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Abstract: This paper presents a mixed receding horizon control (RHC) strategy for the optimal
scheduling of a battery energy storage system (BESS) in a hybrid PV and wind power plant while
satisfying multiple operational constraints. The overall optimisation problem was reformulated as
a mixed-integer linear programming (MILP) problem, aimed at minimising the total operating cost of
the entire system. The cost function of this MILP is composed of the profits of selling electricity, the cost
of purchasing ancillary services for undersupply and oversupply, and the operation and maintenance
cost of each component. To investigate the impacts of day-ahead and hour-ahead forecasting for
battery optimisation, four forecasting methods, including persistence, Elman neural network, wavelet
neural network and autoregressive integrated moving average (ARIMA), were applied for both
day-ahead and hour-ahead forecasting. Numerical simulations demonstrated the significant increased
efficiency of the proposed mixed RHC strategy, which improved the total operation profit by almost
29% in one year, in contrast to the day-ahead RHC strategy. Moreover, the simulation results also
verified the significance of using more accurate forecasting techniques, where ARIMA can reduce the
total operation cost by almost 5% during the whole year operation when compared to the persistence
method as the benchmark.

Keywords: battery energy storage system; hybrid PV and wind power plant; receding horizon
control; Elman neural network; wavelet neural network; autoregressive integrated moving average

1. Introduction

As wind turbine and PV panel technology has become more mature, their increasing installation
has facilitated the penetration of renewable energy into the power system. It can be envisioned that PV
and wind power will still be the two dominant renewable energy resources for future applications.
Moreover, significant cost reductions for both technologies are foreseen [1]. Therefore, the combination
of wind and PV farms as a hybrid power plant (HPP) is a quite promising future source of power
generation, either through constructing an entirely new hybrid power plant or retrofitting an existing
PV/wind farm to create a hybrid plant. Furthermore, from an overall large-scale view, PV and wind
power tend to show a synergistic feature, with PV and wind power being separately dominant during
diurnal and nocturnal periods [2].

However, the application of the HPP also brings challenges that can limit the benefits mentioned
above. One of the most discussed potential challenges is the uncertainty arising from the dependence
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on two intermittent resources. This will pose higher requirements for forecast accuracy and the
tolerance level of the grid. To cope with the uncertainty of a PV/wind farm, numerous studies have
suggested the use of battery energy storage systems (BESS) to provide a range of services for its
overall performance [3–5], ranging from mitigating the variability of renewable energy in small scale
renewable systems to deferring transmission and distribution networks upgrades in large-scale systems.
Therefore, methods for optimising battery sizing and usage have drawn significant attention.

For battery energy management, the forecasting of PV and/or wind power generation is vital
for constructing the battery optimisation strategy. Previous studies have used renewable energy
forecasts to achieve the optimal battery energy management. However, numerous studies exist that
investigate the cost minimisation through dispatching a battery without using forecasting techniques.
The examples of such studies can be found in [6,7] where the forecasting results were assumed to
be known. Another example is that the forecasting results were obtained from previous published
tools [8]. There are also many studies of battery optimisation to achieve minimum costs or maximum
profits using only one forecasting technique [9,10]. Although the complexity of the models was reduced
in these studies, it will not be able to observe the impact of different forecasting methods on the
optimisation results. Therefore, in this study, the forecasting results from different forecasting methods
are integrated into the optimisation model, which will fill the gap that few studies have demonstrated
the impact on the accuracy of the forecast in terms of the range of optimisation results.

For the optimisation strategy, previous studies have presented day-ahead optimisation using
either day-ahead forecasting [11] or day-ahead forecasting with a moving window [12]. Moreover,
there are different forecast time horizons to accommodate bidding into the market. There are also
many techniques which have advantages/disadvantages as the time horizon increases. Note that it is
broadly accepted that the forecasting accuracy will decrease as the time horizon increases [13]. To make
full use of the forecasted information, previous studies attempted to enhance battery optimisation
by using multiple stages, with one stage using the long-term information and another stage using
short-term forecasting [14]. Another example was the use of a holistic framework to dispatch the
battery with day-ahead, short-term (4 hours) and semi-real-time (1 minute) stages [10]. However,
multi-stage optimisation strategies are computationally intensive.

One of the commonly used approaches using multiple time horizons is receding horizon control
(RHC). The concept behind the RHC is that, among the optimal controls over the entire fixed horizon,
only the first value is adopted as the current control law [15]. In terms of the state-space model, it is the
same as the model predictive control (MPC) framework [15]. MPC is one of the commonly used control
approaches for battery energy optimisation [16]. For example, one of the applications of MPC for
battery energy management is to maximise the users’ benefits in a residential microgrid [17]. Another
example employing the MPC framework for a short-term dispatch strategy with a 4-hour time horizon
is [10]. In this study, the receding horizon control was implemented to update the optimisation hourly
with a 24-hour horizon to minimise the total operation cost of the hybrid power plant. The proposed
mixed RHC with both day-ahead and hour-ahead forecasts is compared with the day-ahead RHC and
the day-ahead optimisation that does not use a receding horizon control.

The novelty of this study is the presentation of a mixed RHC strategy, which combines both
long-term and short-term forecasting information in one strategy or in one stage, instead of using
two separate stages, to improve the efficiency of computation. There are two different time horizons
under consideration, i.e., day-ahead [18] and hour-ahead forecasting [19]. In addition, the impacts
of using different forecasting methods in this mixed RHC strategy are also investigated. In this
study, the long-term forecasting here refers to day-ahead forecasting, while the short-term forecasting
indicates hour-ahead forecasting.

The key contributions of this paper include: 1) The presentation of a mixed RHC strategy to
achieve the optimal scheduling of a BESS by combining the forecasting from long-term and short-term
forecasting. 2) The demonstration of applying the reformulation technique to efficiently solve a complex
non-linear optimisation problem by converting it into a tractable mixed-integer linear programming
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(MILP) problem. This reformulation can also be widely applied for other optimisation problems with
logic judgements included. 3) The achievement of a significantly lower HPP operation cost by using
a mixed RHC dispatch strategy. This optimisation strategy was presented to optimally manage the
battery storage in an HPP by using both long-term and short-term forecasting information with one
optimisation stage. 4) The illustration of the importance of using more accurate forecasting techniques
and shorter forecasting horizons in the minimisation of HPP operation cost. This was achieved through
an investigation of four different forecasting techniques with both day-ahead and hour-ahead forecast
horizons for battery optimisation.

The remainder of this paper is organized as follows: the architecture of the proposed hybrid power
plant is described with its modeling approaches demonstrated in Section 2; the forecasting techniques
are then illustrated in Section 3 and the problem formulation is outlined in Section 4; in Section 5,
the detailed application of the four different BESS dispatch strategies are presented and are followed
by the numerical simulations and discussions in Section 6; the conclusions are presented in Section 7.

2. Architecture of Hybrid PV and Wind Power Plant

The basic structure of a PV and wind HPP is illustrated in Figure 1. The power generation from
PV arrays and wind turbines, and the instantaneous power of the BESS are aggregated at the Point of
Common Coupling (PCC). The aggregated power is then fed into the grid.
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The PV and wind modelling procedures are simplified by using HOMER Pro (HOMER Energy
LLC, Boulder, Colorado, USA) [20], a software for hybrid renewable energy systems design developed
by the United States National Renewable Energy Laboratory (NREL). In this study, HOMER was used
to convert the weather resources data such as global horizontal irradiance (GHI), wind speed and air
temperature data into PV and wind turbine power output.

For BESS modelling, the most generally used generic model [21] is adopted here with Equations
(1) and (2) show the charging and discharging process, respectively:

SOC(i + 1) = SOC(i) +
PBESS(i)ηc∆t

ECBESS
(1)

SOC(i + 1) = SOC(i) +
PBESS(i)∆t
ηdECBESS

(2)

where SOC(i) denotes the state of charge (SOC) of the BESS at time step i, and PBESS(i) represents the
instantaneous power flow to the BESS at time step i with positive values of PBESS(i) implying that the
battery is charging while negative values suggesting that the battery is discharging; ηc and ηd indicate
the charging and discharging efficiencies of the BESS; ∆t denotes the time interval from time step i to
i + 1; ECBESS represents the energy capacity of the BESS.
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With this model, the relationship between a battery’s instantaneous power and the SOC can be
described. The parameters of ηc and ηd also vary with the type of battery technology. In this paper,
a lead-acid battery is modelled as the battery storage for this HPP. This is because lead-acid batteries
are the most mature and widely used system from a range of battery technologies. It should be noted
that the framework for applying batteries in the operation of HPP can also be adapted for other types
of batteries with the corresponding modifications. The details of different battery parameters can be
found in [22].

The aging process of the battery system is also considered by using a degradation coefficient,
which takes the aging from time and cycling into account. It is assumed that a lead-acid battery will
reach its lifetime when there is a capacity loss of 20% [23]. Thus, the maximum degradation rate can be
calculated by using the number of cycles under the maximum depth of discharge (DOD) as shown
in Equation (3). Moreover, in this study, it is assumed that the degradation coefficient only changes
with respect to the DOD as shown in Equation (4). Thus, the model is simplified by disregarding
other influencing parameters such as the number of equivalent full cycles and operating temperature.
The degradation model is consequently applied, as shown in Equation (5), to update the energy capacity
of the battery after each BESS scheduling period as a separate process to the optimisation model:

γmax =
20%

Ncycle
(3)

γ =
DOD(i)
DODmax

γmax (4)

ECBESS(i + 1) = ECBESS(i) − γECBESS(0) (5)

where γ and γmax denote the degradation coefficient and the maximum degradation coefficient of the
battery, respectively; DODmax indicate the maximum DOD of the battery; Ncycle means the number of
cycles under the maximum DOD.

3. Forecasting Techniques

To showcase the impacts of different forecast methods on the BESS optimisation, different
forecasting techniques have been applied for renewable energy prediction, for both day-ahead and
hour-ahead horizons. The techniques are persistence (P), Elman Neural Network (ENN), Wavelet
Neural Network (WNN) and Autoregressive integrated moving average (ARIMA) model.

The persistence model [24] is used as a benchmark in this study. For comparison, three of the most
popular statistical methods from numerous previous studies were selected for both solar and wind
forecasting, i.e., ENN [25], WNN [26] and ARIMA [27]. The basic principle behind the persistence
method is straight-forward, i.e., for day-ahead forecasts, it is assumed that the power generation of the
next day is identical with that of the previous day, as shown in Equation (6). Similarly, for hour-ahead
forecasts, the power generation of the next hour is considered to be the same as the power generation
of the previous hour:

FPV/wind(i + ∆t) = PPV/wind(i) (6)

where FPV/wind and PPV/wind denote the forecasted and actual power generation of the PV or wind
turbines (F and P denote the forecasted and actual power generation with subscripts for PV, wind or
HPP). In addition, when ∆t = T, this represents day-ahead forecasting, whereas ∆t = 1h, represents
hour-ahead forecasting.

ENN and WNN both originate from the Artificial Neural Network (ANN) concept, which usually
contains three layers, i.e., input layer, hidden layer and output layer. The sum of the weighted inputs
in each layer will be fed into the activation or transfer function and the output can be produced.
ENN differs from a standard ANN with an extra input named as “context units” that can work as
delayed memory. This can strengthen its ability to model dynamic characteristics and perform time
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series forecasts [25]. This characteristic has seen ENN applied for both solar irradiance [28–30] and
wind speed forecasting [31–33].

Moreover, the difference between ANN and WNN is that WNN uses the Morlet or other wavelet
functions [26] rather than other commonly used activation functions such as the sigmoid function.
This can increase its ability to model non-linear relationships, as wavelet functions contain strong
dynamic features [26]. WNN has also been used for both solar irradiance [26] and wind speed
forecasting [34] in the literature.

As one of the most commonly used statistical methods, ARIMA is also investigated in this study
to compare its effectiveness for battery optimisation with neural network approaches. ARIMA models
aim to find the most appropriate coefficients to construct a linear representation for the forecasted
values by their p past values of the time series (autoregressive part) and their q past values of the white
noise (moving average). The detailed formulation of this model can be found in [27]. In this study,
a 24-step 1-order difference has been used due to the obvious 24-hour cyclical feature.

To enable forecasting for a whole year from a limited amount of data, a resampling approach
called k-fold cross validation was implemented. The k-fold cross validation involves partitioning the
original sample into k equally sized subsets. From the k subsets, a single subset is retained as the
validation data (testing set), whereas the remaining k−1 subsets are used as training data (training
sets) [35]. The method shuffles through the data so that each subset is selected as the testing set
exactly once while the other subsets are arranged sequentially as training sets, as shown in Figure 2.
The advantage of this method over repeated sub-sampling is that it will produce a more accurate and
unbiased estimation of the performance, as all observations are used for both training and validation,
and each observation is used for validation exactly once. 4-fold cross validation is used in this study,
due to the conclusion from study [36], which advised the use of 4-fold cross validation for ANN
ensembles after their investigation on k-fold cross validation with k ranging from 2 to 8.
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To simplify the process, the data for an entire year was partitioned into quarters, as shown in
Figure 2, and use 4-fold cross validation, to generate the forecasting for the whole year. The four subsets
reflect the four quarters in one year and each subset contains the data for three months. Moreover,
the input data for each method are shown in Table 1.

Table 1. Input data for each forecasting model.

Forecasting Methods Day-ahead Forecasting Hour-ahead Forecasting

Persistence Previous one day data Previous one hour data

ENN Previous 4 days data Previous 4 hours data

WNN Previous 4 days data Previous 4 hours data

ARIMA Previous 20 days data Previous 20 hours data
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4. Problem Formulation

4.1. Cost Function

In this study, the operation of the hybrid power plant follows electricity market rules, taking
the related costs into consideration. The market rules from the Australian Energy Market Operator
(AEMO) [37] will be used as an example. The hybrid power plant can be registered as a semi-scheduled
power plant. Semi-scheduled generators are those registered generating units greater than 30 MW
with intermittent generation (wind and solar farms) [38]. A semi-scheduled generating unit will
be dispatched the same as scheduled power plants when AEMO sets its dispatch interval flag as
“TRUE” [39]. Thus, it is assumed that the hybrid power plant will be dispatched as a scheduled power
plant, which is allowed to modify the generation bid up to five minutes prior to each dispatch period.
The profits of selling electricity to the National Electricity Market (NEM) is an important part of the
total operation cost.

Another important component of the HPP operation cost is the penalty from ancillary services
required for undersupply and oversupply. Undersupply occurs in instances when actual power
generation does not meet the expected forecast whereas the opposite is true for oversupply. In the
case of undersupply, the HPP is not generating enough power to meet its bid in the electricity market
and thus, requires Frequency Control Ancillary Services (FCAS) for Regulation Raise. Similarly, in the
case of oversupply, the HPP generates power in excess of its electricity market bid and so Frequency
Control Ancillary Services (FCAS) for Regulation Lower are required [40].

Before the detailed formulation, a number of variables are introduced in Equations (7) to (10),
including PHPP, FHPP, PUS and POS. PUS denotes the power of undersupply and POS denotes the
power of oversupply. Note that all bold variables denote a vector with T entries, where T is the
simulation horizon, T = 24 in this paper:

PHPP = PPV + Pwind (7)

FHPP = FPV + Fwind (8)

PUS = max(FHPP −PHPP + PBESS, 0) (9)

POS = min(FHPP −PHPP + PBESS, 0) (10)

where PPV, Pwind, FPV and Fwind denote the actual power generation of PV arrays and wind turbines,
and the forecasted power generation of PV arrays and wind turbines, respectively. PBESS indicates the
power output of the BESS.

Therefore, the cost function of this problem can be formulated in Equation (11), including the
profits from selling electricity, the costs from ancillary services for undersupply and oversupply, and the
operation and maintenance cost for each component, with PBESS as the decision variable, which is
to be determined. To clarify, the prices of ancillary services for undersupply and oversupply were
evaluated by using the weighted electricity prices, i.e., the electricity prices multiplied by the penalty
rates, ρUS and ρOS, respectively. In this way, the impacts of penalty rates on the optimisation results
can be evaluated and analysed directly:

J = −EP′(PHPP −PBESS)∆t + ρUSEP′PUS∆t + ρOSEP′POS∆t + OMPVPCPV + OMwindPCwind
+OMBESSPCBESS

(11)

where J stands for the total operation cost of the HPP; EP indicates the electricity prices over the
simulation horizon; ρUS and ρOS are the penalty rate of ancillary services for undersupply and
oversupply, respectively. The first component in Equation (11) represents the electricity profits,
and the second and third partitions express the costs from ancillary services for undersupply and
oversupply, respectively. There is a negative sign in the front of the first component, due to this equation
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demonstrating the total operation cost. Apart from this, the rest of the items denote the operation
and maintenance cost of each component in this HPP with PCPV, PCwind and PCBESS representing
the power capacities of the PV arrays, wind turbines and BESS, respectively, and OMPV, OMwind and
OMBESS denoting the operation and maintenance costs of the PV arrays, wind turbines and BESS,
respectively. To note that this formulation is to minimise the operation costs of the HPP, which will
lead to the same optimisation outcome as maximising the operation profits of the HPP.

4.2. Constraints

Apart from the cost function, the decision variable PBESS is also limited by the power capacity of
the BESS and other constraints. Thus, the constraints for BESS scheduling include the power capacity
constraint of the BESS in Equation (12) and that of the HPP in Equation (13), and the lower and upper
SOC boundaries in Equation (14):

− PCBESS ≤ PBESS(i) ≤ PCBESS (12)

In Equation (12), the magnitude of charging and discharging boundaries for the battery are
regarded as the same as its power capacity. For clarity, PBESS(i) denotes the ith entry of PBESS ∈ R(N,1),
and similar rules apply to the other T × 1 vectors.

Next, the upper and lower boundaries of the HPP can also limit the decision variable of PBESS(i),
as Equation (13) shows:

0 ≤ PHPP(i) − PBESS(i) ≤ PCHPP (13)

where PCHPP denotes the power capacity of the HPP, which is the sum of the power capacity of the PV
arrays and wind turbines.

Another important constraint is the lower and upper SOC boundaries of the BESS. The relationship
between SOC(i) and PBESS(i) follows Equations (1) and (2). To avoid severe degradation during
battery operation due to high DOD, the lower and upper bounds of SOC are adopted as 40% and 100%
respectively. Although the revenue of the hybrid system may be underestimated with a relatively
small DOD (70% in [23]), the reliability of the system can be ensured with sufficient spare energy saved
in the battery:

40% ≤ SOC(i) ≤ 100% (14)

To formulate the cost function and constraints above, the standard form of the optimisation
problem is shown below, where PBESS is the decision variable:

MinJ = −EP′(PHPP −PBESS)∆t + ρUSEP′max(FHPP −PHPP + PBESS, 0)∆t+

ρOSEP′min(FHPP −PHPP + PBESS, 0)∆t + OMPVPCPV + OMwindPCwind + OMBESSPCBESS
(15)

Subject to Equations (13) and (14):

40%ECBESS·I ≤ EBESS(0)·I + A·PBESS∆t ≤ 100%ECBESS·I (16)

where I ∈ R(N,1) represents the unit N × 1 vector. It can also be seen that the constraint Equation (16)
reflects Equation (14). In Equation (16), the charging and discharging efficiencies are ignored, which will
be integrated in the reformulated version later (see Section 4.3). EBESS(0) here denotes the initial energy
in the BESS. The matrix A can be expressed as:

A =


1 0 · · · 0
1 1 · · · 0
...

...
. . . · · ·

1 1 · · · 1
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4.3. Reformulation

In Section 4.2, the optimisation problem was expressed as a continuous variable nonlinear
programming problem due to the existence of max and min operators. Here the problem is reformulated
into a mixed-integer linear programming problem by introducing two auxiliary variables, outlined
in [18,41]. The added auxiliary variables, δBESS and δd ∈ R(N,1) are both binary variables and so δBESS,
δd ∈ (0, 1). More specifically, δBESS denotes the auxiliary variable to indicate the status of the battery to
be charged or discharged, and δd denotes the auxiliary variable to indicate the status of the difference
between the forecasted and actual power generation of the HPP to be positive or negative.

By introducing the two auxiliary variables, the nonlinear optimisation problem has been converted
into a MILP problem through extending the dimension of decision variables. The detailed reformulation
can be found in Appendix B. The cost function can be formulated in a more compact form below,
where u is the decision variable or control variable, and σ1 and σ2 are the coefficient vectors for the
decision variable and the coefficient vector independent on the decision variable:

J = σ′1u + σ′2I (17)

u′ =
[

PBESS δBESS zBESS δd zd
]

(18)

σ′1 =
[
(1− ρOS)EP 0 0 0 (ρUS + ρOS)EP

]
(19)

σ2 =



−EP(1)PHPP(1)
...

−EP(T)PHPP(T)
−ρOS(FHPP(1) − PHPP(1))

...
−ρOS(FHPP(T) − PHPP(T))

OMPV·PCPV

OMwind·PCwind
OMBESS·PCBESS



(20)

Hence, the mixed-integer linear programming problem is shown below. The decision variables of
this problem have been expanded from PBESS to u with an increased dimension:

MinJ = σ′1u + σ′2I

Subject to Equations (12), (13), (16) and other constraints from reformulation:

δBESS(i) ∈ (0, 1), i= 1, 2, · · ·T

δd(i) ∈ (0, 1), i= 1, 2, · · ·T

5. Mixed Receding Horizon Control Strategy

In this paper, a mixed RHC strategy was proposed for optimal scheduling of the battery storage
system. Compared to the optimisation strategies from previous literature, such as day-ahead dispatch
and day-ahead RHC dispatch, the mixed RHC dispatch takes advantage of the mechanism of the
electricity market that allows the power plants to modify its bidding one hour ahead (this is different
from the operation rules, which allow re-bids up to five minutes before dispatch, due to the use of
hourly data). Therefore, the mixed RHC dispatch uses both day-ahead forecasting and more accurate
hour-ahead forecasting. The forecasted value of the next hour from the day-ahead forecasting is
substituted by the more accurate hour-ahead forecasting. For comparison, four different cases are used
to represent different strategies:
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• Case NB: No battery—used for benchmarking with no battery installed;
• Case DD: Day-ahead dispatch—use the results from day-ahead forecasting;
• Case DR: Day-ahead RHC dispatch—use the results from day-ahead forecasting with

a receding horizon;
• Case MR: Mixed RHC dispatch—applies results from both day-ahead and hour-ahead forecasting

with a receding horizon.

The schematic diagrams of Cases DD, DR and MR are shown in Figure 3.

Energies 2019, 12, x 8 of 24 

 

form below, where 𝒖 is the decision variable or control variable, and 𝝈  and 𝝈  are the coefficient 
vectors for the decision variable and the coefficient vector independent on the decision variable: 𝐽 = 𝝈𝟏𝒖 + 𝝈𝟐𝑰  (17) 𝒖 = 𝑷𝑩𝑬𝑺𝑺 𝜹𝑩𝑬𝑺𝑺 𝒛𝑩𝑬𝑺𝑺 𝜹𝒅 𝒛𝒅  (18) 𝝈 = (1 − 𝜌 )𝑬𝑷 𝟎 𝟎 𝟎 (𝜌 + 𝜌 )𝑬𝑷  (19) 

 𝝈 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

−𝐸𝑃(1)𝑃 (1)⋮−𝐸𝑃(𝑇)𝑃 (𝑇)−𝜌 (𝐹 (1) − 𝑃 (1))⋮−𝜌 (𝐹 (𝑇) − 𝑃 (𝑇))𝑂𝑀 ∙ 𝑃𝐶𝑂𝑀 ∙ 𝑃𝐶𝑂𝑀 ∙ 𝑃𝐶 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤     (20) 

Hence, the mixed-integer linear programming problem is shown below. The decision variables 
of this problem have been expanded from 𝑷𝑩𝑬𝑺𝑺 to 𝒖 with an increased dimension: 

Min    𝐽 = 𝝈𝟏𝒖 + 𝝈𝟐𝑰 

Subject to Equations (12), (13), (16) and other constraints from reformulation: 𝛿 (𝑖) ∈ (0,1), 𝑖=1,2,⋯ 𝑇 𝛿 (𝑖) ∈ (0,1), 𝑖=1,2,⋯ 𝑇 

5. Mixed Receding Horizon Control Strategy 

In this paper, a mixed RHC strategy was proposed for optimal scheduling of the battery storage 
system. Compared to the optimisation strategies from previous literature, such as day-ahead dispatch 
and day-ahead RHC dispatch, the mixed RHC dispatch takes advantage of the mechanism of the 
electricity market that allows the power plants to modify its bidding one hour ahead (this is different 
from the operation rules, which allow re-bids up to five minutes before dispatch, due to the use of 
hourly data). Therefore, the mixed RHC dispatch uses both day-ahead forecasting and more accurate 
hour-ahead forecasting. The forecasted value of the next hour from the day-ahead forecasting is 
substituted by the more accurate hour-ahead forecasting. For comparison, four different cases are 
used to represent different strategies: 

• Case NB: No battery—used for benchmarking with no battery installed; 
• Case DD: Day-ahead dispatch—use the results from day-ahead forecasting; 
• Case DR: Day-ahead RHC dispatch—use the results from day-ahead forecasting with a receding 

horizon; 
• Case MR: Mixed RHC dispatch—applies results from both day-ahead and hour-ahead 

forecasting with a receding horizon. 

The schematic diagrams of Cases DD, DR and MR are shown in Figure 3.  

 

Figure 3. The diagrams of Cases DD, DR and MR. Figure 3. The diagrams of Cases DD, DR and MR.

Case MR intuitively used the information from two different forecast horizons, including
long-term information (day-ahead forecasting) and short-term information (hour-ahead forecasting).
The long-term forecasting is significant for day-ahead market operation. This is because, in the
day-ahead market, the market operators need to schedule the dispatchable generators to ensure the
balance between generation and anticipated demand. Thus, for the HPP owner, in addition to the
day-ahead forecasting for PV and wind generation, it is also necessary to optimally schedule the
operation of the BESS for a day-ahead horizon especially in the case of extreme scenarios.

The implementation of the mixed RHC optimisation strategy is demonstrated by the flow chart
shown in Figure 4. Due to the usage of hourly data, the dispatch is updated hourly. Note that the
optimisation framework can also be adapted to other time horizons. The following steps are performed:

Step 1: Forecast. The day-ahead and hour-ahead forecasting were performed at each time step (hourly
in this paper).

Step 2: Combine the day-ahead forecasting and hour-ahead forecasting. The first entry in day-ahead
forecasting is replaced by the hour-ahead forecast.

Step 3: Solve the optimisation problem. Using the corrected forecasting as inputs and the formulated
Mixed-integer Linear Programming (MILP) problem, it can be solved by CPLEX with
MATLAB API.

Step 4: BESS dispatch. By using the RHC strategy, the first entry in the decision vector which represents
BESS dispatch power is adopted as the dispatch command to direct the charge/discharge of
the BESS.

After Step 4, the procedure returns to Step 1 for the next time step, until it reaches the
simulation duration.
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6. Simulation Results and Discussion

6.1. Simulation Case Setting

In this study, the simulated system consisted of 15 MW of PV panels, 15 MW of wind turbines,
and a BESS with 10 MW of power capacity and 50 MWh of energy capacity. The solar and wind
resources used are weather data from the Bureau of Meteorology [42]. The data are for Goulburn,
Australia in 2001. Goulburn has a subtropical highland climate with warm summers and cold winters.
Global Horizontal Irradiation (GHI) data is used as the solar resource, as PV production is highly
dependent on it. Similarly, wind speed data (10-meter height) is used as the wind resource, which is
scaled up to 80-meter hub height for power conversion by using the power law [43]. The wholesale
prices of New South Wales were captured from Nemsight [44] in 2001 as the electricity prices in the
simulation (the unit of electricity prices is AUD, due to the context of Australian electricity market.
In order to keep consistency, all the costs and profits are also expressed in AUD). The box chart
of electricity prices is given in Appendix A. The electricity price data for 2001 was also used to be
consistent with the year of the weather data simulations.

The simulation interval in this study is 1 hour, and the optimisation process was repeated to
optimise the operation of the HPP for a year. The annual operation and maintenance costs of PV,
wind turbines and battery used here are 11.43 AUD and 20.33 AUD per kW [45] and 22.36 AUD per kW
using a lead-acid battery [46]. Additionally, both charging and discharging efficiencies in this paper
are adopted as 0.9 [22]. With similar charge and discharge patterns of battery operation in each day,
the battery degradation coefficient is simplified as a constant of 0.005% per day. This assumption is
consistent with the field test experiments in [47,48] with 2% capacity decrease in 1.5 years. Furthermore,
the penalty rates of ρUS and ρOS were chosen to be 1, which implies the penalty for the demanded
ancillary services for undersupply and oversupply are the same with the electricity price [25].
In addition, the impacts of changing ρUS and ρOS from 1 to 10 are investigated, which can cover the
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scenarios from underestimation to overestimation. When the penalty rate of ρUS equals 1, the costs from
undersupply may be underestimated. In the actual power plant operation, the cost from oversupply
may be partially offset by the electricity profits it makes. Therefore, the cost of oversupply will be
overestimated, this is especially when the case ρOS = 10.

The simulation environment is MATLAB R2016b (MathWorks, headquarters in Natick,
Massachusetts, USA) with the IBM CPLEX API and the machine specification is a Dell system
with an Intel i5-6200 2.30 GHz CPU and 8 GB RAM. The computational time for different strategies can
be found in Table 2.

Table 2. Computational times for different optimisation strategies.

Case Computational Time for One-year Simulation

Case NB 0.26 seconds

Case DD 20.28 seconds

Case DR 211.79 seconds

Case MR 235.49 seconds

It is clear that Case NB without a battery installed is the fastest to be terminated out of the four
strategies. It is also noticeable that Case MR only requires about 11% more computational time to
have a significantly improved performance than Case DR. This is mainly due to in the implementation
process. Case MR requires additional short-term forecasting in each simulation time step whereas only
day-ahead forecasting is used for Case DR. The assumptions used for each simulation are summarised
in Table 3.

Table 3. Assumptions for the simulation modelling.

Items Assumptions

System design

PV panels: 15 MW

Wind turbines: 15 MW

BESS: 10 MW of power capacity and 50 MWh of energy capacity

Battery technology

It is assumed that the degradation coefficient only changes with
respect to the DOD.

It is assumed that, with similar charge and discharge patterns of
battery operation in each day, the battery degradation coefficient is

simplified as a constant of 0.005% per day.

It is assumed that a lead-acid battery will reach its lifetime when there
is a capacity loss of 20%.

Market (All cost and profit values
in this paper are expressed in

Australian dollars (AUD).)

It is assumed that the hybrid power plant will be dispatched as
a scheduled power plant.

It is assumed that the bids from HPP are always accepted by the
National Electricity Market (NEM).

It is assumed that the penalties for oversupply and undersupply are
express by the electricity prices multiplied by the penalty rates.

6.2. Forecasting Results

There are four different forecasting techniques that have been implemented for the prediction of
both resources. The results of those techniques were compared using several metrics with persistence
applied as the benchmark, mean absolute error (MAE), mean biased error (MBE), root mean square
error (RMSE), normalized root mean square error (nRMSE) and the coefficient of determination (R2) [48].
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To make GHI and wind speed comparable, the forecasting results are normalized as per unit before
calculating the errors.

Table 4 presents a comparative summary of GHI and wind speed forecasting results using the
four different methods. Note that the nomenclature, Day-ahead Forecast (D) and Hour-ahead Forecast
(H), are used in Table 4 (this is also applied in Figure 5 and Table 5).

Table 4. GHI and Wind Speed Forecasting Results.

Resource Horizon Method MAE MBE RMSE nRMSE R2

GHI D Persistence 0.0367 1.29×10−18 0.0854 0.2537 0.9026

GHI D ENN 0.0394 5.8×10−4 0.0735 0.2184 0.9278

GHI D WNN 0.0520 0.0154 0.1000 0.2972 0.8663

GHI D ARIMA 0.0361 0.0016 0.0733 0.2177 0.9283

GHI H Persistence 0.0562 −2.78×10−6 0.0899 0.2671 0.8920

GHI H ENN 0.0237 −0.004 0.0441 0.1311 0.9740

GHI H WNN 0.0214 3.7×10−4 0.0394 0.1171 0.9792

GHI H ARIMA 0.0168 5.6×10−4 0.0365 0.1084 0.9822

Wind speed D Persistence 0.1283 −2.6×10−18 0.1708 0.5819 0.0719

Wind speed D ENN 0.1156 −0.0044 0.1493 0.5088 0.2903

Wind speed D WNN 0.1337 −0.0179 0.1748 0.5956 0.0278

Wind speed D ARIMA 0.1145 0.0039 0.1521 0.5184 0.2633

Wind speed H Persistence 0.0638 −1.27×10−19 0.0876 0.2985 0.7557

Wind speed H ENN 0.0651 1.7×10−4 0.0852 0.2903 0.7691

Wind speed H WNN 0.0677 −0.0160 0.0886 0.3020 0.7501

Wind speed H ARIMA 0.0657 0.00148 0.0886 0.2951 0.7614

Note that negative values for MBE indicate that the forecast underestimates the available resources
whereas positive values indicate a tendency for undersupply. From Table 4, with the four forecasting
techniques, GHI seems to be predicted with a higher accuracy than wind speed, since the MAE, MBE,
RMSE and nRMSE of GHI are generally smaller than that for wind speed and the R2 of GHI is also
significantly larger than that for wind speed. It can also be observed that the coefficient of determination
in GHI is much higher than that in wind speed. This is largely due to the predictable path of the sun,
whereas there are much stronger dynamic characteristics within wind speed data. Moreover, it is
noticeable that hour-ahead forecasting can significantly outperform day-ahead forecasting, except for
using persistence for GHI, since hour-ahead persistence for GHI will always be tracing the previous
hour’s data. This implies that the day-ahead value at the same hour is more critical than the hour-ahead
value for GHI forecasting.

The nRMSE of each forecast technique is shown in Figure 5. It can be observed that it is easier
for GHI to be predicted to a higher level of accuracy, as it has a more regular pattern, when using
historical data, while wind speed has higher variability and is more difficult to forecast precisely
by using historical data. Furthermore, hour-ahead forecasting demonstrated a much better level of
accuracy than day-ahead forecasting for both resources. For most methods, hour-ahead forecasting
can almost halve the forecasting errors in day-ahead forecasting. Among the four forecasting methods,
ENN and ARIMA both showed good performance in terms of their accuracy and robustness. They can
reduce about 20% of nRMSE on average, compared to using persistence or WNN. WNN tends to show
a better performance for hour-ahead forecasting, which can achieve similar performance to ENN and
ARIMA. However, for day-ahead forecasting, WNN shows worse performance, even slightly worse
than persistence for both GHI and wind speed forecasting.
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Furthermore, HOMER is used to transform both the forecasted and measured weather resources
data to the forecasted and actual power generation, respectively. Table 5 shows the errors between the
forecasted and actual power generation of the HPP predicted by HOMER. In terms of the forecasting
accuracy of different forecasting methods, the performance from the errors between the forecasted and
actual power generation of the HPP are generally consistent with that from the forecasting errors of
GHI and wind speed. It also demonstrates the combined effect from GHI and wind speed forecasts,
due to the metrics for the combined errors between the forecasted and actual power generation of the
HPP, such as R2, lower than that of GHI, but higher than that of wind speed. This also reflects that
the forecast errors from wind speed contribute more in the forecast errors of the combined power,
in comparison to that from GHI. From Table 5, we can see that ENN and ARIMA can significantly
outperform the other two forecasting methods and WNN shows a poorer performance for day-ahead
forecasting than persistence, but a better performance for hour-ahead forecasting.

Table 5. The Errors Between the Forecasted and Actual Power Generation of the HPP.

Horizon Method MAE MBE RMSE nRMSE R2

D Persistence 3.296 0.00091 5.125 0.5134 0.5241

D ENN 3.147 −0.7202 4.811 0.4820 0.5806

D WNN 3.817 −0.6341 5.760 0.5770 0.3988

D ARIMA 3.186 −0.0413 4.937 0.4946 0.5583

H Persistence 1.974 −0.1588 3.092 0.3097 0.8268

H ENN 1.630 −0.3909 2.696 0.2701 0.8683

H WNN 1.666 −0.7499 2.800 0.2805 0.8580

H ARIMA 1.580 −0.1194 2.635 0.2640 0.8742

6.3. Optimisation Results

The optimisation strategies for the battery storage were implemented with four different forecasting
methods for the four cases described in Section 5. Table 6 demonstrates the detailed optimisation
results when ρUS = ρOS = 1, including the total operation profits, the electricity profits, the cost from
undersupply and oversupply using different forecasting techniques and battery dispatch strategies.
To clarify, Case NB Perfect stands for perfect forecasting without battery.
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Table 6. The Comparison of Optimisation Results when ρUS = ρOS = 1 (Units: AUD).

Case Method Total Profit Electricity
Profit

Undersupply
Cost

Oversupply
Cost O&M Cost

NB Perfect 1,601,728 2,078,128 0 0 476,400

NB Persistence 613,223 2,078,128 515,389 473,116 476,400

NB ENN 666,601 2,078,128 470,079 465,048 476,400

NB WNN 418,454 2,078,128 692,953 490,321 476,400

NB ARIMA 675,513 2,078,128 482,102 444,113 476,400

DD Persistence 891,222 2,042,082 264,589 186,270 700,000

DD ENN 1,007,830 2,141,019 187,664 245,525 700,000

DD WNN 970,804 2,287,803 304,977 312,022 700,000

DD ARIMA 900,133 2,050,986 257,992 192,861 70,000

DR Persistence 900,891 2,045,274 259,754 184,628 700,000

DR ENN 1,014,593 2,143,558 184,283 244,683 700,000

DR WNN 987,397 2,294,338 296,680 310,260 700,000

DR ARIMA 905,935 2,053,697 255,091 192,671 70,000

MR Persistence 1,118,056 2,077,182 117,459 141,667 700,000

MR ENN 1,160,506 2,040,701 62,098 118,097 700,000

MR WNN 1,174,790 2,099,715 45,016 179,910 700,000

MR ARIMA 1,168,070 2,045,471 89,187 88,214 700,000

It is noticeable that, through the comparison of results from different forecasting techniques under
the same simulation case, we can justify the effectiveness of using more accurate forecast methods.
Similarly, the comparison of results from different cases using the same forecasting technique can also
show us the effectiveness of using more advanced dispatch strategy. For example, under Case MR,
the usage of ARIMA can improve the total profit from 1,118,000 AUD using persistence to 1,168,000
AUD, an improvement of 4.5%. Moreover, when ARIMA is used as the forecasting technique, the use
of mixed RHC strategy can improve the total profit from 906,000 AUD in Case DR to 1,168,000 AUD,
a 28.9% improvement.

In Table 6, it is also noticeable that the electricity profits for Case NB are all the same. This is
because the electricity profits rely on the actual power generation of the HPP, rather than the forecasted
power generation. The actual power generation of the HPP is fixed, regardless of the forecasting
techniques used. Different forecasting techniques used can still make a difference in terms of the costs
from ancillary services for undersupply and oversupply.

Overall, from the perspective of using different operation strategies for dispatching the BESS,
the results in Table 6 show that the overall profitability order in terms of the total operation profits can
be expressed as Case MR > Case DR > Case DD > Case NB. It can be observed that the total operation
profits in cases with a battery are higher than that in Case NB, where no battery is installed. Compared
to Case NB, the profits of installing a battery in Case DD using persistence forecasting can increase by
45%. This illustrates the effectiveness of installing a battery in the HPP. It is also noticeable that the
difference between Cases DR and DD are minimal. This is largely because both cases used the same
forecasting information, i.e. the day-ahead forecasting. However, the difference between Cases DD
and MR is much larger than that between Cases DR and DD. This demonstrates that the effectiveness
of optimisation by integrating hour-ahead forecasting outperforms the RHC optimisation strategy
for day-ahead optimisation. This further demonstrates the importance of improving the forecasting
accuracy and using an advanced strategy.
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For a better visualisation, Figure 6 shows the optimisation results of Cases NB, DD, DR and MR,
including the total operation profits in Figure 6 (a), the profit from selling electricity in Figure 6 (b),
the cost of undersupply in Figure 6 (c) and the cost of oversupply in Figure 6 (d). Note that the red
horizontal lines indicate the costs/profits if we knew exactly what would happen, i.e., a perfect forecast,
with no battery installed [25]. Since there are many days showing extremely high electricity prices,
this may pose a huge difference when using different forecasting techniques and different optimisation
strategies. Therefore, the analysis of the optimisation results will be divided into normal days (with
electricity prices within 0 to 100 AUD) and extreme days (with electricity prices < 0 or > 100 AUD).
Within the one-year study period, there are 346 normal days (the bars without patterns in Figure 6)
and 19 extreme days (the bars with patterns in Figure 6).
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(a) The total operation profits; (b) The electricity profits; (c) The cost from undersupply; (d) The cost
from oversupply. The red line in each plot indicates the results for perfect forecasting with no battery
as a reference.

Furthermore, from Figure 6(a), all simulated cases are profitable and the optimisation using the
mixed RHC strategy demonstrated the highest profitability. Moreover, the smaller discrepancies of
using different forecasting methods with the mixed RHC strategy also verified the effectiveness of the
proposed strategy. This indicates that the usage of the proposed strategy is a useful compensation
for the less favourable forecast methods. It is also clear that there are disproportionate profits from
extreme days than from normal days, especially in Cases NB, DD and DR. This is largely due to the
higher electricity profits, shown in Figure 6(b), from very high electricity prices during extreme days
and the higher costs from ancillary services from normal days, shown in Figure 6(c) and(d).

From Figure 6(b), it is interesting to see that using the day-ahead forecasting of Cases DD and DR
results in higher electricity profits than that in Case MR whereas in Figure 6(c),(d), they show the costs
from ancillary services in Case MR are much lower than those in Cases DD and DR. This suggests
the benefits using mixed RHC are more significant from the cost reduction than from the electricity
profits increments. Moreover, the extra electricity profits from Cases DD and DR are mainly from
extreme days by taking advantage of the abnormally high electricity prices, rather than from the
forecast techniques or strategies.
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It is also interesting to see that WNN tends to show better performance in terms of the electricity
profits in Figure 6(b), which even outperforms using perfect forecasting. This largely results from
arbitrage of the varying electricity prices, especially during extreme days. By comparing the bars
with and without patterns in Figure 6(b), we can see the outstanding electricity profits of WNN in
Figure 6(b) mainly come from the extreme days, by taking advantage of the abnormally high electricity
prices. The better performance of using ENN and WNN than perfect forecasting also implied that the
battery was more strongly used in extreme days to pursue higher electricity profits.

In terms of the different forecasting methods, shown with variable coloured bars in Figure 6,
we can observe that ENN and ARIMA are more likely to outperform other forecasting techniques
shown in Figure 6(c),but poorer when only day-ahead forecasting information is used in Cases DD
and DR. This is also consistent with the forecasting results of WNN from Table 4. Moreover, in Case
MR, WNN shows the lowest undersupply cost and the highest oversupply cost. This is due to its
severe bias of under-prediction when using hour-ahead forecasting, which can be seen in Table 5 that
WNN demonstrated the lowest negative MBE. In addition, ENN tends to have higher oversupply cost,
while ARIMA tends to have higher undersupply cost. This may also explain the lower MBE of ENN
than ARIMA shown in Table 5.

To further compare the performance of different optimisation strategies, the number of days when
one optimisation strategy can outperform another during the whole year using the same forecasting
technique are counted in Table 7. For example, the first row in Table 7 indicates that there are 0, 10 and
15 days during the whole year that Case NB can outperform Cases DD, DR and MR, respectively,
when persistence is applied as the forecasting technique. It is clear that the strategy in Case MR can
outperform other strategies for more than 250 days. This means that the strategy of using mixed
RHC strategy, combining long-term and short-term forecasts in a model predictive control framework,
can overcome the deficit of forecast accuracy and provide a better overall performance for the system.
The overall order in terms of the number of days when one optimisation strategy can overcome the
other is Case MR > Case DD > Case DR > Case NB. Although there are more days that day-ahead
optimisation can outperform day-ahead RHC strategy, day-ahead RHC strategy, with the capability of
dynamic update, demonstrates a lower total cost in Table 6. This shows the optimisation process works
mainly by minimising the total operation cost, rather than making the strategy outperform others with
more days.

To investigate how the forecasting techniques compare against each other, Table 8 compares the
performances of forecasting methods under each specific case on a daily basis case during the whole
year. For example, the first row in the table implies that there are 170, 223 and 174 days out of 365 days
that persistence forecasting can outperform ENN, WNN and ARIMA, respectively, under the Case NB.
From the table, it can be summarised that the order of different forecasting methods in terms of the
number of days when one forecasting method can overcome the other are:

• Case NB: ARIMA > ENN > P > WNN
• Case DD: ENN > ARIMA > P > WNN
• Case DR: ENN > P > ARIMA > WNN
• Case MR: ARIMA > ENN > P > WNN

This further shows that ENN and ARIMA tend to outperform others, whereas WNN tends to
show the worst performance amongst the four forecasting methods.
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Table 7. The number of days when the case in the row outperforms that in the column using different
forecasting methods.

Forecasting Methods Cases NB DD DR MR

Persistence NB - 0 10 15

Persistence DD 363 - 222 111

Persistence DR 355 142 - 107

Persistence MR 350 254 258 -

ENN NB - 0 8 2

ENN DD 363 - 239 102

ENN DR 357 126 - 97

ENN MR 363 263 268 -

WNN NB - 1 8 3

WNN DD 362 - 229 90

WNN DR 357 135 - 84

WNN MR 362 275 281 -

ARIMA NB - 1 6 4

ARIMA DD 363 - 232 83

ARIMA DR 359 133 - 82

ARIMA MR 361 282 283 -

Table 8. The number of days when the method in the row outperforms that in the column in
different cases.

Cases Forecasting Methods Persistence ENN WNN ARIMA

NB Persistence - 170 223 174

NB ENN 195 - 252 179

NB WNN 142 113 - 140

NB ARIMA 191 186 225 -

DD Persistence - 181 223 181

DD ENN 184 - 248 195

DD WNN 142 117 - 147

DD ARIMA 184 170 218 -

DR Persistence - 173 225 184

DR ENN 192 - 251 192

DR WNN 140 114 - 144

DR ARIMA 181 173 221 -

MR Persistence - 152 203 146

MR ENN 213 - 240 177

MR WNN 162 125 - 128

MR ARIMA 219 188 237 -

6.4. Impacts of Penalty Rates and Long-term Horizons

To investigate the impact of the different strategies as a function of penalty rates, the penalty rates,
i.e., ρUS and ρOS, range from 1 to 10 when using ENN as the forecasting method, as from previous
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results it performed the best overall. Figure 7 shows the optimisation results for Cases DD, DR and
MR. Note that the white plane in Figure 7 is the plane when the operation cost is zero. Overall, it is
noticeable that the strategies used in Case MR, i.e. mixed RHC dispatch, can considerably outperform
both in Cases DD and DR, due to using short-term forecast information to enhance the optimisation
outcomes. However, the difference between Cases DD and DR are still relatively small, as we are using
the same forecasting information. In fact, Case DR has a slightly lower cost, in contrast to Case DD.
This comes from the effectiveness of the adoption of the RHC dispatch, which is consistent with the
results in Table 6.Energies 2019, 12, x 17 of 24 
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In addition, we can see that the impacts of changing ρUS and ρOS in Figure 7 show the same
trends, i.e. the total operation cost of the system increased gradually with the penalty rates for both
undersupply and oversupply. However, for all strategies, the penalty from oversupply had a stronger
influence on the cost and caused it to increase more than from undersupply at the same penalty rate.
One reason for this is due to the round-trip efficiency of the battery storage, which requires slightly
more charging than discharging. Besides that, this also may come from the bias of under-prediction
associated with the ENN forecasting technique, which also shows in Figure 6(d) with higher cost from
oversupply, in contrast to Figure 6(c) from undersupply, respectively.

As the strategy in Case MR uses a combination of long-term and short-term forecasting, it is
interesting to explore how the time horizon of the long-term forecasting influence the optimisation
results. Figure 8 demonstrates how the total operation profits of the hybrid system is influenced by the
long-term horizons by applying the method for Case MR with long-term horizons varying from 1 to
24 hours.
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When the horizon is 1 hour, the simulation results are identical to hour-ahead dispatch,
which cannot be applied in a day-ahead market. In addition, when the horizon is 24 hours, it produces
the same simulation as Case MR, which has a long-term horizon of 24 hours. From Figure 8(a),
the subtle transitions from hour-ahead dispatch to Case MR can be observed. We can see the total
operation profits are decreasing as the long-term horizon increases. This is mainly due to the decrease
in forecasting accuracy as the prediction horizon extends. The use of a long-term horizon is critical to
the operation of the HPP as longer forecasting provides better knowledge and reduces possible risks.
However, from Figure 8, it is clear that some profit must be sacrificed when using longer-term horizons
due to the inaccuracy of long-term forecasting.

It is also known from Section 6.3 that the costs from undersupply and oversupply had significant
impacts on the total operation profits, which were strongly dependent on the accuracy level of the
forecasting technique. Therefore, ENN and ARIMA (the pink and blue lines) in Figure 8(a) tend to
outperform persistence (the black line), as the long-term horizon increases. This can be explained by
its better long-term forecasting accuracy in comparison to persistence, as shown in Figure 5. However,
WNN resulted in outstanding performance, despite its poor long-term forecasting accuracy. This can
be explained by taking advantage of the abnormally high electricity profits shown in Figure 6(b), due to
the consideration of a whole year of performance with the inclusion of extreme days. To further verify
this, the performance of changing long-term horizons for normal days only are investigated, which is
demonstrated in Figure 8(b). It is evident that ENN and ARIMA continue to outperform with WNN
demonstrating a performance below that of persistence, due to its inaccuracy in long-term forecasting.

Moreover, it can be observed from the figures that the operation profits tend to converge when
the time horizon is larger than 9 hours. This indicates that the impact from increasing the time horizon
to be more than 9 hours is not as significant as that when the time horizon is smaller. When choosing
the long-term time horizon for battery optimisation, on one hand, it is better to be as small as possible
to ensure the forecasting accuracy. On the other hand, the time horizon needs to be large enough to
take possible future scenarios into consideration. The results demonstrated in this section indicate
that using around 9 hours as the long-term time horizon is the best decision to add the long-term
information into the battery optimisation process. This is because this long-term time horizon can
efficiently balance the trade-off between the forecasting accuracy and a broader optimisation scope.
This may be affected by different sites and operation rules, which will need to be further investigated.

Dispatching the battery with 24-hour long-term scope means that all information during the whole
horizon will be taken into consideration and a global optimum within the 24-hour horizon will be
found. Therefore, it is highly possible that current profits are sacrificed for future events, if a high future
cost has been predicted. Hence, if the long-term forecast is considered accurate enough, it will be a very
valuable application in an optimisation model which combines long-term and short-term forecasting.

7. Conclusions

In this study, a mixed receding horizon control dispatch strategy to optimise BESS scheduling
for the reduction of the total operation cost of a hybrid PV and wind power plant was presented.
To achieve this, four forecasting methods were applied for both day-ahead and hour-ahead forecasting.
We also compared the performance of different forecasting techniques used for battery optimisation.

The effectiveness of installing a battery system in a hybrid PV and wind power plant is clearly
demonstrated by the simulation results, which show that an installed battery can significantly increase
the total operation profit of the hybrid power plant, in this instance by at least 45%, compared to the
case without a battery. In addition, there is a substantial improvement in cost optimisation with the
application of the proposed mixed RHC strategy. This was implemented by integrating day-ahead
and hour-ahead forecasting information with an MPC framework for the optimal operation of the
BESS. The results demonstrate the success of combining long and short-term forecasting information
in the proposed strategy, with an improvement of approximately 29% over the day-ahead RHC
strategy. Furthermore, we have demonstrated the importance of forecasting technique accuracy,
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with ARIMA resulting in an improvement of 4.5% in the total profit due to increased accuracy over the
persistence method. It is also worth mentioning that the proposed mixed RHC strategy alleviates poor
performance due to inaccuracy in forecasted production, with less discrepancy spreading seen for the
various forecasting methods used. It is important to clarify that the proposed method used can be
applied to other datasets, whether it be a different hybrid system, forecasting method, timeframe or
market pricing.

Another important outcome is the demonstration that by using around 9 hours as the long-term
time horizon is the trade-off between a shorter time horizon, which provides more accurate forecasting
results, and a broader time horizon, which considers more future predictions. Future work will focus
on further investigation of the usage of a better combination of short-term and long-term forecasting
techniques for battery optimisation and the impact of using different battery technologies on the
optimisation results.

To conclude, the proposed strategy demonstrated significant improvement on operation profits
through making full use of both short-term and long-term forecasting information. In addition,
it is evident that inadequat performance from inaccurate forecasting was considerably enhanced
by the optimal dispatch of the battery. However, there are also limitations in this study. In future
work, the proposed methodology can be further verified by a wide range of datasets with different
characteristics and improved by including the cost of battery degradation in the optimisation problem,
as well as taking the potential revenue from different ancillary services markets into account.
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Appendix A The Box Chart of the Electricity Prices

The wholesale prices of New South Wales in 2001 were captured from Nemsight [44] as the
electricity prices used in the simulation. The box chart of monthly electricity prices used is shown in
Figure A1, with the electricity prices ranging from 0 to 100 AUD.
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Appendix B Equations for reformulation

The reformulation technique for introducing the two binary variables are given in this section.
The first binary variable is δBESS where δBESS(i) = 1 indicates the battery is charging at time step i and
δBESS(i) = 0 implies it is discharging at time step i. Therefore, the equations of Equations (B1) and (B2)
can be combined as Equation (B3):

EBESS(i + 1) = EBESS(i) + ηcPBESS(i) − Ed (B1)

EBESS(i + 1) = EBESS(i) +
1
ηd

PBESS(i) − Ed (B2)

EBESS(i + 1) = EBESS(i) +
(
ηc
−

1
ηd

)
zBESS(i) +

1
ηd

PBESS(i) − Ed (B3)

where zBESS(i) is expressed in Equation (B4), which denotes the power output of the BESS at time step
i when PBESS(i) is positive, otherwise it equals 0:

zBESS(i) = δBESS(i)PBESS(i) (B4)

Meanwhile, six inequality Equations (B5) to (B10) constraints are brought in when introducing
the auxiliary variable δBESS. With the inclusion of the six inequality constraints and the auxiliary
variable δBESS, the logic judgement about whether the battery is to be charged or discharged can be
removed from the formulation. This procedure is important, as the original nonlinear programming
problem can be converted to a mix-integer linear programming problem. The detailed explanations
and derivations can be found in [41]. Note that ε is the error tolerance:

PCBESSδBESS(k) ≤ PBESS(k) + PCBESS (B5)

− (PBESS + ε)δBESS(k) ≤ −PBESS(k) − ε (B6)

zBESS(k) ≤ PCBESSδBESS(k) (B7)

zBESS(k) ≥ −PCBESSδBESS(k) (B8)

zBESS(k) ≤ PBESS(k) + PCBESS(1− δBESS(k)) (B9)

zBESS(k) ≥ PBESS(k) − PCBESS(1− δBESS(k)) (B10)

The inequality equations can be written in a compact form as Equation (B11):

A1δBESS(k) + A2zBESS(k) + A3PBESS(k) ≤ A4 (B11)

where the vectors A1, A2, A3 and A4 are shown in Equations (B12) to (B15), which can be obtained
from Equations (B5) to (B10):

A1 =
[

PCBESS −(PBESS + ε) −PCBESS −PCBESS PCBESS PCBESS
]′

(B12)

A2 =
[

0 0 1 −1 1 −1
]′

(B13)

A3 =
[
−1 1 0 0 −1 1

]′
(B14)

A4 =
[

PCBESS −ε 0 0 PCBESS PCBESS
]
′ (B15)
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Similarly, the other auxiliary variable δd is used to denote the status of Pd, which is the power
difference between the forecasted and actual power generation of the HPP, shown as Equation (B16):

Pd = FHPP −PHPP + PBESS (B16)

When the power difference is positive, i.e., Pd(i) ≥ 0, then δd(i) = 1, whereas δd(i) = 0 for the
opposite case. Therefore, by applying the two auxiliary variables, the original cost function with max
and min operators can be reformulated as:

J = −EP′(PHPP −PBESS)∆t + ρUSEP′zd∆t− ρOSEP′(Pd − zd)∆t

+OMPVPCPV + OMwindPCwind + OMBESSPCBESS
(B17)

where zd(i) is expressed in Equation (B18), which denotes the power difference between the forecasted
and actual power generation of the HPP at time step i when Pd(i) is positive, otherwise it equals 0:

zd(i) = δd(i)Pd(i) (B18)

Furthermore, the lower and upper boundaries of Pd(i), Plb
d and Pub

d , can be denoted as Equations
(B19) and (B21):

Plb
d = min(FHPP −PHPP) − PCBESS (B19)

Pub
d = max(FHPP −PHPP) + PCBESS (B20)

Plb
d ≤ Pd(i) ≤ Pub

d (B21)

Also, similar rules apply to the auxiliary variable δd so that six inequality equations Equations
(B22) to (B27) are introduced at the same time:

− Plb
d δd(k) ≤ Pd(k) + Pub

d (B22)

−

(
Pub

d + ε
)
δd(k) ≤ −Pd(k) − ε (B23)

zd(k) ≤ Pub
d δd(k) (B24)

zd(k) ≥ Plb
d δd(k) (B25)

zd(k) ≤ Pd(k) − Plb
d (1− δd(k)) (B26)

zd(k) ≥ Pd(k) − Pub
d (1− δd(k)) (B27)

The inequality equations can also be written in a compact form as Equation (B28) shows:

B1δd(k) + B2zd(k) + B3Pd(k) ≤ B4 (B28)

Where the vectors B1, B2, B3 and B4 are shown in Equations (B29) to (B32), which can be obtained
from Equations (B22) to (B27):

B1 =
[
−Plb

d −

(
Pub

d + ε
)
−Pub

d δd Plb
d −Plb

d Pub
d

]′
(B29)

B2 =
[

0 0 1 −1 1 −1
]′

(B30)

B3 =
[
−1 1 0 0 −1 1

]′
(B31)

B3 =
[

Pub
d −ε 0 0 −Plb

d Pub
d

]′
(B32)
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