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Abstract: In order to reduce the energy consumption of deep-sea self-sustaining profile buoy (DSPB)
and extend its running time, a stage quantitative oil draining control mode has been proposed in this
paper. System parameters have been investigated including oil discharge resolution (ODR), judgment
threshold of the floating speed and frequency of oil draining on the energy consumption of the system.
The single-objective optimization model with the total energy consumption of DSPB’s ascent stage as
the objective function has been established by combining the DSPB’s floating kinematic model. At the
same time, as the static working current of the DSPB can be further optimized, a multi-objective
energy consumption optimization model with the floating time and the energy consumption of the
oil pump motor as objective functions has been established. The non-dominated sorted genetic
algorithm-II (NSGA-II) has been employed to optimized the energy consumption model in the ascent
stage of the DSPB. The results showed that the NSGA-II method has a good performance in the
energy consumption optimization of the DSPB, and can reduce the dynamic energy consumption in
the floating process by 28.9% within 2 h considering the increase in static energy consumption.

Keywords: energy consumption optimization; deep-sea self-sustaining profile buoy (DSPB);
multi-objective optimization; non-dominated sorted genetic algorithm-II (NSGA-II)

1. Introduction

In order to accurately measure the profile data of the global ocean such as temperature and salinity,
a global ocean observation and experimental project “ARGO plan” [1–3] has been carried out in 2000.
Self-sustaining profile detection buoys including the deep-sea self-sustaining profile buoy (DSPB) have
been used in this project. The DSPB will work in the sea for more than years years until the power
is exhausted and the working depth of which is up to 4000 m. The working life and operation are
important for the DSPB because they involve the performance of the buoy and the reliability of the
data. Effective reducing the energy consumption of DSPB’s working process is an urgent problem as
the limited power supply that DSPB can carry.

The number of works on energy consumption for the DSPB is relatively smaller than similar
works for autonomous underwater vehicle (AUV). The working mechanism of the AUV is similar to
the DSPB, so related researches of the AUV can be referenced in this paper. The energy consumption
optimization of AUVs are mainly from optimizing parameters such as dynamic resistance model,
gliding pitch angle and speed, the force applied by thrusters and their opening times [4–7].

As the movement mode of the DSPB only considers a single degree of freedom, the energy
consumption optimization can be developed by reducing the static working current, reducing the
dynamic resistance and reducing the dynamic energy consumption by optimizing the motion control
mode. Koh et al. [8] have proposed an optimized design process for multi-target model of the buoy for
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the resonant-type wave energy converter. The multi-objective genetic algorithm has been used to get
the Pareto-optimal set and the weighted method has been used to make optimal decisions.

The energy consumption optimization model of AUVs and profile buoys are always established
to the multi-objective model as optimization parameters of them are complicated [7,8]. The
non-dominated sorted genetic algorithm-II (NSGA-II) method has been widely used in multi-objective
optimization problems and has been proved to be one of the most effective algorithms at present [9,10].
The NSGA-II method has been applied in different fields such as power management in HEVs [11],
embedded real-time system [12], energy system [13–15], power system reconstruction [16], generation
expansion planning (GEP) problem [17–19], thermal generating optimization problem [20,21], land
use scenario [22], machine and engine efficiency problem [23,24].

There is much research about parameter optimization of the multi-objective model with NSGA-II.
Krzyszt et al. [25] have proposed a multi-objective optimization of the selected design parameters in a
single-family building intemperate climate conditions and optimized by NSGA-II method. Panda [26]
has investigated the application of NSGA-II technique for the tuning of a proportional integral derivate
(PID) controller for a flexible AC transmission system (FACTS) based stabilizer. Zhong et al. [27]
have used the NSGA-II to optimize an organic Rankine cycle with evaporation temperature and
condensation temperature as the decision variables. Reed et al. [28] have applied the NSGA-II on a
multi-objective long term groundwater monitoring and solved multi-objective optimization problems
with only a few simple user inputs automatically. Bogdan et al. [29] have proposed an original method
to optimize the reconfiguration of distribution systems considered various criteria with NSGA-II.
Lakshminarasimman et al. [30] have used NSGA-II and modified NSGA-II (MNSGA-II) to obtain
better compromised solutions of various parameters of cellular base station (BS) placement problem
such as site coordinates, transmitting power, height and tilt angle.

In other multi-objective optimization problems, the NSGA-II method can show unique advantages.
Mariano et al. [31] have introduced a memetic algorithm based on the NSGA-II to solve the flexible
job-shop scheduling problem. Agrawal et al. [32] have used the NSGA-II and its jumping gene
(JG) adaptations to solve the design stage optimization of an industrial low-density polyethylene
(LDPE) tubular reactor. Gopal et al. [33] have attempted to explore the pervaporation process
economics by employing artificial intelligent method of NSGA-II. Ye et al. [34] have used NSGA-II to
solve the proposed multi-objective optimization problem around the transient stability constrained
optimal power flow (OPF). Agarwal et al. [35] have carried out the optimal design of the shell
and tube heat exchanger (HX) and used a compact formulation of the Bell–Delaware method,
coupled with NSGA-II-sJG. Bekele et al. [36] have developed an automatic calibration routine and
the NSGA-II has been applied to the study on multi-objective automatic calibration of a physically
based, semi-distributed watershed model. Nemmani et al. [37] have used NSGA–II to solve the two-
objective optimization problem of minimization of the treatment cost with simultaneous maximization
of percent removal of toluene. Majumdar et al. [38] have used real-coded NSGA-II to guarantee
the maximization of concentration of desired species in a semibatch epoxy polymerization process.
Li et al. [39] have used the NSGA-II for power-split plug-in hybrid electric vehicle (PHEV) applications.
Sharma et al. [40] have proposed the use of NSGA-II for joint allocation of bits and subcarriers in the
downlink of MIMO-OFDMA system. Bahram et al. [41] have used two single-objective and a NSGA-II
two-objective genetic algorithms to minimize thermodynamic properties and economic values of the
integrated structure, simultaneously. Li et al. [42] have used NSGA-II to solve a type of biobjective
bilevel programming problem.

Katiani et al. [43] have used NSGA-II to perform an optimized, coordinated, and selective
allocation of control and protection devices in distribution networks with distributed generation (DG).
Dai et al. [44] have used NSGA-II to solve Gini-coefficient based stochastic optimization (GBSO).
Cavalcante et al. [45] have used NSGA-II to determine non-dominated solutions of an evolutionary
multi-objective regenerator placement strategy for elastic optical networks (eMORP). Muhuri et al. [46]
have used NSGA-II to solve the multi-objective reliability redundancy allocation problem (MORRAP).
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Cheraghchi et al. [47] have verified that NSGA-II performs better than other multi-objective optimal
evolutionary algorithms (MOEAs) in predicting disruptive factors of Liner shipping through
experiments. Paul et al. [48] have used NSGA-II to optimize two cluster validity indices named
separation and cohesion. Zhu et al. [49] have developed NSGA-II to explore an optimal design space
of Hybrid electric propulsive systems (HEPSs). Wang et al. [50] have proved that the novel crash
box optimized by NSGA-II can improve the energy absorption characteristics and comprehensive
crashworthiness more effectively, and make the collision process controllable and stable. Lotfi et al. [51]
have applied NSGA-II to solve both cell planning and joint cell and backhaul planning problem to
minimize the cost of planning, while maximizing the coverage simultaneously.

In order to effectively improve the service life of the DSPB, the energy consumption of the DSPB’s
whole working process has been analyzed in this paper. The stage quantitative oil draining control
mode has been innovatively adopted to replace the traditional one-time oil draining method. The
single-objective optimization model has been established based on the DSPB’s floating kinematic model
with the total energy consumption of DSPB’s ascent stage as the objective function. In order to enhance
the applicability of the energy consumption optimization model, the multi-objective optimization
model has been established with the floating time and energy consumption of oil pump motor as
objective functions. The multi-objective optimization model can be suitable for different static working
current as the static working current of the DSPB can be further optimized. Key parameters contain oil
discharge resolution (ODR), judgment threshold of the floating speed and frequency of oil draining
have been considered as the decision variables. The NSGA-II method has been employed to optimize
the parameters and minimize the energy consumption of the DSPB’s ascent stage. The traversal
method has been adopted to verify the accuracy and timeliness of the NSGA-II method.

2. Analysis Methods

The first section of this chapter will analyze the energy consumption of the DSPB, the second
section will establish the kinematics model of the DSPB, the third section will combine the kinematics
model of the DSPB to establish the energy consumption model, and the fourth section will introduce
the workflow of the stage quantitative oil draining control mode, the fifth section will combine the
stage quantitative oil draining control mode to establish energy optimization models, and the sixth
section will introduce the optimization method of the energy optimization models.

2.1. Energy Consumption Analysis

The working process of the DSPB can be divided into: first descent stage, hovering stage, second
descent stage, ascent stage and surface communication stage. The specific process is shown in Figure 1
and the running states of devices and sensors of the DSPB are shown in Table 1.

Table 1. The running states of devices and sensors of the deep-sea self-sustaining profile buoy (DSPB)
in the whole working stage.

Devices and Seneors First Descent Hovering Second Descent Ascent Surface Communication

CTD sensor      
Steering engine G G G # #
Oil pump motor # G # G #

GPS module # # # #  
Comet module # # # #  

Embedded control system  �    

 running, # not running, G running if necessary, � Standby mode.
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Figure 1. The working process of the deep-sea self-sustaining profile buoy (DSPB).

The energy consumption of each working stage indicates that the hovering stage followed by the
ascent stage accounts for the highest energy consumption due to long running time compared with
remaining stage which is shown in Figure 2.

 5.69 hours  

First descent stage 

2.08% 

 1.19 hours  

Surface 

communication 

stage 0.96% 

240 hours  

Hovering stage  

75.28% 

10.62 hours  

Second descent 
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Dynamic energy 

consumption 

13.39% 

Static energy 

consumption 

4.43% 

7.97 hours  
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17.82% 

Figure 2. The energy consumption of each working stage.

Reducing the dynamic resistance was not the focus of research in this paper as the design of the
DSPB’s shape has been finalized. In addition to the ascent stage, the energy optimization method in
other stages are reducing the static energy consumption which is independent of the DSPB’s motion
state. As the energy consumption in the ascent stage accounts for a higher proportion, this paper
proposes a stage quantitative oil draining control mode to reduce the dynamic energy consumption
in the DSPB’s ascent stage. In this mode, the floating speed will definitely decrease resulting in an
increase in static energy consumption. Therefore, static energy consumption needs to be considered
when establishing the energy consumption optimization model.
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2.2. Kinematic Model

The force analysis of the DSPB in the ascent stage is shown in Figure 3.
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Figure 3. The force analysis of the deep-sea self-sustaining profile buoy (DSPB) in the ascent stage. Ff is
the DSPB’s buoyancy in ascent stage. Fz is the DSPB’s resistance in ascent stage. G is the DSPB’s gravity.

The gravity of the DSPB is calculated as:

G = Σm· g, (1)

where Σm is the total mass of the DSPB which is 54.53 kg, and g is the gravity acceleration takes
9.8 m/s2. The Resistance of the DSPB in ascent stage is expressed as:

Fz = −
1
2

C f · ρh· S· v(t)2. (2)

C f is the frictional resistance coefficient of the DSPB which is 0.46 during the ascent stage. S is the
DSPB’s total wet area takes 0.77 m2 after calculate. v(t) is the floating speed of the DSPB and t is the
floating time. ρh is the density of seawater. The double exponential function and the linear function
are used to fit the measured density data of marine experiment at 18.035 N and 114.849 E respectively.
The fitting effect is shown in Figure 4 and can be calculated as formula (3).

ρh =


1050.7598− 5.39563−

h(t)
66.80926 − 25.19481−

h(t)
3421.63255 , 0 ≤ h(t) ≤ 1500

0.004633· h(t) + 1027.5367, h(t) > 1500
. (3)
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Figure 4. The fitting result of the density data at depth 0 m to 1500 m and 1500 m to 4000 m.

There are differences in seawater’s density due to different seasons in different regions. In order
to verify the universality of the proposed algorithm, this paper collects seawater’s temperature, salinity
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and depth data in the southern hemisphere, the equator and the northern hemisphere from the Argo
data sharing service platform, and solves the density data through the sea state equation. The double
exponential function and polynomial function are used to fit the collected data.

The seawater’s density in the southern hemisphere in summer ρh_ss can be calculated as formula (4)
and data in winter ρh_sw can be expressed as formula (5) The related parameters are shown in Table 2.
The fitting result is shown in Figure 5.

ρh_ss =


1137.90791− 2.35765−

h(t)
178.08819 − 111.26769−

h(t)
20671.48126 , 0 ≤ h(t) ≤ 1500

0.0048· h(t) + 1027.2, h(t) > 1500
. (4)

ρh_sw =


a0 + a1· h(t) + a2· h(t)2 + a3· h(t)3 + a4· h(t)4

+a5· h(t)5 + a6· h(t)6, 0 ≤ h(t) ≤ 1500

0.0049· h(t) + 1027.2, h(t) > 1500

. (5)

Table 2. The coefficient values for polynomial fitting of ρh_sw.

a0 a1 a2 a3

1025.18375 −1.10529× 10−4 6.15379× 10−5 −1.59985× 10−7

a4 a5 a6

1.83006× 10−10 −9.76665× 10−14 1.98565× 10−17
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Figure 5. The fitting result of the density data in the southern hemisphere. Panel (a) shows the
seawater’s density data in summer and (b) shows the seawater’s density data in winter.

The seawater’s density in the equator area in summer ρh_cs can be calculated as formula (6) and
data in winter ρh_cw can be expressed as formula (7). The fitting result is shown in Figure 6.

ρh_cs =


1235.19537− 5.6951−

h(t)
99.0515 − 208.37902−

h(t)
39932.12927 , 0 ≤ h(t) ≤ 1500

0.0048· h(t) + 1027.3, h(t) > 1500
. (6)

ρh_cw =


1116.51315− 4.94217−

h(t)
74.43797 − 90.0738−

h(t)
15976.15534 , 0 ≤ h(t) ≤ 1500

0.0048· h(t) + 1027.3, h(t) > 1500
. (7)
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Figure 6. The fitting result of the density data in the equator area. Panel (a) shows the seawater’s
density data in summer and (b) shows the seawater’s density data in winter.

The seawater’s density in the nouthern hemisphere in summer ρh_ns can be calculated as
formula (8) and data in winter ρh_nw can be expressed as formula (9). The fitting result is shown
in Figure 7.

ρh_ns =


1057.94841− 2.22153−

h(t)
13.59651 − 31.73028−

h(t)
4995.23378 , 0 ≤ h(t) ≤ 1500

0.0048· h(t) + 1027.3, h(t) > 1500
(8)

ρh_nw =


1026.2− 5× 10−7· h(t)2 + 0.0063· h(t), 0 ≤ h(t) ≤ 1500

0.0048· h(t) + 1027.2, h(t) > 1500
. (9)
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Figure 7. The fitting result of the density data in the nouthern hemisphere. Panel (a) shows the
seawater’s density data in summer and (b) shows the seawater’s density data in winter.

The buoyancy of the DSPB in the ascent stage is calculated as:

Ff = ρh· g· (Vbasic(h) + Voil(t)). (10)

Voil(t) is the motor’s oil draining volume which can be expressed as formula (21). Variety of
the DSPB’s body volume Vbasic(h) is mainly related to two parameters: pressure and temperature of
seawater. So the body volume is expressed as:

Vbasic(h) = Vbasic(h0)− (∆VPh + ∆VTh). (11)
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Vbasic(h0) is the DSPB’s body volume at sea surface which is 0.052884 m3. ∆VPh is the body volume
variety related to pressure and ∆VTh is body volume variety related to temperature. The pressure
at depth 0 m to 4000 m is considered to be varying linearly with depth. Influences of pressure and
temperature on the DSPB’s body volume are considered to be linear and can be calculated as:

∆VPh = 1.2875× 10−7· h(t) (12)

∆VTh = −8.6429× 10−6· Th + 2.599× 10−4. (13)

The measured value of marine experiment is used to analyze the temperature changed with
depth at 18.035 N and 114.849 E. The temperature at depth of 0 m to 2000 m is fitted using the double
exponential function. The temperature at depth of 2000 m to 4000 m can be regarded as a constant.
The fitting effect is shown in Figure 8 and can be calculated as formula (14).

Th =


1.64659− 14.98271−

h(t)
93.18896 − 14.80257−

h(t)
624.24476 , 0 ≤ h(t) ≤ 2000

2.535, h(t) > 2000
. (14)
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Figure 8. The fitting effect of the temperature at depth 0 m to 2000 m.

There are differences in seawater’s temperature of different areas and different seasons. In this
paper, the temperature data corresponding to the discussed density is fitted by double exponential
function and polynomial function.

The seawater’s temperature in the southern hemisphere in summer Th_ss can be calculated as
formula (15) and data in winter Th_sw can be expressed as formula (16). The related parameters are
shown in Tables 3 and 4. The fiting result is shown in Figure 9.

Th_ss =



18.3501, 0 < h(t) ≤ 10

b0 + b1· h(t) + b2· h(t)2 + b3· h(t)3, 10 < h(t) ≤ 120

c0 + c1· h(t) + c2· h(t)2 + c3· h(t)3 + c4· h(t)4

+c5· h(t)5 + c6· h(t)6, 120 < h(t) ≤ 2000

2.169, h(t) > 2000

(15)
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Th_sw =



d0 + d1· h(t) + d2· h(t)2 + d3· h(t)3 + d4· h(t)4

+d5· h(t)5 + d6· h(t)6, 0 < h(t) ≤ 290

e0 + e1· h(t) + e2· h(t)2 + e3· h(t)3 + e4· h(t)4 + e5· h(t)5

+e6· h(t)6 + e7· h(t)7 + e8· h(t)8 + e9· h(t)9, 290 < h(t) ≤ 2000

2.166, h(t) > 2000

(16)

Table 3. The coefficient values for polynomial fitting of Th_ss.

b0 b1 b2 b3

18.34744 5.281× 10−4 2.94507× 10−7 −9.09043× 10−9

c0 c1 c2 c3

28.68837 −0.10351 1.91907× 10−4 −1.89102× 10−7

c4 c5 c6

1.00361× 10−10 2.69468× 10−14 2.84494× 10−18

Table 4. The coefficient values for polynomial fitting of Th_sw.

d0 d1 d2 d3 d4

20.42842 −0.05588 1.99088× 10−5 5.81595× 10−6 −6.33771× 10−8

d5 d6

2.42311× 10−10 −3.14548× 10−13

e0 e1 e2 e3 e4

46.82681 −0.26648 6.47522× 10−4 −5.49605× 10−7 −4.48767× 10−10

e5 e6 e7 e8 e9

1.40892× 10−12 −1.33638× 10−15 6.46985× 10−19 −1.61601× 10−22 1.65511× 10−26
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Figure 9. The fitting result of the temperature data in the southern hemisphere. Panel (a) shows the
seawater’s temperature data in summer and (b) shows the seawater’s temperature data in winter.
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The seawater’s temperature in the equator area in summer Th_cs can be calculated as formula (17)
and data in winter Th_cw can be expressed as formula (18). The related parameters are shown in Tables 5
and 6. The fitting result is shown in Figure 10.

Th_cs =



f0 + f1· h(t) + f2· h(t)2 + f3· h(t)3 + f4· h(t)4

+ f5· h(t)5 + f6· h(t)6, 0 < h(t) ≤ 40

g0 + g1· h(t) + g2· h(t)2 + g3· h(t)3 + g4· h(t)4

+g5· h(t)5 + g6· h(t)6 + g7· h(t)7, 40 < h(t) ≤ 450

p0 + p1· h(t) + p2· h(t)2 + p3· h(t)3 + p4· h(t)4

+p5· h(t)5 + p6· h(t)6, 450 < h(t) ≤ 2000

2.582, h(t) > 2000

. (17)

Th_cw =



29.163, 0 < h(t) ≤ 19

−2.01067 + 19.55258−
h(t)

81.49007 + 15.78842−
h(t)

1477.28368 , 19 < h(t) ≤ 500

q0 + q1· h(t) + q2· h(t)2 + q3· h(t)3 + q4· h(t)4

+q5· h(t)5 + q6· h(t)6, 500 < h(t) ≤ 2000

2.556, h(t) > 2000

. (18)

Table 5. The coefficient values for polynomial fitting of Th_cs.

f0 f1 f2 f3

27.42604 0.015 −0.00441 2.8868× 10−4

f4 f5 f6

−8.84075× 10−6 1.34886× 10−7 −8.42451× 10−10

g0 g1 g2 g3

57.158188729964 −1.206306073877 0.015183187415 −1.075708077428× 10−4

g4 g5 g6 g7

4.463344377931× 10−7 −1.073457113813× 10−9 1.382682366141× 10−12 −7.36733281096× 10−16

p0 p1 p2 p3

4.03753 0.04468 −1.20413× 10−4 1.36225× 10−7

p4 p5 p6

−7.95291× 10−11 2.34224× 10−14 −2.75008× 10−18

Table 6. The coefficient values for polynomial fitting of Th_cw.

q0 q1 q2 q3

−5.42411 0.10372 −2.5813× 10−4 2.95683× 10−7

q4 q5 q6

−1.77727× 10−10 5.41538× 10−14 −6.59816× 10−18
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Figure 10. The fitting result of the temperature data in the equator area. Panel (a) shows the seawater’s
temperature data in summer and (b) shows the seawater’s temperature data in winter.

The seawater’s temperature in the northern hemisphere in summer Th_ns can be calculated as
formula (19) and data in winter Th_nw can be expressed as formula (20). The related parameters are
shown in Tables 7 and 8. The fiting result is shown in Figure 11.

Th_ns =



r0 + r1· h(t) + r2· h(t)2 + r3· h(t)3 + r4· h(t)4, 0 < h(t) ≤ 90

s0 + s1· h(t) + s2· h(t)2 + s3· h(t)3 + s4· h(t)4

+s5· h(t)5 + s6· h(t)6, 90 < h(t) ≤ 230

u0 + u1· h(t) + u2· h(t)2 + u3· h(t)3 + u4· h(t)4 + u5· h(t)5

+u6· h(t)6 + u7· h(t)7 + u8· h(t)8 + u9· h(t)9, 230 < h(t) ≤ 2000

1.935, h(t) > 2000

(19)

Th_nw =



1.8548, 0 < h(t) ≤ 100

y0 + y1· h(t) + y2· h(t)2 + y3· h(t)3, 100 < h(t) ≤ 200

z0 + z1· h(t) + z2· h(t)2 + z3· h(t)3 + z4· h(t)4

+z5· h(t)5 + z6· h(t)6 + z7· h(t)7 + z8· h(t)8, 200 < h(t) ≤ 2000

1.916, h(t) > 2000

(20)

The oil draining volume is expressed as:

Voil(t) = Voil(t− 1) + voil_h·∆tm (21)

∆tm is the time calculation interval of oil draining which takes 1 s. The oil draining speed of the oil
pump voil_h decreases linearly as the external pressure increases, so the linear function is used to fit
the measured data of the oil pump draining speed at 0 to 40 MPa to get the oil pump draining speed
varied with depth. The fitting effect is shown in Figure 12a. The oil draining speed is expressed as:

voil_h =
0.762754− 3.09331× 10−5· h(t)

106 (22)
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Figure 11. The fitting result of the temperature data in the nouthern hemisphere. Panel (a) shows the
seawater’s temperature data in summer and (b) shows the seawater’s temperature data in winter.

Table 7. The coefficient values for polynomial fitting of Th_ns.

r0 r1 r2 r3

11.58227 −0.65519 0.01625 −1.76911× 10−4

r4 s0 s1 s2

7.02485× 10−7 14.70075 −0.81245 0.01799

s3 s4 s5 s6

−1.94409× 10−4 1.11511× 10−6 −3.25442× 10−9 3.79881× 10−12

u0 u1 u2 u3

−34.17770758518 0.39394648059 −0.001712835994 4.12528863889× 10−6

u4 u5 u6 u7

−6.102123750602× 10−9 5.768000160341× 10−12 −3.496863435020× 10−15 1.3159237130× 10−18

u8 u9

−2.7986282557× 10−22 2.57066290433× 10−26

Table 8. The coefficient values for polynomial fitting of Th_nw.

y0 y1 y2 y3

−11.95506 0.22826 −0.00119 2.02556× 10−6

z0 z1 z2 z3 z4

−14.54393 0.14769 −4.85673× 10−4 8.61487× 10−7 −9.14876× 10−10

z5 z6 z7 z8

5.97746× 10−13 −2.35385× 10−16 5.12435× 10−20 −4.7363× 10−24

So that the kinematic model of the DSPB can be expressed as:
Ff − Fz − G = m· a(t)
v(t) = v(t− 1) + a(t)·∆t f
h(t) = h(t− 1) + v(t)·∆t f

, (23)

where a(t) is the DSPB’s floating acceleration. ∆t f is the time calculation interval of ascent stage which
takes 1 s. h(t) is the DSPB’s floating depth.
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Figure 12. The fitting effect of the oil draining speed and motor’s operating current.

2.3. Energy Consumption Model

The energy consumption of the oil pump motor can be calculated as:{
Wm(t) = Wm(t− 1) + Um· Imh·∆tm, Voil(t) ≤ Voil(max)
Wm(t) = Wm(t− 1), Voil(t) > Voil(max)

. (24)

The operating voltage of the oil pump motor Um was set to 28.5 V. The operating current of the oil
pump motor Imh increased approximately linearly as the external pressure increased. Therefore, the
linear function was used to fit the measured data of the oil pump motor’s operating current at 0 to
40MPa. The fitting effect is shown in Figure 12b. The operating current of the oil pump motor can be
calculated as:

Imh = 0.000308796· h(t) + 0.477671. (25)

The static energy consumption of the DSPB in the ascent stage is expressed as:

Ws(t) = (UBo· IBo + UCTD· ICTD)· t. (26)

UBo and UCTD are operating voltage of the control board and the CTD sensor. They are set to
28.5 V and 12 V respectively. The operating current of the control board and the CTD sensor are IBo
and ICTD which are setting to 0.010346A and 0.018998A in average value.

2.4. Stage Quantitative Oil Draining Control Model

Before optimization, the oil draining method of the ascent stage was one-time oil draining which
is shown in Figure 13, and parameters of the ascent stage are shown in Figure 14. The oil draining
process was carried out in the deeper sea area where the external resistance of the oil pump motor is
relatively larger than shallow sea area, resulting in the larger working current of the motor, and the oil
draining speed is slower which can be seen from Figure 12. In this scheme, the working efficiency of
the motor was lower and the energy consumption is higher.

In order to optimize the oil draining mode of the oil pump motor during the DSPB’s ascent stage,
a stage quantitative oil draining control mode is established which is shown in Figure 15. The stage
quantitative oil draining control mode will indeed reduce the dynamic energy consumption but the
static energy consumption will increase as the DSPB’s floating speed will rev down. So the energy
consumption model was established by considering the increase of the static energy consumption.
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2.5. Energy Consumption Model

2.5.1. Single-Objective Model

Objective function:

minimize f = Wm + Ws. (27)

Decision variables:


Voil_s = [Voil_s1, Voil_s2, · · · , Voil_sn], (Voil_si ∈ [0, 600]; ∑n

i=1 Voil_si = 600; i = 1, 2, · · · , n)
n ∈ [1, 12]
vjudge ∈ [0.08, 0.16]

. (28)

Voil_s is the stage oil draining volume expressed as an n-dimensional row vector, n indicates the
total frequency of oil draining, and vjudge is the judgment threshold of the floating speed to decide
whether to carry out the next oil draining.

2.5.2. Multi-Objective Model

The setting of Ws in the single-objective optimization model led to the optimization result being
limited to the hardware design. The improvement of the design of the hardware will lead to the further
reduction of the static working current of the control board, then the single-objective optimization
model needed to adjust the static energy consumption parameters to adapt to the change of the static
working current.

The stage quantitative oil draining control mode will only increases the floating time t , and does
not affect the static working current of the control board and CTD sensor. Therefore, a multi-objective
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optimization model is established to enhance the applicability of the energy optimization model taking
Wm and floating time t as optimization targets.

Objective functions: {
minimize f1 = Wm

minimize f2 = t
. (29)

Decision variables are same to the single-objective model.


Voil_s = [Voil_s1, Voil_s2, · · · , Voil_sn], (Voil_si ∈ [0, 600]; ∑n

i=1 Voil_si = 600; i = 1, 2, · · · , n)
n ∈ [1, 12]
vjudge ∈ [0.08, 0.16]

. (30)

2.6. NSGA-II Method

Since 1950, scientists have come up with the idea of using genetic algorithms to solve engineering
problems. At first, it has good convergence and robustness prototype by biological evolution, and it
takes less time to calculate accuracy [52]. The non-dominated sorted genetic algorithm (NSGA) is a
multi-objective optimization algorithm based on genetic algorithm but has disadvantages in some
aspects introduced in [53]. An improved version of NSGA call NSGA-II is proposed by Deb et al.
which reduces the computational complexity with a fast non-dominated sorting algorithm. The elite
strategy ensures that the excellent individuals will be reserved during the evolution process, thereby
improving the accuracy of the optimization results. The congestion comparison operator ensures the
diversity of the population. The optimization process of NSGA-II method is shown in Figure 16.

Start

Initial population

Non-dominated sort

Gen = 1

Binary tournament selection

Simulated binary crossover, 

Polynomial mutation

Merge population

Non-dominated sort

if a new 

population was 
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Yes
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Figure 16. The optimization process of the non-dominated sorted genetic algorithm-II (NSGA-II) method.



Energies 2019, 12, 2316 17 of 26

3. Results and Discussion

The first section of this chapter will analyze the result of single-objective model optimization, the
second section will verify the accuracy and timeliness of the NSGA-II method by traversing method,
and the third section will analyze the result of single-objective model optimization and give the
optimized effect compared with pre-optimization.

Test hardware: CPU: Intel(R) Core(TM) i3-3227U; RAM: 4 G. The operating system was
Windows 7—64 bit and the simulation software was Matlab R2014a.

3.1. Single-Objective Model Optimization

In order to ensure that the DSPB floats from depth 4000m to the surface to complete normal
communication, the total oil draining amount was set to 600 mL. The NSGA-II method is used to
optimize the single-objective energy consumption model. Parameters of proposed NSGA-II method is
shown in Table 9. The ODR was set to 50 mL, 10 mL, 1 mL respectively to get the optimized results
shown in Figure 17.

Figure 17 shows that when ODR=10 mL, the optimal energy consumption will be further reduced
compared with ODR = 50 mL. However, the advantage of ODR = 1 mL compared with ODR = 10 mL
was not obvious. Taking into account the oil quantity error generated when the oil pump is turned
on and off and the measurement error existing in the oil quantity measurement, the ODR was more
suitable for 10 mL.

Table 9. Parameters of proposed non-dominated sorted genetic algorithm-II (NSGA-II) method.

Size of population 50
Chromosome structure Real number coding

Selection scheme Binary tournament selection
Reproduction Simulated binary crossover and Polynomial mutation

Produced distribution index 20
Selected distribution index 20

Maximum generation 200
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Figure 17. The optimal result of NSGA-II method with different ODR.

In order to evaluate the parameters set by NSGA-II, this paper compares the optimal results by
changing population number and evolution algebra parameters. The optimal results are shown in the
Figure 18 and the optimization time of them are shown in Table 10. The results show that after more
than 50 populations, the optimization effect was not significantly improved, but the running time did
increased. After more than 200 generations of evolutionary algebra, the optimization results remain
basically stable, and increasing the evolutionary algebra will increase the time cost to a large extent.
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Figure 18. The optimal result of different optimal parameters. Panel (a) shows the optimal result of
different populations and (b) shows the optimal result of different generations.

Table 10. Optimization time of different optimal parameters.

Parameters of NSGA-II Optimization Time (s)

population = 50, generation = 100 3487.088273
population = 25, generation = 200 3609.206185
population = 50, generation = 200 7315.951831
population = 75, generation = 200 10,455.033943
population = 50, generation = 300 10,513.551947

population = 100, generation = 200 13,965.117581

The DSPB’s kinematics models for different seasons in different regions are optimized by the
NSGA-II method proposed in this paper. Optimization results are shown in the Figures 19–21. The
results show that the proposed NSGA-II method can be applied to the optimization of DSPB’s energy
consumption in different regions and different seasons.
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Figure 19. The optimal result of different ODR in the southern hemisphere. Panel (a) shows the optimal
result in summer where the total energy consumption reduced by 13.5% and (b) shows the optimal
result in winter where the total energy consumption reduced by 12.0%.
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Figure 20. The optimal result of different ODR in the equator area. Panel (a) shows the optimal result
in summer where the total energy consumption reduced by 11.9% and (b) shows the optimal result in
winter where the total energy consumption reduced by 11.8%.
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Figure 21. The optimal result of different ODR in the nouthern hemisphere. Panel (a) shows the
optimal result in summer where the total energy consumption reduced by 12.6% and (b) shows the
optimal result in winter where the total energy consumption reduced by 10.9%.

3.2. Traversal Single-Objective Model Optimization

In order to verify the accuracy and timeliness of the NSGA-II method, the traversal method is
adopted with the ODR setting to 50 mL to analyze the measured data of the ocean experiment at
18.035 N and 114.849 E in August 2018. After 18,433 combinations traversed, the minimum energy
consumption of different velocity judgment is shown in Figure 22. The traversing time is about 4 h
and will increase to more than several weeks if the ODR is improved to 10 mL. After 10 repetitions,
the optimization result of the NSGA-II method is shown in Table 11. The traversing time of the
NSGA-II method is changed by the set of maximum generation. After repeating the simulation, the
traversing time is less than 6 min within 10 generations when the ODR is set to 50 mL. As the maximum
generation is set to 200 in this paper, the average optimization time of the NSGA-II method is about
1.99 h with satisfactory results when ODR is set to 10 mL.
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Figure 22. The optimal result of traversal method (ODR = 50 mL).

Table 11. The optimization effect of the NSGA-II method after 10 repetitions.

Execution Times Optimal Wtotal (J) Optimal vjudge( m/s) Optimal Voil_s ( mL) Optimization Time(s)

1 53,731.76245 0.09 [180,50,50,60,70, 7227.545857
70,90,20,10]

2 53,720.31747 0.09 [170,30,40,40,60, 7191.563176
50,50,70,90]

3 53,731.76245 0.09 [180,50,50,60,70, 7404.939277
70,90,20,20]

4 53,716.03741 0.09 [170,30,40,30,40, 7047.592007
50,60,70,90,20]

5 53,727.2845 0.09 [180,40,10,50,60, 7015.543344
60,60,60,80]

6 53,718.10196 0.09 [170,30,20,40,40, 7163.158171
60,60,70,80,30]

7 53,722.04461 0.09 [160,40,40,40,30, 7404.939277
40,60,70,90,30]

8 53,716.84258 0.09 [160,30,30,40,50, 7047.592007
50,60,70,80,30]

9 53,717.98512 0.09 [160,30,30,40,50, 7015.543344
60,60,70,80,20]

10 53,720.96775 0.09 [180,40,40,40,50, 7163.158171
60,70,80,40]

3.3. Multi-Objective Model Optimization

The NSGA-II method is good at solving multi-objective problems and the Pareto optimization
results are shown in Figure 23a with the ODR set to 10 mL and other parameters of NSGA-II
algorithm are shown in Table 12. The hypervolume value [54–56] computed by means of Monte-Carlo
approximation method is shown in Figure 23b to evaluate the convergence and distribution of the
solution. The variety of the hypervolume value shows that the solution tends to converge after
400 generations.
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Table 12. Parameters of proposed NSGA–II algorithm for multi-objective optimization.

Size of Population 50
Chromosome Structure Real number coding

Selection Scheme Binary tournament selection
Reproduction Simulated binary crossover and Polynomial mutation

Produced Distribution Index 20
Selected Distribution Index 20

Maximum Generation 600

Figure 23 shows that the multi-objective optimization model established in this paper can be
optimized by the NSGA-II method, and the optimal solution can be selected according to different
static energy consumption.

The effect of the stage quantitative oil draining control mode optimized by the NSGA-II method is
shown in Table 13. After optimized by the NSGA-II method, parameters of the DSPB’s floating process
are shown in Figure 24.
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Figure 23. Optimal results of multi-objective optimization model. Panel (a) shows the Pareto
optimization results and (b) shows the variety of the hypervolume value.

Table 13. The optimization effect of the NSGA-II method compared with pre-optimization.

Before Optimization After Optimization Optimal Ratio

Voil_s ( mL) [600] [160,30,30,40,50,50,60,70,80,30] –
vjudge ( m/s) – 0.9 –

t (s) 28,704 40,699 –
Wstatic (J) 15,007.51 21,278.95 –
Wmotor (J) 45,325.47 32,198.96 28.9%
Wtotal (J) 60,332.98 53,716.84 11.0%
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Figure 24. Parameters of the DSPB’s ascent stage optimized by the NSGA-II method.

4. Conclusions

The energy consumption of the DSPB’s whole working stage has been analyzed in this paper.
A single-objective energy optimization model and a multi-objective energy optimization model have
been established by combining the kinematics model of the DSPB’s ascent stage. The NSGA-II method
has been applied to optimize these energy consumption optimization models. The ODR has been
analyzed taking into account the error caused by shutting down the oil pump and the oil measurement.
The main conclusions are summarized as follows:

(1) On the basis of considering the static energy consumption will change in the floating stage, the
stage quantitative oil draining control mode can replace the one-time oil draining mode as an
optimization scheme for the DSPB’s ascent stage.

(2) Using traversal method and the NSGA-II method for comparative analysis, the NSGA-II method
as the energy consumption optimization of the DSPB have been determined. The accuracy and
timeliness of the NSGA-II method have been verified.

(3) The advantage of the ODR set to 1 mL is not obvious compared with 10 mL. When the ODR is
set to 1 mL, the control accuracy of the oil pump is difficult to achieve, so it is appropriate to
set the ODR to 10 mL. In this case, the optimized judgment threshold of the floating speed is
0.09 m/s, and the optimal frequency of oil draining is 10 times contains 160 mL, 30 mL, 30 mL,
40 mL, 50 mL, 50 mL, 60 mL, 70 mL, 80 mL, 30 mL respectively.

(4) The static working current of the DSPB in this paper is about 10 mA, and this parameter can
be further optimized. A set of Pareto solutions for the ascent stage have been obtained in the
multi-objective optimization model with the dynamic energy consumption of the oil pump motor
and the floating time as objective functions, so that the appropriate oil draining mode can be
selected according to different static energy consumption.
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In the future work, we will further optimize the energy consumption according to the working
mode of the DSPB and further reduce it’s static energy consumption. The algorithm proposed
in this paper will be further improved and other better genetic algorithm will be adopted [57,58].
The optimization effect of the optimization scheme in this paper will be verified in the following
ocean experiments.
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Nomenclature

∆t f time interval of ascent stage, s
∆tm time interval of oil drain, s
∆Vρh volume change related to pressure, m3

∆VTh volume change related to temperature, m3

ρh seawater density, kg/m3

a acceleration, m/s2

C f frictional resistance coefficient
Ff buoyancy, N
Fz resistance, N
g gravity acceleration, m/s2

h floating depth, m
IBo operating current of the control board, A
ICTD operating current of the CTD sensor, A
Imh operating current of the oil pump motor, A
m mass, kg
S total wet area of the DISB, m2

t floating time, s
Th seawater temperature, ◦C
UBo operating voltage of the control board, V
UCTD operating voltage of the CTD sensor, V
Um operating voltage of the oil pump motor, V
v floating speed, m/s
Vbasic body volume, m3

vjudge judgment threshold of the floating speed, m/s
voil_h oil drain speed, m3/s
Voil_s stage oil drain volume, m3

Voil oil drain volume, m3

Wm energy consumption of oil pump motor, J
Ws static energy consumption, J
Wtotal total energy consumption of ascent process, J

Abbreviations

The following abbreviations are used in this manuscript:

DSPB deep-sea self-sustaining profile buoy
ODR oil discharge resolution
NSGA-II non-dominated sorted genetic algorithm-II
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