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Abstract: A permanent magnet assisted synchronous reluctance generator (PMA-SynRG)
and an induction generator (IG) were compared for portable generator applications. PMA-SynRG
with two rotor configurations, namely rotors with ferrite magnet and NdFeB, were designed.
Furthermore, a design strategy for both PMA-SynRG and IG is presented with their geometrical
dimensions. The machine was designed and results were analyzed using finite element analysis.
Results such as flux density, open circuit and full load voltages, torque in generating mode,
weight comparison and detailed cost analysis were investigated. In addition, thermal analysis
for various ambient conditions (−40 ◦C, +30 ◦C, +65 ◦C) was evaluated for both PMA-SynRG and IG.
Furthermore, acoustic versus frequency plot and acoustic pressure level were investigated for both
the generators. Finally, the results confirmed that the machine with a higher power-to-weight ratio was
the right choice for military applications.

Keywords: permanent magnet assisted synchronous reluctance generator; induction generator;
ferrite; military applications; portable generator

1. Introduction

A portable generator, or compact generator, is a gasoline-driven engine, alternating current (AC)
generator. The power range of these types of generators lies between 1–11 kW, depending on industry
standards [1]. It is designed to supply electrical power for lighting, appliances, tools and low or
medium power equipments [2]. The dissembled view of a portable generator is presented in Figure 1.
In recent periods, the need for compact generators is largely expanded [3]. This kind of generator can
be more useful during power failures through unavoidable circumstances [4]. Portable generators use
small engines in which the spinning shaft of the engine creates an alternating magnetic field through
a coil which induces voltage [5]. Light weight and high power are the key factors of portable generators.

The permanent magnet synchronous generators (PMSG) are an appropriate choice for portable
generators in military usage, due to their high power density, compact size and high efficiency.
Permanent magnet (PM) is a replacement of field winding in conventional machines [6].

Rare earth magnets are commonly divided into light rare earth magnets and less-available heavy
rare earth magnets [7]. The most plenteous rare earth magnets are lanthanum, cerium, and neodymium,
which are all considered light earth magnets, along with praseodymium and samarium [8].
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The most common PMs are samarium cobalt and neodymium-iron-boron. Samarium cobalt
magnets perform well at higher temperatures but are brittle, which confines magnet size and can cause
issues with certain motoring applications [9].

Neodymium–iron–boron magnets are significantly stronger than samarium cobalt magnets.
As a result, their size is not as limited and they are more appropriate for generator applications.
These magnets normally have two to four percent of dysprosium to enhance their temperature
resistance [4]. Nearly 90% of high-value rare earth magnets are from China [10], which makes
the design using PMs very costly [11].
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The Permanent Magnet Synchronous Reluctance Generator (PMA-SynRG) is similar to
a synchronous reluctance generator and costs less than the PMSG [12], which is also used in various
applications [13]. In a PMA-SynRG, PMs are placed in the flux barriers, creating a magnet torque
which supports and increases the torque characteristics [14]. Moreover, the usage of PMs will increase
the power factor in combination with SynRG. The volume, type, and positioning of PMs differ widely
from PMA-SynRG [15]. The magnet material used is of rare earth magnets and ferrite magnets.
Ferrite magnets, also known as ceramic magnets, are alloys of Barium (Ba) or Strontium (Sr) with
ferrite (Fe2O3). The materials have a linear demagnetization characteristic and cost less which makes
them the most common magnets for general purpose applications [16] (refer to Appendix A Table A1).

Similarly, the induction generator (IG) is also a better choice for portable generators [17] where
weight is a major concern. Ruggedness, simple design, robustness, lower cost, and reduced maintenance
are the most important benefits of IG. The presence of residual flux in the rotor core and the excitation
capacitance self-excites IG, causing the stator voltage to build up [18].

This research work concentrates mainly on the performance and weight comparison of
PMA-SynRG and IG to meet the military standards. Three generator topologies (ferrite rotor,
NdFeB rotor and IG) were designed and investigated. The rotor with an NdFeB magnet performed
better and has a 21.57% higher power–to–weight ratio in comparison to IG. Furthermore, a detailed
cost analysis was provided disclosing that IG reduced costs in comparison to the topology of other
generators. The noise levels of both the NdFeB rotor and IG are of military standards. Finally, these two
generator configurations confirmed a 20%–30% rate of reduced weight compared with an existing 5 kW
generator in the military applications.

Section 2 explains the constraints and requirements of a portable generator in military applications.
Section 3 deals with the design strategy of PMA-SynRG and IG. In Section 4, the stator and rotor
geometrical configurations, output voltage waveform, torque in generating mode, weight comparison
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cost analysis, and overall performance characteristics are evaluated using finite element analysis (FEA).
Section 5 covers the thermal analysis for various ambient temperatures and also highlights the acoustic
pressure level of both generators. Section 6 deals with a detailed cost estimation of the machine.
Finally, Section 7 concludes with the kW/kg difference of NdFeB rotor and other configurations.

2. Constraints of Portable Generator in Military Applications

Size, weight, and price are the key factors in designing an electric machine for military applications.
Prominent performance developments in IG and price deductions of PM materials in PMA-SynRG
make them more appropriate for military usage. IG and PMA-SynRG provide following features,
such as reduced weight and size, simple mechanical structure, less maintenance, good reliability,
and better efficiency. The requirements are tabulated as per standard –MIL–STD–1332B (see Table 1).

Table 1. As per military standards.

Characteristic
Value
5 kW

Weight, (dry) 750 lbs. (340.2 Kg)
Weight, wet, 80% fueled 796 lbs. (361.1 Kg)

Noise 68 dBA
Dimensions 45 × 32 × 36 in (1.143 × 0.813 × 0.914 m)

Thermal ambient conditions −42 ◦C to + 65 ◦C

3. Design Strategy for Portable Generator

3.1. Permanent Magnet Synchronous Reluctance Generator

The design procedure of PMA-SynRG consists of following steps:

I. The barrier number, size, position and shape are optimized for required output voltage
and good saliency ratio.

II. The magnets are designed and placed to meet the PM flux linkage required for this application.

The count of flux barrier is optimized as five per pole. Increasing the barrier count greater than five
does not have key variations in the saliency ratio related to stator slots and barrier geometries [19,20].
Further increasing the number of flux barrier greater than five imposes mechanical problems with
respect to rotor geometry [21].

The rotor topology and the polarization of the magnets are presented in Figure 2. The rotor design
(the PM dimensions) was modelled with the help of numerical analysis with five flux barrier per pole
to increase saliency and reduce cogging torque.
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3.2. Induction Generator

The presence of residual flux in the rotor core and the excitation capacitance self-excites IG,
causing the stator voltage to build up. The excitation capacitance is calculated as follows:

Apparent power

PA =
P

cos θ
(1)

Reactive power
PR =

√
PA2 − P2 (2)

From the reactive power, the necessary capacitive current (Icap), reactance (Xcap) and capacitance
(C) of the capacitor are calculated from the given equations:

ICap =
PR

Vterm
(3)

XCap =
Vterm

Icap
(4)

C =
1

2 π f Xcap
(5)

From the machine parameters, Equations (1)–(5), the capacitor value is fixed as 400 µF, 400 V.
The rotor of IG, designed with the help of finite elements, is displayed in Figure 3.
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4. Finite Element Analysis

A single phase PMA-SynRG and IG were designed for portable applications with a 48 slot stator.
The rotor with ferrite (G1), NdFeB magnet (G2) and IG (G3) is presented in Figure 4. The stator
with distributed windings was used for all three machine configurations, i.e., the same dimensions
(except stack length). The design requirement of the machine is tabulated in Table 2. The output
characteristics of the modelled generator connected to a resistive load were simulated by MagNet
software. During the pre-processing stage, the analytical design was modelled. Subsequently,
the material was assigned and the triangular mesh region created. The mesh was denser in the air gap
region so as to accurately analyze the effects of air gap flux density (Refer to Figure 5). The meshed
design of G1 was 29,304 nodes and 58,306 elements, whereas for G2 it was 27,204 nodes and 54,370
elements. Furthermore, the G3 has 33,086 nodes and 66,134 elements. Transient with motion analysis
was performed with designed source circuit.
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Table 2. Design requirements.

Parameters Unit Value

Output power kW 5
Speed rpm 1500

Voltage V 230
Frequency Hz 50

No. of phase - 1φ
No of poles - 4
Outer stator

diameter mm 125

Inner stator
diameter - 85

Magnet thickness mm 5
Load resistance Ω 10.6

Stack length mm G1 G2 G3
118 75 91
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4.1. Flux Distribution

In PMA-SynRG, the direct and quadrature axes flux linkages can be represented as
d-axis flux linkage:

λd = Ldid (6)

q-axis flux linkage:
λq = Lqiq −Λpm (7)

where Λpm represents the PM flux linkage, Ld and Lq are d- and q-axes inductances, respectively.
Similarly id and iq are corresponding d- and q-axes currents.

In Figure 6, the magnetic flux density for G1, G2, and G3 are presented, where G3 has a maximum
flux density of 1.36 Wb/m2.
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4.2. Output Voltage Waveforms

The aim of a generator design is to generate stator voltage which almost looks like a sinusoidal
waveform with a minimal harmonic content, which minimizes the losses in the generator. In Figure 7,
stator-winding peak–peak voltage under resistive load condition for G1, G2, and G3 is presented.
During no-load operation, the peak–peak voltage of 359 V is generated in G2, whereas it is 384 V
in G3, respectively.
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At full load condition, the voltage generated in G2 was 326 V peak–peak voltages, as shown
in Figure 8, while in G1 it was 324 V. Moreover, transients voltages from the stator windings at full
load condition were obtained with the excitation capacitor in G3, where the excitation capacitor was
Ce = 400 µF. The voltage values confirm that the voltage regulation of G2 was better when compared
with G1 and G3. Furthermore, the waveforms show that while using ferrite magnet the harmonics
were higher compared to G2 topology.
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4.3. Weight of the Generators

As stated above, G2 has exactly the same structure as G1 and G3 except for the stack length which
is 30.5% and 15.2% higher than G2. Accordingly, the weight of the active material and core material
are not similar. The amount of PM used in G1 to achieve the required output was 72.2% higher than
the G2 configuration. The reason behind this is NdFeB, which produces energy that is eleven times
higher than that of the ferrite (about 367 kJ/m3 versus 32.9 kJ/m3) [22], resulting in the stack length
of the machine to increase in order to achieve the required power, increasing the overall weight of
G1. The overall weight comparison of each component of G1, G2, and G3 are displayed in Figure 9.
These results confirm that the ferrite rotor (G1) was not a feasible machine for military applications,
where weight plays a major role. The overall weight of G1 was 39.44% and 52% higher than G3 and G2,
respectively. The further mechanical comparison was analyzed for G2 and G3 rotor configurations.
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5. Mechanical Analysis

5.1. Transient Thermal Analysis

In a hollow cylinder containing a heat source, conductive heat transfer with various boundary
conditions was obtained from the Fourier law in the cylindrical coordinate as [23]

1
r
∂
∂r

(
kr
∂T
∂r

)
+

1
r2
∂
∂θ

(
k
∂T
∂θ

)
+

∂
∂Z

(
k
∂T
∂Z

)
+ q = ρc

dT
dt

(8)

Thermal analysis was carried out for 5 kW PM-SynRG with NdFeB (G2) and IG (G3).
This FEA analysis dealt primarily with heat conduction through the generator components. The quantity
of heat transmitted from the excited phase to surrounding regions primarily depended upon convection
heat transfer coefficients, h. The value of ‘h’ depends on thermal conductivity, specific heat, fluid
dynamic viscosity and other properties of the coolant. The set of dimensionless numbers used in
the calculation of convection heat transfer coefficients are given in Table 3.

In the Appendix A, Table A2 depicts the thermal properties for different materials used in G2
and G3 for thermal analysis. For the mesh region in Figure 10, G2 has 63,039 nodes and 121,776
elements, whereas for G3 has 69,739 nodes and 134,720 elements.

Table 3. Dimensionless parameters to calculate heat transfer coefficient [24].

Dimensionless Number Equation Nomenclature

Reynold’s number Re =
∏

D2ω
υ

D—Diameter of the stator up to the stator pole arc (m)
ω—Angular velocity = 2

∏
N/60 (rad/s)

N—Speed of the motor (rpm)
υ—Kinematic viscosity (m2/s)
β—Coefficient of cubical expansion of fluid (K−1)
g—Gravitational force of attraction (m/s2)
θ—Temperature difference between surface and fluid (K)
ρ—Fluid density (kg/m3)
L—Characteristic length of the surface (m)
µ—Fluid dynamic viscosity (Kg/m s)
c—Specific heat capacity of fluid (J/Kg K)
λ—Thermal conductivity of fluid (W/m K)

Grashof number Gr =
βgθρ2L3

µ2

Prandtl number Pr =
cµ
λ

Nusselt Number h =
Nu(λ)

L
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From the electromagnetic analysis, the core loss and copper loss of G2 and G3 are calculated
and tabulated for full load condition in Table 4. These losses are incorporated as input in thermal
analysis to estimate the maximum temperature rise in G2 and G3.

Table 4. Electromagnetic losses.

Components Heat Loss
G2 G3

Copper loss 491 833
Core loss 35 33

The thermal analysis was performed for ambient temperatures of +30 ◦C. The transient thermal
analysis was performed for a duration of 6 h. The estimated temperature distribution in the generator
for full load (100% load) condition is presented in Figure 11.

For full load in G2, it was noted that the temperature ranged from 94 ◦C to 100 ◦C, with the maximum
temperature occurring on the stator winding. For full load in G3, it was noted that the temperature
ranged from 118 ◦C to 132 ◦C, with the maximum temperature occurring on the rotor bar.
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The temperature distribution of G2 and G3 for the various ambient conditions (−40 ◦C, +30 ◦C
+65 ◦C), is shown in Figures 12 and 13. At−40 ◦C, temperature in housing frame is−5.12 ◦C and−8.56 ◦C
for G3 and G2, respectively.
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5.2. Torque Waveform in Generating Mode

Figure 14 displays the FEA evaluated electromagnetic torque during generating operation.
Furthermore, it was observed that the peak to peak torque ripple of G2 was 9% less than G3. The barrier
count per pole, size, and placement of PM were the key parameters which influenced the ripple content
in the developed torque [20]. The torque ripple was the main reason for the noise level of the machine.
In the next section, the acoustic analysis was performed for both generators.

Energies 2019, 12, x FOR PEER REVIEW 11 of 16 

 

 

Figure 13. Temperature distribution of G3 for various ambient conditions (−40 °C, +30 °C, +65 °C). 

5.2. Torque Waveform in Generating Mode 

Figure 14 displays the FEA evaluated electromagnetic torque during generating operation. 
Furthermore, it was observed that the peak to peak torque ripple of G2 was 9% less than G3. The 
barrier count per pole, size, and placement of PM were the key parameters which influenced the 
ripple content in the developed torque [20]. The torque ripple was the main reason for the noise level 
of the machine. In the next section, the acoustic analysis was performed for both generators. 

 
Figure 14. Electromagnetic torque during generating mode for G2 and G3 (operating at rated load). 

5.3. Acoustic Analysis 

Sound pressure and sound power were the two constraints to compute the local and global 
acoustic effects [25,26]. 

In Figure 15, acoustics versus frequency plot measured by decibels are presented for G2 and G3. 
The maximum noise level was identified from the acoustics versus frequency plot. For (G2) frequency 
1036.4 Hz, it was noted that the acoustic pressure of the stator core ranged from −3 × 10−8 MPa to 2.8 
× 10−9 MPa (refer to Figure 16a). For (G3) frequency 1066.3 Hz, it was noted that the acoustic pressure 
of the stator core ranged from −4 × 10−9 MPa to 3 × 10−9 MPa (refer to Figure 16b). The overall machine 
performances of G2 and G3 are presented in Table 5. 

Figure 14. Electromagnetic torque during generating mode for G2 and G3 (operating at rated load).



Energies 2019, 12, 2285 12 of 16

5.3. Acoustic Analysis

Sound pressure and sound power were the two constraints to compute the local and global
acoustic effects [25,26].

In Figure 15, acoustics versus frequency plot measured by decibels are presented for G2 and G3.
The maximum noise level was identified from the acoustics versus frequency plot. For (G2) frequency
1036.4 Hz, it was noted that the acoustic pressure of the stator core ranged from −3 × 10−8 MPa
to 2.8 × 10−9 MPa (refer to Figure 16a). For (G3) frequency 1066.3 Hz, it was noted that the acoustic
pressure of the stator core ranged from −4 × 10−9 MPa to 3 × 10−9 MPa (refer to Figure 16b). The overall
machine performances of G2 and G3 are presented in Table 5.Energies 2019, 12, x FOR PEER REVIEW 12 of 16 
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Table 5. Overall performance comparison of G1, G2, and G3 topologies.

Parameter G1 G2 G3 Remarks

No load induced EMF (V) 281 253.8 263
• The voltage regulation of G1 is

3.73 % and 12.52% higher than
G3 and G2.

• G2 has 8.7% reduced voltage
regulation than G3.

• G2 has a 21.57% higher
power/weight ratio than G3.

• G3 has 5.7% less efficient tan G2.
• Noise level of G2 is 3% lesser

than G3.

Full load voltage (V) 229.1 230.5 228.7
Full load current (A) 21.9 22.2 22.17
Output power (kW) 5.02 5.12 5.07

Total losses (W) 941 613 995
%Efficiency 84.2 89.3 83.6

%Voltage regulation 22.65 10.13 18.9
kW/kg 0.233 0.496 0.389

Maximum winding
temperature (◦C) -NE- 100 ◦C 132 ◦C

Noise level (dB) -NE- 64 66
* NE—not evaluated
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6. Cost Estimation

The detailed cost estimation of various components of a 5 kW portable generator for military
applications is tabulated in Table 6 (also refer Table A3).

Table 6. Overall cost analysis of PMA-SynRG and IG.

S.
No

Material Grade
Price/kg
(approx.) Part Number

Quantity (kg) Cost (INR)
(max.)

G2 G3 G2 G3

1 Non-Oriented
AISI Silicon Steel M-36 29 Ga 80 to 130 - 7 10 910 1300

2 NdFeB N52 10000 to 12000 - 1.5 nil 18000 -NA-

3 Copper coil AWG-15 500 to 620 - nil 3 -NA- 1860
AWG-16 500 to 620 - 2.5 -NA- 1550 -NA-

4 Copper bar - 500 to 550 - nil 2.5 -NA- 1375

5 Capacitor 200 uF/440 V 5600 to 7460 871-B32361B2207J50 nil 2
(count) -NA- 14920

6 Nomex Insulation
Class F 750 to 1500 - 2 nil 3000 -NA-
Class H 2500 to 4000 - nil 2 -NA- 8000

7 Grey cast iron Grade 350 50 to 80 -Pleae 8 10 640 800

8 Journal bearing Bearing Steel 100 to 160 6004
6004 ZZ

2
(count)

2
(count) 320 320

9 Fasteners
SS 304

IS 1363/DIN
933/BS 1083 25 to 30 M12x20 8

(count)
8

(count) 240 240

10 Fasteners
SS 304

IS 1363/DIN
933/BS 1083 55 to 65 M16x30 4

(count)
4

(count) 260 260

11 Fabrication - - - nil nil 40000 30000

- - - - Total (Approx.) 22.5 29
64920
(926

USD)

59075
(842

USD)

7. Conclusions

This paper investigated the electro-magnetic design analysis of PMA-SynRG with a ferrite rotor
(G1), NdFeB rotor (G2), and induction generator (G3). Furthermore, the machines were examined in
all aspects, including thermal and acoustic analysis.

From the Analysis
√

Voltage regulation in the G2 rotor was 8.77% less compared to G3.
√

The magnet weight used in G1 was 72.2% higher than G2.
√

The overall weight of G2 was 20.7% and 52% less than G3 and G1, respectively.
√

At rated load, both generators were within the thermal limit for ambient conditions prescribed by
the military requirements.

√
The noise level of G2 and G3 was 64 dB and 66 dB, respectively, which is within the range of
military standards.

Based on the results, it is clearly evident that both, the PMA-SynRG with NdFeB rotor (G2) and IG
are a good choice for military applications (as per military standards), whereas PMA-SynRG with
NdFeB (G2) are more suitable within the aspects of power, weight, size, thermal and noise. Likewise,
the induction generator is appropriate in the features of power, thermal noise and overall cost.
Furthermore, the prototype fabrication process of the machine is under progress.
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Appendix A

Table A1. Permanent magnet characteristics [22].

Magnet Characteristic Unit Value

Ferrite

Residual induction Br at 20C Tesla 0.42
Energy Product at 20C kJ/m3 32.9

Mass density kg/m3 4900
Max. Working Temperature ◦C 300

Curie Temperature ◦C 450

NdFeB

Characteristic Unit Value
Residual induction Br at 20C Tesla 1.39

Energy Product at 20C kJ/m3 367.4
Mass density kg/m3 7500

Max. Working Temperature ◦C 230
Curie Temperature ◦C 310

Table A2. Thermal properties of the material used.

Material Density
(Kg/m3)

Specific Heat
(J/KgC)

Thermal Conductivity
(W/mC)

M36-29 Gauge 7700 490 25
Copper 8954 383.1 386

Nomex 410 1400 1300 0.14
Cast Iron 7272 486 36.3

N52 (NdFeB) 7500 460 7.6

Appendix B

Table A3. References for cost analysis.

S.
No

Material Grade Price Reference Link
Cost/kg

(Rounded Off)
Min. Max.

1 Non-Oriented AISI
Silicon Steel M-36 29 Ga

https://www.indiamart.com/proddetail/crgo-electrical-steel-17427063588.html
https://www.indiamart.com/proddetail/crgo-transformers-sheet-17382640691.html
https://www.indiamart.com/proddetail/crgo-steel-sheet-coil-20408399155.html

80 130

2 NdFeB N52 https://www.indiamart.com/proddetail/rare-earth-magnet-rod-5698105812.html
https://www.indiamart.com/proddetail/rare-earth-magnets-10573830273.html 10000 12000

3 Copper coil
AWG-15 https://www.indiamart.com/proddetail/copper-winding-coil-15789944088.html

https://www.indiamart.com/proddetail/copper-bare-wire-10182933762.html
https://www.indiamart.com/proddetail/winding-wire-17856803030.html

500 620
AWG-16

4 Copper bar
https://www.indiamart.com/proddetail/phosphorised-copper-bars-12436604612.html
https://www.indiamart.com/proddetail/copper-bars-8021904930.html
https://www.indiamart.com/proddetail/ec-grade-copper-bars-18801056473.html

500 550

5 Capacitor 200 uF/440 V https://www.mouser.in/Passive-Components/Capacitors/Film-Capacitors/_/N-5g7r?P=
1z0wqt2Z1ywtais

5600
(1 count)

7460
(1 count)

6 Nomex Insulation

Class F https://www.indiamart.com/proddetail/nomex-insulation-paper-class-f-19444242012.html
https://www.indiamart.com/proddetail/f-class-h-class-insulation-paper-10121409648.html 750 1500

Class H
https://www.indiamart.com/proddetail/nomex-insulation-paper-class-h-dupont-
19444400255.html
https://www.indiamart.com/proddetail/h-class-insulation-paper-8938225933.html

2500 4000

7 Grey cast iron Grade 350 https://www.indiamart.com/proddetail/grey-iron-casting-20401746330.html
https://www.indiamart.com/proddetail/grey-iron-casting-20570455262.html 50 80

8 Journal bearing Bearing Steel https://www.indiamart.com/proddetail/6004-zz-nsk-ball-bearings-20442772655.html
http://www.easysparepart.com/NBC-Ball-Bearing-6004ZZ 100 160

9
Fasteners

SS 304
(M12x20) IS 1363/DIN

933/BS 1083
https://www.pmmetal.com/special-steel-fasteners/stainless-steel-fasteners/stainless-steel-
fasteners/
https://www.swiftindustrial.in/downloads/HighTensileFastners.pdf

25
(1 count)

30
(1 count)

10
Fasteners

SS 304
(M16x30)

55
(1 count)

65
(1 count)

https://www.indiamart.com/proddetail/crgo-electrical-steel-17427063588.html
https://www.indiamart.com/proddetail/crgo-transformers-sheet-17382640691.html
https://www.indiamart.com/proddetail/crgo-steel-sheet-coil-20408399155.html
https://www.indiamart.com/proddetail/rare-earth-magnet-rod-5698105812.html
https://www.indiamart.com/proddetail/rare-earth-magnets-10573830273.html
https://www.indiamart.com/proddetail/copper-winding-coil-15789944088.html
https://www.indiamart.com/proddetail/copper-bare-wire-10182933762.html
https://www.indiamart.com/proddetail/winding-wire-17856803030.html
https://www.indiamart.com/proddetail/phosphorised-copper-bars-12436604612.html
https://www.indiamart.com/proddetail/copper-bars-8021904930.html
https://www.indiamart.com/proddetail/ec-grade-copper-bars-18801056473.html
https://www.mouser.in/Passive-Components/Capacitors/Film-Capacitors/_/N-5g7r?P=1z0wqt2Z1ywtais
https://www.mouser.in/Passive-Components/Capacitors/Film-Capacitors/_/N-5g7r?P=1z0wqt2Z1ywtais
https://www.indiamart.com/proddetail/nomex-insulation-paper-class-f-19444242012.html
https://www.indiamart.com/proddetail/f-class-h-class-insulation-paper-10121409648.html
https://www.indiamart.com/proddetail/nomex-insulation-paper-class-h-dupont-19444400255.html
https://www.indiamart.com/proddetail/nomex-insulation-paper-class-h-dupont-19444400255.html
https://www.indiamart.com/proddetail/h-class-insulation-paper-8938225933.html
https://www.indiamart.com/proddetail/grey-iron-casting-20401746330.html
https://www.indiamart.com/proddetail/grey-iron-casting-20570455262.html
https://www.indiamart.com/proddetail/6004-zz-nsk-ball-bearings-20442772655.html
http://www.easysparepart.com/NBC-Ball-Bearing-6004ZZ
https://www.pmmetal.com/special-steel-fasteners/stainless-steel-fasteners/stainless-steel-fasteners/
https://www.pmmetal.com/special-steel-fasteners/stainless-steel-fasteners/stainless-steel-fasteners/
https://www.swiftindustrial.in/downloads/HighTensileFastners.pdf


Energies 2019, 12, 2285 15 of 16

References

1. Atlascopco. Available online: https://www.atlascopco.com/content/dam/atlas-copco/construction-technique/

portableenergy/documents/2_generators/spain/portable-generators/portable-generators-leaflet-english.
pdf (accessed on 13 September 2018).

2. Championpowerequipment. 2017. Available online: https://y79961nbs4u2hvbnwronx9zx-wpengine.netdna-
ssl.com/wp-content/uploads/2017/09/100490-om-english.pdf (accessed on 9 August 2018).

3. Misron, N.; Rizuan, S.; Vaithilingam, A.; Mailah, N.F.; Tsuyoshi, H.; Hiroaki, Y.; Yoshihito, S. Performance
Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder
Two-Stroke Engine. Energies 2011, 4, 1937–1949. [CrossRef]

4. Matthew, K.S. Electromagnetic Generators for Portable Power Applications. Ph.D. Thesis, University of California,
Berkeley, CA, USA, 2005.

5. Home Generators Basics. 2008. Available online: https://www.smps.us/home-generators.html (accessed on
13 September 2018).

6. Norhisam, M.; Syafiq, M.; Aris, I.; Abdul Razak, J. Design and analysis of a single phase slot-less permanent
magnet generator. In Proceedings of the International Conference on Power and Energy, Johor Baharu,
Malaysia, 1–3 December 2008; pp. 1082–1085.

7. Stegen, K.S. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy
2015, 79, 1–8. [CrossRef]

8. Alkane Resources Ltd. Available online: http://www.alkane.com.au/products/rare-earths-overview/

(accessed on 13 March 2018).
9. Constantinides, S. The Demand for Rare Earth Materials in Permanent Magnets. In Proceedings of the 51st

annual Conference on Metullurgists, Niagara Falls, NY, USA, 30 September–3 October 2012; pp. 1–58.
10. Guyonnet, D.; Lefebvre, G.; Menad, N. Guyonnet et al. Rare Earth Elements and High Tech Products.

Available online: https://www.cec4europe.eu/wp-content/uploads/2018/09/Chapter_3_3_Guyonnet_et_al_
Rare_earth_elements_and_high_tech_products.pdf (accessed on 3 January 2019).

11. Roshanfekr, P.; Lundmark, S.; Thiringer, T.; Alatalo, M. A synchronous reluctance generator for a Wind
Application-compared with an interior mounted permanent magnet synchronous generator. In Proceedings
of the International Conference on Power Electronics, Machines and Drives (PEMD), Manchester, UK,
8–10 April 2014; pp. 1–5.

12. Hsiao, C.-Y.; Yeh, S.-N.; Hwang, J.-C. Design of high performance permanent-magnet synchronous wind
generators. Energies 2014, 7, 7105–7124. [CrossRef]

13. Vartanian, R.; Deshpande, Y.; Toliyat, H.A. Performance analysis of a rare earth magnet based NEMA frame
Permanent Magnet assisted Synchronous Reluctance Machine with different magnet type and quantity.
In Proceedings of the International Conference on Electric Machines & Drives (IEMDC), Chicago, IL, USA,
12–15 May 2013; pp. 476–483.

14. Tefera, K.; Tripathy, P.; Adda, R. Electromagnetic and mechanical stress analysis of wind-driven synchronous
reluctance generator. CES Trans. Electr. Mach. Syst. 2019, 3, 107–114. [CrossRef]

15. Alnajjar, M.; Gerling, D. Medium-speed synchronous reluctance generator as efficient, reliable and low-cost
solution for power generation in modern wind turbines. In Proceedings of the International Symposium on
Power Electronics, Electrical Drives, Automation and Motion, Amalfi, Italy, 20–22 June 2018; pp. 1233–1238.

16. Yamada, A.; Miki, I. Novel Rotor Structure of Permanent Magnet Synchronous Motor with Rare Earth
and Ferrite Magnets. In Proceedings of the International Symposium on Power Electronics, Electrical Drives,
Automation and Motion, Ischia, Italy, 18–20 June 2014; pp. 1–5.

17. Selmi, M.; Rehaoulia, H. A simple method for the steady state performances of self-excited induction
generators. In Proceedings of the International Conference on Electrical Engineering and Software
Applications, Hammamet, Tunisia, 21–23 March 2013; pp. 1–4.

18. Chan, T.F. Analysis of a single-phase self-excited induction generator. Electr. Mach. Power Syst. 1995,
23, 149–162. [CrossRef]

19. Reza, R.M. Synchronous Reluctance Machine (SynRM) Design. Master’s Thesis, Royal Institute of Technology
Stockholm, Stockholm, Sweden, 2007.

20. Ashkezari, J.D.; Khajeroshanaee, H.; Niasati, M. Optimum design and operation analysis of permanent
magnet-assisted synchronous reluctance motor. Turk. J. Electr. Eng. Comput. Sci. 2017, 7, 7105–7124.

https://www.atlascopco.com/content/dam/atlas-copco/construction-technique/portable energy/documents/2_generators/spain/portable-generators/portable-generators-leaflet-english.pdf
https://www.atlascopco.com/content/dam/atlas-copco/construction-technique/portable energy/documents/2_generators/spain/portable-generators/portable-generators-leaflet-english.pdf
https://www.atlascopco.com/content/dam/atlas-copco/construction-technique/portable energy/documents/2_generators/spain/portable-generators/portable-generators-leaflet-english.pdf
https://y79961nbs4u2hvbnwronx9zx-wpengine.netdna-ssl.com/wp-content/uploads/2017/09/100490-om-english.pdf
https://y79961nbs4u2hvbnwronx9zx-wpengine.netdna-ssl.com/wp-content/uploads/2017/09/100490-om-english.pdf
http://dx.doi.org/10.3390/en4111937
https://www.smps.us/home-generators.html
http://dx.doi.org/10.1016/j.enpol.2014.12.015
http://www.alkane.com.au/products/rare-earths-overview/
https://www.cec4europe.eu/wp-content/uploads/2018/09/Chapter_3_3_Guyonnet_et_al_Rare_earth_elements_and_high_tech_products.pdf
https://www.cec4europe.eu/wp-content/uploads/2018/09/Chapter_3_3_Guyonnet_et_al_Rare_earth_elements_and_high_tech_products.pdf
http://dx.doi.org/10.3390/en7117105
http://dx.doi.org/10.30941/CESTEMS.2019.00015
http://dx.doi.org/10.1080/07313569508955614


Energies 2019, 12, 2285 16 of 16

21. Boroujeni, S.T.; Haghparast, M.; Bianchi, N. Optimization of flux barriers of line-start synchronous reluctance
motors for transient- and steady-state operation. Electr. Power Compon. Syst. 2015, 43, 3–17. [CrossRef]

22. Massimo, B.; Nicola, B. Interior PM machines using ferrite to replace rare-earth surface PM machines.
IEE Proc. Electr. Power Appl. 2014, 50, 979–984.

23. Pavan, A.; Sathyanarayanan, N.; Rajeshkumar, R.; Lenin, N.C.; Sivakumar, R. Thermal analysis of a 3 phase,
550 w switched reluctance machine. Int. J. Appl. Eng. Res. 2015, 10, 86–90.

24. Staton, D.A.; Cavagnino, A. Convection heat transfer and flow calculations suitable for electric machines
thermal models. IEEE Trans. Ind. Electron. 2008, 55, 3509–3516. [CrossRef]

25. Tong, W. Mechanical Design of Electric Motors; CRC Press: London, UK, 2014; p. 481.
26. Timar, P.L. Noise and Vibration of Electrical Machines; Elsevier Science Ltd.: Amsterdam, The Netherlands,

1989; p. 355.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/15325008.2014.984819
http://dx.doi.org/10.1109/TIE.2008.922604
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Constraints of Portable Generator in Military Applications 
	Design Strategy for Portable Generator 
	Permanent Magnet Synchronous Reluctance Generator 
	Induction Generator 

	Finite Element Analysis 
	Flux Distribution 
	Output Voltage Waveforms 
	Weight of the Generators 

	Mechanical Analysis 
	Transient Thermal Analysis 
	Torque Waveform in Generating Mode 
	Acoustic Analysis 

	Cost Estimation 
	Conclusions 
	
	
	References

