefore, during a freeze event, some tubes with lost vacuums 
would need to be melted. 

Impedance heating provides a constant heat input along the entire length of the pipe. 
Furthermore, axial thermal conduction in the pipe and salt is minimal. This allows for each heat 
collection element (HCE) to be modelled as an island. That is, a HCE with no vacuum will melt at the 
same rate, no matter whether it is surrounded by tubes with vacuums intact, with no vacuum, or 
with no glazing. We assume that in every loop there will be at least one HCE with no vacuum, 
constraining our melting time to the melting time of an HCE with no vacuum. 
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Figure 14. Relative melting times for different types of stainless steel based on resistivity. 

Table 6. Operation target metrics. 

Metric Target 
Melting time 1 day 

Worst case configuration Lost vacuum 

A system using each salt was analysed for two electrical configurations: One transformer per 
SCA and two transformers per SCA. For the one transformer setup a connection cable length of 80 m 
was used. For the two-transformer setup 40 m was used. Figure 15 shows a design layout for a system 
with one transformer per SCA. The cable lengths are shown with the arrow tipped lines going to and 
from the transformer. The necessary voltage to reach the target conditions was calculated assuming 
no solar radiation. These results are tabulated in Table 7. HiTec and Solar Salt systems will need to 
have two transformers per SCA. 

Finally, the total melting time of the system was investigated. It was not considered that the 
whole field is melted simultaneously, so as not to penalize the cost of the transformers that feed the 
impedance currents. Different cases of loop simultaneity were considered. The number of loops 
capable of melting simultaneously was the parameter to optimize. Based on the cost of the DC 
conductor necessary to feed each loop and the complexity of the utility of switching the plant from a 
240 MW source to a 150 MW sink, the actual number was estimated to be around 10. This results in total 
plant melting times from 100 to 300 days. This represents a significant financial penalty for freezing. 

5. Conclusions 

Parabolic trough collector (PTC) technology with thermal oil as the HTF is currently the most 
mature solar technology that is implemented at commercial scale. The use of molten salts as HTF has 
the advantage of being able to work at higher temperature to increase plant efficiency, and the 
disadvantage of the potential freezing of the HTF in pipes and components. Two methods of freeze 
recovery needed in this design have been developed to evaluate the technical feasibility of molten 
salt in PTC systems. A model of heat tracing in pipes and components, and a model of impedance 
melting in the solar field has been developed in this paper to compare the freezing protection system 
in three molten salts mixtures, namely Solar Salts, Hitec and Hitec XL. 
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Figure 15. A design schematic for a system with one transformer per solar collector assembly (SCA), 
given with one possible voltage and amperage. 

Table 7. Necessary electrical system characteristics to meet the target condition of a one-day melting 
time for a tube with a compromised vacuum. NA represents that no American wire gauge (AWG) 
rating is sufficient. 

Parameter HiTec XL HiTec Solar Salt 
1 transformer per SCA 

Voltage (V) 69.37 77.26 104 
Current (A) 260.2 289.8 390.1 

Connector Area (mm2) 64,937 280,108 infinity 
Connector Gauge (AWG) 2 n.a. n.a. 

2 transformers per SCA 
Voltage (V) 34.69 38.63 52 
Current (A) 260.2 289.8 390.1 

Connector Area (mm2) 7616 9289 18,479 
Cable Gauge (AWG) 11 11 7 

In the heat tracing model, all piping included in the heat trace system was heated using a mineral 
insulted (MI) cable. This is the only type of heat trace cable that can withstand exposure temperatures 
over 250 °C. Mineral wool thermal insulation with an aluminium jacket was used on all traced piping. 
Mineral wool insulation was used on valve bodies and bonnets with removable blankets on the 
actuators. The heat tracing model has been created to size the heat tracing system for any pipe. In 
addition, the model has been applied to the overall pipe sizing and costing model to make future 
system cost estimations more accurate. 

The model has evaluated the recovery after a freezing event, obtaining that the melting times 
are acceptable for all pipe diameters proposed in the study. The result of the model also shows how 
HiTec salt requires less heat trace power in its operation. When evaluating the three fluids, it is 
concluded that the recovery from freezing in a molten salt plant is possible. The threat of system wide 
HTF freeze events does not invalidate the concept of molten salt HTFs. 
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In the impedance model, the receiver tubes were heated with impedance heating, which 
consisted of a standalone panel and transformer for each collector. Each impedance heating system 
was a mid-point system to avoid the need for electrical isolation between the receiver tubes and 
adjacent piping. 

The impedance heating model has analysed the performance under off-design conditions (tubes 
with lost vacuum and high wind losses), showing the increase in the melting time for tubes with a 
compromised vacuum. This requires working with two SCA transformers for HiTec and Solar Salt. 
Additionally, more than 100 days will be needed to completely melt a fully frozen solar field. 

Even when the melting times involved are not ideal, the reliability of an impedance-based 
recovery system is high and, as such, freeze events do not stand in the way of future work on molten 
salt HTF systems. 

The models developed show that both systems are technically feasible, since the plant may 
recover from a freezing event in all studied cases, although the recovery times considerably penalize 
the performance of the plant. Therefore, an economical detailed study including capital expenditure 
and operational expenditure (CAPEX and OPEX) is necessary to see which system is the best for a 
commercial plant. 
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