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Abstract: Wind power has grown popular in past recent years due to environmental issues and the
search for alternative energy sources. Thus, the viability for wind power generation projects must
be studied in order to attend to the environmental concerns and still be attractive and profitable.
Therefore, this article aims to perform a sensitive analysis in order to identify the variables that
influence most in the viability of a wind power investment for small size companies in the Brazilian
northeast. For this, a stochastic analysis of viability through Monte Carlo Simulation (MCS) will
be made and afterwards, Artificial Neural Networks (ANN) models will be applied for the most
relevant variables identification. Through the sensitivity, it appears that the most relevant factors in
the analysis are the speed of wind, energy tariff and the investment amount. Thus, the viability of the
investment is straightly tied to the region where the wind turbine is installed, and the government
incentives may allow decreasing in the investment amount for wind power. Based on this, incentives
programs for the production of clean energy include cheaper purchase of wind turbines, lower taxing
and financing rates, can make wind power more profitable and attractive.

Keywords: economic feasibility; net present value; artificial neural networks; wind power;
sensitivity analysis

1. Introduction

Since the 1960s and affected by the oil crisis episode, the situation of fossil resource level, which is
the main source of energy, has become alarming. Consequently, at the same period, the renewable
energy sector attracted more investment and greater efforts for technological progress in order to
develop an alternative to fossil fuels [1,2].

Rocha et al. [3] stated that renewable energy refers to the form of energy that occurs naturally in a
continuous and infinite way. It is known that many types of energy fall into this definition, such as
those that comes directly from the sun (for instance, photovoltaic energy), wind, tides and waves.

The popularity of wind power has increased due to environmental problems, fossil fuels price
volatility, as well as the risks and geopolitical uncertainties related to the dependence on imports
of these fossil resources [1,4,5]. In addition, Mohammadi and Mehrpooya [6] state that the global
fossil resources consumption growth, results in several challenges because fossil fuels are exhaustible
in the near future, and their combustion leads to environmental problems such as the ozone layer
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depletion, acid rain, climate change, etc. Thus, new energy sources are needed in order to overcome
these problems.

According to Aquila et al. [7], the renewable energy market is expanding and regulatory
changes have influenced the energy sector in Brazil. In 2012, the Electric Power Regulatory Agency
(ANEEL), through resolution number 482/2012, introduced a net metering system aiming to promote
microgeneration from RES. The authors also discuss the need for studies on microgeneration feasibility
and as well as comparisons between different regions. Wong et al. [8] adds that policies related to
renewable energy should encourage investors to provide clean energy to consumers and thus create a
model of sustainable development.

According to the Energy Research Company [9], Brazil has 41.2% of renewable energy in its
energy matrix, 64% of which is hydroelectric. For that reason, Brazil shows a strong dependence on
hydropower. However, since 2011, wind energy has been presenting a favorable growth scenario in
Brazil. Nowadays, wind energy has a prominence at the Brazilian electricity market. Wind power
adoption has increased in Brazil due to the crisis of electricity supply, environmental attractiveness,
adoption of incentive programs by the Brazilian government, and the actions to structure a regulatory
framework for the production of electricity from RES (renewable energy sources) [10].

In 2014, a drought threatened the supply of electricity in Brazil. Thus, in order to mitigate the
hydrological risk in the country, the use of other renewable energy sources had been stimulated [1].
In addition, according to Rocha et al. [3], Brazil has high wind potential, especially in the northeast
region, which can be proven by the numerous farms that have been installed in the region.

For Silva et al. [10], the electricity supply crisis and the incentives of the Brazilian government
are characteristics that can attract investors to the wind energy generation, thus making it possible
to take advantage of Brazil’s high wind potential. It is evident that there is a growing trend in the
use of Brazilian wind potential. In this perspective, it is necessary to carry out feasibility studies of
wind power generation projects, so that these become profitable and attractive investments, as well as
addressing environmental concerns.

Therefore, Montes et al. [11] and Arnold and Yildiz [12], determine the detailed planning and
analysis of the projects. According to the authors, these actions would maximize the profitability of
the investment, as well as it would avoid the installation of unproductive wind farms, which would
become obstacles to the short term development. In addition, Haufe and Ehrhart [13] emphasize that
in order to eliminate excessive costs, many countries have implemented competition mechanisms,
such as auctions. However, the auctions are sensitive to market structure, that is, they depend on the
political and economic objectives of each region.

In this context, similar to studies such as Li et al. [14], Rocha et al. [3] and Ertürk [4], which perform
the feasibility study of renewable energy generation projects, this present work applies the Monte
Carlo Simulation method (MCS) in the project´s investment analysis. However, differently from the
mentioned articles, this paper uses the Artificial Neural Networks (ANN) in order to analyze the
sensitivity of the feasibility in function of the project variables.

In general terms, this article aims to perform a sensitivity analysis in order to identify the variables
that most influence the viability of wind power investment in small companies in Brazilian Northeast.
For this, a stochastic economic viability analysis will be carried out and later ANN models will be
applied to identify the most relevant variables.

2. Theoretical Background

2.1. Economic Feasibility Analysis

There are several methods that evaluate the financial feasibility of investments. However for
analyzes of energy generation projects, the Net Present Value method (NPV) is widely used in literature
as the main feasibility indicator [4,12,14,15]. In this sense, Hawawini and Viallet [16] affirm that NPV is
a desirable decision criterion. In addition to other properties, it considers the expected cash flow of the
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project, taking in account its risks and being a measure of value creation. Therefore, when the result of
the net present value is greater than zero the project creates value, that is, the investment is feasible.

For Ross et al. [17], NPV is a measure of value created or aggregated for an investment to be
realized. In addition, the authors complement that the decisions made using the NPV criterion are
defined, solely, based on the result, so that, when positive, the investment should be accepted. However,
when the NPV is negative, it should be rejected.

The Net Present Value (NPV) is described by the following Equation (1):

NPV = −I +
n∑

j=1

CF j

(1 + k) j , (1)

where CFj represents the cash flow in period j and k indicates the minimum attractiveness rate,
which represents the minimum return that the investor seeks to obtain in the investment; and I is
the investment.

According to Tao and Finenko [18], cash flow modeling considers money value throughout the
project, where a discount rate is used to find the present value. Thus, the flow itself is formatted from
the perspective of the developer, who in turn includes both client and investor.

In this case, the risk factors for the revenues from investing in renewable energy projects must be
treated as random variables [14], so Monte Carlo Simulation can be used to calculate NPV, as suggested
by Arnold and Yildiz [12]. It returns, through random simulations, a probabilistic model that presents
the probability of feasibility of the project.

2.2. Weighted Average Cost of Capital

The weighted average cost of capital (WACC) is the method that calculates the rate of return of
capital expected by investors applied in the cash flow of the project. Thus, the lower the weighted
average cost of capital the higher the project value, since the discount rate reflects the opportunity cost
in relation to the investment risk [16,18–20].

According to Ertürk [4] the WACC is calculated by Equation (2):

WACC = keE + kdD(1− t), (2)

where ke represents the cost of equity (calculated preferably by Capital Asset Pricing Model-CAPM);
kd is the cost of debt; E represents the weight of equity in the investment (%); D denotes the weight of
debt applied to the investment (%); t is the aliquot of the income tax.

It was noted that the majority of the publicly traded companies in the electricity sector have the
proportion of 35% of equity and 65% of capital of debt. In this sense, it is fair to assign these values to
variables and, respectively, in Equation (2) [21].

Furthermore, Aquila et al. [1] proposes the use of the interest rate of the National Development
Bank (BNDES) in energy generation projects, which has a value of 11.33%, so this value is attributed to
the cost of debt (kd). In addition, it assumed t as 34%, in line with the current value of income taxes
in Brazil.

Regarding the calculation of CAPM, the National Electric Energy Agency [22] suggests that a
Brazilian risk factor is added so that the Brazilian market investor receives a risk premium. As it can
be seen in Equation (3):

ke = R f + β
(
Rm −R f

)
+ Rb, (3)

where Rf represents the risk-free rate (5.64%); Rm indicates the expected return of market (13.20%);
Rb represents the risk premium Brazil (2.62%) [22]; and β denotes the levered beta (equity beta) and
measures the project risk in regards to the market.
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In addition, to calculate the levered beta (β) it was used the data of Damodaran [23], in which the
renewable energy sector has the unlevered beta value of 0.69. Using such data and considering the
proportion of equity and debt, the levered beta of 1.54 is found through Equation (4):

βa = βd

[
1 +

D
E
(1− t)

]
, (4)

where βa is the levered beta; βd is the unlevered beta; D denotes the weight of debt applied to the
investment (65%); E represents the weight of equity in the investment (35%), and t is the aliquot of the
income tax.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational structures that have as principle the
representation of biological processes. These are composed of simple processing units and have the
capacity to store experiments and make them available to the user [24,25].

Bigdeli et al. [26] state that Multi-Layer Perceptron (MLP) ANNs make up the model of artificial
neural networks most commonly used in the literature. In this model, each unit calculates the scalar
product of its input vector with the relative weight vector with each entry. When triggered, the value of
the scalar product is used as a variable independent of an activation function, in which the dependent
variable is the output of the neuron. However, it is known that the MLP supports more than one
output in its mapping, since it does not have theoretical limitations on the data [27].

Figure 1 shows the architecture of an MLP network:
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Figure 1. Representation of an MLP network. Adapted from ATA [28].

In this context, the backpropagation algorithm is widely used in the literature to carry out MLP
network training, which seeks to learn and correct connection weights, as well as minimizing errors
through activation threshold adjustments [27–29].

By designing a well-trained MLP network model (m × n × 1), where m is the number of nodes
in the input layer, n are the nodes of the hidden layer, and 1 is the output layer node, the relative
importance of input variables can be calculated by Equation (5) [27,30]:

RIi =
ri∑m

i=1|ri|
× 100%. (5)

For this calculation, Chakrabarty et al. [27] stipulate some steps that must be followed. These are:

• The vector, M (1 × n), must be organized with the interconnection weights between the nodes of
the hidden layers (n) and the nodes of the output layers;
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• The matrix, W (m × n), must be organized with the interconnection weights between the nodes of
the input layers (m) and the nodes of the hidden layers (n);

• Calculate the vector R = MWT, where R = [r1, r2, . . . , rm];
• Finally, we calculate the relative importance (RIi), in percentage, of each node i of the input layer,

as given by Equation (5).

After completing these steps, the relative importance (RI) of each input parameter over the output
variable is obtained, of which a sensitivity analysis of these variables will be performed.

3. Materials and Methods

This research is classified as applied in nature. Regarding the objectives, it is characterized as
exploratory research, as to the way of approach is quantitative, as numerical data and calculations
for the solution of the proposed problem was used. As for the research method, it is classified as a
modeling and simulation research, since it tried to reproduce a real system through a computational
model [31].

This work proposes to analyze the economic feasibility of an investment directed to the installation
and production of electricity from wind power in a small business (SB). To exemplify this proposal,
as Rocha et al. [3], a region with high wind speed of the Brazilian northeast was chosen and the wind
speed behavior data collected [32]. The Weibull distribution is widely used in literature as the one
that best suits the wind speed behavior as a function of time [33]. Thus, the Weibull distribution
was employed with values for scale parameter (C) and shape parameter (k) equal to 7.0 and 3.0,
respectively [32].

In this context, the investment is based on the purchase of a 30 kW wind turbine, power compatible
with the need for a SB. Thus, after research among several companies that provide this type of product,
giving priority to suppliers in the Northeast, it was stipulated R$ 408,950.00 as the average value of the
investment. The specifications of the wind turbine are: diameter of 13.2 meters and efficiency of 92%.
Furthermore, it was found that the useful life of this type of product is 20 years without maintenance,
which is easily found on the market. Then, 5% was determined as depreciation rate, so it is considered
that the wind turbine will be totally depreciated after the 20 years.

Rocha et al. [3] present a routine for energy production calculation for wind power generators,
as follow. The probability density function of a Weibull distribution with two parameters is given by
Equation (6):

f (v) =
k
C

( v
C

)k−1
e−(

v
C )

k
, (6)

where v represents the wind speed (m/s); k denotes the shape parameter; and C represents the scale
parameter (m/s).

Electric power in watts is a cubic function of wind speed (v) given by Equation (7):

P =
1
2
ρArv3CPη, (7)

where ρ represents the air density; Ar stands for the area encompassed by the rotor (πD2/4, where D
is the rotor diameter); CP represents the aerodynamic coefficient of rotor power; and η denotes the
efficiency of the generator-mechanical set and electric transmissions. The following values were
considered for the current study: ρ = 1.225 kg/m3; D = 13.2 m; and η = 0.92. The CP for a wind power
turbine varies with the wind speed, as follows [3]:

CP = −0.08114 + 0.1771v− 0.01539v2 + 0.00034v3. (8)
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Finally, Equation (6) was used to calculate the annual energy production (AEP):

AEP = 8.76×
∫ vmax

vmin
P(v) f (v)dv(kWh), (9)

where v is the wind speed; P(v) is the power curve of the wind turbine; and f (v) is the probability
density function in relation to the wind speed.

According to ANEEL [22], taxes were disregarded, as renewable energy producers are exempt
from taxes proportional to revenue. However, the financing rate was 11.33%, in accordance with the
financing conditions offered by BNDES [1].

According to Rocha et al. [34], in Brazil’s net metering, customers who produce surplus energy
through microgeneration systems are rewarded with one credit for each energy unit provided to the
grid. The ratio between the credit and the price of the energy tariff used by the utilities, which is
different in each state, is one-to-one. Considering the savings on electricity expenses that arise from the
generated credits as income for the individual who invests in electric microgeneration, it is possible to
apply the NPV for the economic feasibility analysis of this type of project.

Thus, in order to assign uncertainty to the project evaluation, a stochastic analysis was carried
out through the execution of 10,000 simulations, through the Monte Carlo Simulation (MCS). Then,
the sensitivity analysis was then performed in order to define which variables most affect the NPV.
For this, the tools Microsoft Excel® and Crystal Ball® were used.

Finally, considering the results obtained by the simulations, these variables were used to train the
MLP network and to calculate the relative importance of each input variable in relation to the output
(NPV). For this, were used the software Statistica® and Microsoft Excel®. To execute the network
training, we opted for the Automated Network Search (ANS) strategy, which seeks to identify the ideal
parameters for model construction.

It is worth mentioning that the results obtained with the simulations were used for the network
training, simply with the objective of identifying the relative importance of the variables. However,
no predictions were made based on simulated data.

4. Results and Discussion

The project cash flow was elaborated based on the values and distributions according to Table 1.
Thus, the uncertainty was applied only in the variables of wind speed, investment and energy tariff,
since the remaining ones were not shown to be relevant in the NPV or are calculated, as is the case of
energy production.

Table 1. Representation of cash flow, its values and distributions.

Parameters Distribution Minimum Probable Maximum

Wind speed Weibull -
Investment Triangular R$ 368,055.00 R$ 408,950.00 R$ 449,845.00

Energy tariff Triangular R$ 0.41 R$ 0.45 R$ 0.50
Period (years) Fixed

-

20

-

Annual tariff
readjustment Fixed 2.30%

WACC Fixed 10.29%
Financing rate Fixed 11.33%
Depreciation Fixed 5%

Energy production Calculated -

For the electricity tariff, the data collected from the utility was used to compose the parameters of
a triangular distribution, in which 0.50 and 0.41 are the largest and smallest values found, respectively,
and 0.45 is the average of the values collected. In addition, in agreement with Holdermann et al. [15],
it was attributed an annual tariff readjustment of 2.30% per year.



Energies 2019, 12, 2281 7 of 10

Moreover, for the investment, as these are imported materials and that suffer variations of the
exchange rate, a possible oscillation in the value of the investment of R$ 40,895.00 was considered, i.e.,
10% of the total investment. Given this, a triangular distribution was chosen, and the average of the
quotations with suppliers was considered as the most probable value.

Furthermore, according to Figure 2, there is a probability of 28.65% of the NPV being greater
than zero, i.e., a low probability of feasibility, which can be observed through the average NPV, in the
amount of R$ −90,439.00. Therefore, it can be concluded that investments in wind power generation
may be viable in the Brazilian northeast, but this may not be attractive for investors, since in the
scenario studied, there is still a lot of uncertainty and a low probability of viability, as well as in studies
by Aquila et al. [7], Rocha et al. [3] and Holdermann et al. [15].
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In this sense, one should seek to know under which variables the NPV is more sensitive, for which
two alternatives have been chosen.

The tornado chart (Figure 3), shows that wind speed is the variable that impacts the net present
value (NPV) the most and, consequently, the viability of the project. Moreover, the value of the
investment and the energy tariff, even if on a much smaller scale, show a significant value in the NPV,
which are variables that are easier to adapt, since they are related to production costs, taxes, financing
rates, among others. In this segment, the Brazilian government is fundamentally important, as it
can promote types of monetary incentives for this type of project in order to make it more attractive
and profitable.
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In a second analysis, as previously reported, we opted for the Automated Network Search (ANS)
strategy, which seeks to identify the ideal parameters for the ANN construction. Under these conditions,
the structure identified with the lowest prediction error was the configuration MLP 3-5-1, that is, three
is the number of nodes in the input layer, five are the nodes of the hidden layer, and one is the output
layer node. In addition, the relative importance (RI) of these variables through ANN was estimated
(see Table 2 and Figure 4), and therefore, there is consonance about the importance of wind speed in
the viability of the project. However, according to RI results, the energy tariff was more important than
the value of investment in impacting the NPV. Then, it can be concluded that the wind speed has great
power of influence in the project. Finally, it should be noted that by calculating RI it was possible to
obtain a better discrimination of the variables.

Table 2. Representation of the Relative Importance (RI) of the parameters in the NPV value.

Parameters Relative Importance (RI)

Wind speed 56.12%
Energy tariff 27.51%
Investment 16.37%
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5. Conclusions

In this work, an economic feasibility analysis of a project of electric power generation from wind
power in an SB located in the northeast region was carried out. To better analyze the investment, it was
decided to carry out the stochastic analysis of economic viability and to verify which variables have
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greater relative importance in the project. Therefore, conclusions showed that the wind speed has
the main influence on the problem, followed by similar amounts between the cost of the investment
and the energy tariff. Moreover, the relative importance analysis through ANN proved to be feasible,
with good discrimination of the variables, being possible to rank them by the impact on NPV.

It can be inferred that because it is directly related to geographic issues, the wind speed is of
difficulty adequacy, since it is totally inherent to the location of the project. As a result, it is concluded
that this parameter is impossible to be controlled, but it is possible to elaborate forecast studies in order
to anticipate the inherent uncertainties of the project. In addition, this result shows the importance of
the site selection when projecting the installation of wind turbines.

It has been inferred that the energy tariff and the investment can make projects in wind energy
more attractive, since these are directly related to government actions. Thus, programs of incentives
for the production of clean energy that make cheaper the purchase of wind turbines and lower taxes
and financing rates can make wind power more profitable and attractive.

Finally, this study presented a new systematics for conducting studies on the sensitivity of the
variables to the NPV, using ANN. As recommendation for future studies, the application of the
presented methodology in other operations is proposed. Furthermore, additional new questions
should be investigated, such as identification of suitable locations, size of wind turbine, electrical grid
stability and government policy measures.
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