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Abstract: The economic load dispatch (ELD) problem is a complex optimization problem in power
systems. The main task for this optimization problem is to minimize the total fuel cost of generators
while also meeting the conditional constraints of valve-point loading effects, prohibited operating
zones, and nonsmooth cost functions. In this paper, a novel grey wolf optimization (GWO), abbreviated
as NGWO, is proposed to solve the ELD problem by introducing an independent local search strategy
and a noninferior solution neighborhood independent local search technique to the original GWO
algorithm to achieve the best problem solution. A local search strategy is added to the standard GWO
algorithm in the NGWO, which is called GWOI, to search the local neighborhood of the global optimal
point in depth and to guarantee a better candidate. In addition, a noninferior solution neighborhood
independent local search method is introduced into the GWOI algorithm to find a better solution in
the noninferior solution neighborhood and ensure the high probability of jumping out of the local
optimum. The feasibility of the proposed NGWO method is verified on five different power systems,
and it is compared with other selected methods in terms of the solution quality, convergence rate,
and robustness. The compared experimental results indicate that the proposed NGWO method can
efficiently solve ELD problems with higher-quality solutions.

Keywords: grey wolf optimizer (GWO); noninferior solution; local search mechanism; economic load
dispatch problems (ELD); optimization algorithms

1. Introduction

Optimization problems widely exist in various fields in real-life. Some of these optimization
problems are simple, while others are very complex due to nonconvex objective functions and
complex model constraints. For complex optimization problems, a typical characteristic is the
minimum or maximum objective function that is subject to heavy equality and/or inequality constraints.
The economic load dispatch problem (ELD) is a famous complex power system operation optimization
problem. ELD is a computational process, in which the total demanded generation is optimally
allocated to each generation unit in operation by minimizing the selected cost criterion while also
satisfying the total demand, transmission losses, and a set of physical and operational constraints
imposed by the generators and system limitations [1,2]. The optimization study of the ELD problem is
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implied to be of great significance, because it can effectively save energy and provide a prioritization
scheme for the control of real-time energy management power systems to guide power generation
companies to implement sustainable development strategies. In addition, ELD is one of the important
contents of power grid production and operation activities. Improving the economic production
level of power grids can produce significant economic and social benefits. In general, the reasonable
allocation of economic burden can save fuel by 0.5~2%, the efficiency of the unit economic combination
can reach 1~2.5%, and the network loss correction benefit is 0.05~0.5%. Therefore, it is very important
to optimize the economic dispatching of power plants.

Classic mathematical optimization techniques have been employed in previous attempts to
solve the ELD problem, such as the fast lambda iteration method [3], quadratic programming [4],
the gradient method [5], the interior point technique [6], the linear programming algorithm [7], dynamic
programming [8], and the Lagrange relaxation algorithm [9]. However, in these methods, when
encountering nonconvex objective function with complex constraints and highly nonlinear, nonconvex,
and noncontinuous features with many local optima, the practical constraints of the generating units
and the network have to be simplified or ignored, owing to the limits of these methods [10,11].
Faced with the inability to solve complex ELD problems with traditional methods, researchers turned
to metaheuristic and evolutionary optimization techniques, such as the genetic algorithm (GA) [12],
particle swarm optimization (PSO) [13], the cuckoo search algorithm (CSA) [14], the artificial bee
colony algorithm (ABC) [15], the chaotic bat algorithm (CBA) [16], harmony search (HS) [17], grey wolf
optimization (GWO) [18], hybrid grey wolf optimization (HGWO) [19], the differential evolution PSO
(DE-PSO) method [20], the harmony search DE (HS-DE) method [21], and improved PSO (IPSO) [22],
and achieved good expected results as these techniques could handle various complex operating
constraints, such as prohibited operating zones (POZ) and generators’ ramp-up and ramp-down [11].
The heuristic algorithms that are listed above for solving complex ELD problems can be summarized
into three categories [11]: (I) the techniques applied to ELD problems in their original versions; (II) the
modified versions of the first category; and, (III) the hybrid methods of the two original versions of
the first category. However, except for the GWO algorithm, all of the meta-heuristic or evolutionary
optimization techniques that are mentioned above require the algorithm parameters to be artificially
set or adjusted to obtain better optimization performance, and once the algorithm-related parameter
settings are unreasonable, it is difficult to obtain the desired results. Therefore, it is more advantageous
to choose the GWO algorithm to optimize the ELD problem, since good optimization results can be
obtained without adjusting any algorithm parameters by GWO algorithm. Moreover, its algorithm
principle and structure are very simple and easy to program.

Although metaheuristic and evolutionary algorithms have made considerable progress in solving
complex ELD problems when compared with traditional mathematics-based methods, they still face
considerable challenges in solving highly nonconvex ELD problems. The no free lunch (NFL) theorem
can scientifically explain this phenomenon. According to NFL, it is difficult to find a meta-heuristic that
is best suited for solving all optimization problems [23]. In other words, one approach may show very
promising results on a particular class of problems, but the same algorithm may show poor results on a
different set of problems [24]. Therefore, more researchers improve the current approaches or propose
new meta-heuristics for solving different complex problems every year, such as the dragonfly algorithm,
is hybridized with the improved Nelder–Mead algorithm (INMDA) for function optimization and
multilayer perceptron training [25], the dynamically dimensioned search is improved by embedding
with piecewise opposition-based learning (DDS-POBL) for global optimization [26], and this also
motivates our attempts in this paper to improve the GWO algorithm for solving complex ELD problems.

The GWO algorithm is a recently proposed, yet advanced, meta-heuristic technique that was
inspired by the hierarchy of grey wolf populations and Mirjalilili et al. developed it in 2014 [24].
In GWO, according to the different role of the grey wolf in advancing the hunting process, pack
members are divided into four different groups: alpha, beta, delta, and omega. When compared with
other algorithms, the GWO has a simpler algorithm structure, and no algorithm parameters need to be
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adjusted, except for setting the population size and the maximum number of iterations. In addition,
two powerful operations parameters are designed to maintain the exploration and exploitation to
avoid local optima stagnation [27]. These remarkable advantages make GWO a widely studied
and applied technique in practical optimization problems, such as feature selection [28], training
multilayer perceptron (MLP) networks [29], optimizing support vector machines [30], clustering
applications [31], design and tuning controllers [32], ELD problems [18,19,33], path planning [34],
and welding production scheduling [35]. However, as a newly proposed algorithm, the GWO algorithm
still has the drawback of the NFL theorem, which states that no optimization algorithm is suitable for
all optimization problems. The population diversity may decrease with an increase in the number of
iterations, easily falling into local optimal solutions, since all three alpha, beta, and gamma wolves are
likely to converge to the same point (solution).

In the standard GWO algorithm, the first three best global optimal solutions (alpha, beta,
and gamma wolves) accelerate the convergence rate of the algorithm, but the neglect of the local
optimal solution in each iteration weakens the search diversity of the GWO. In addition, the standard
GWO has no local search capability for noninferior solution domains, so it easily becomes stuck at
a local minimum point, and thus cannot effectively search for other possible global optimal regions.
Therefore, an improved novel GWO algorithm (NGWO) that is based on a local optimal search and
an independent local search for noninferior solution domains is proposed. In the NGWO algorithm,
the first three best wolves in the current iteration are used to replace the first three best wolves that were
obtained so far by the standard GWO algorithm for searching the population. In the iterative processes,
when the error between the optimal fitness found by some particles and the current optimal fitness
of the population is very small, the solution that was found by this particle is a noninferior solution,
and there may be a better solution in its field. These individuals no longer move toward the global
optimal solution but search for a better solution in their own neighborhood. Therefore, the search
mechanism of the NGWO is useful for enhancing the search ability and increasing the chance of the
algorithm jumping out of a local optimal solution.

The contributions of this paper are listed, as follows:

1. The first three local optimal solutions of the current iteration are used to replace the alpha, beta,
and delta of the standard GWO algorithm for searching the population.

2. A local independent search mechanism for noninferior solutions is introduced in the standard
GWO algorithm to avoid local optimization and to find more promising solutions.

3. The NGWO algorithm is proposed based on 1 and 2 and is applied to solve complex ELD problems.

The rest of this paper is structured, as follows: Section 2 presents the proposed NGWO algorithm,
Section 3 provides the formulation of the ELD problem, Section 4 addresses the methodology of NGWO
for solving ELD problems, and Section 5 presents the conclusions and future work.

2. The Proposed NGWO Algorithm

It is necessary to investigate the relative efficiency of each improved constituent when solving
the ELD problem since the proposed NGWO algorithm is an improved version of the standard GWO
algorithm, and thus four different algorithm versions are investigated:

• The basic GWO algorithm: The standard GWO algorithm is chosen as a comparison algorithm to
compare the performance in solving different ELD cases with the other three improved versions.

• The compared GWOI algorithm: The standard GWO algorithm is improved by changing the
strategy of searching the population, but without considering the case of a noninferior solution.

• The compared GWOII algorithm: The standard GWO algorithm is improved by only introducing
the local independent search mechanism for the noninferior solution.

• The proposed NGWO algorithm: The standard GWO algorithm integrated with both the GWOI
and GWOII methods.
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2.1. The Basic GWO Algorithm

GWO is a metaheuristic technique. The inspiration for the basic GWO algorithm is the hunting
mechanism and social leadership hierarchy of grey wolves in nature. Grey wolves are considered as
the top predators among animals and they have a strict leadership hierarchy. This leadership hierarchy
generally consists of four different levels of groups: alpha (α), beta (β), delta (δ), and omega (ω),
where α, β, and δ represent the first three best wolves (solutions) and the rest of the wolves (candidate
solutions) are ω. In the predation process, the prey is driven to the predation area by encircling under
the guidance of the first three optimal grey wolves (α, β, and δ). The encircle mechanism can be
described by mathematical equations as [24]:

→

D =

∣∣∣∣∣→C·→Xp(t) −
→

X(t)
∣∣∣∣∣ (1)

→

X(t + 1) =
→

Xp(t) −
→

A·
→

D (2)

where t is the current iteration,
→

C = 2·
→
r 2 and

→

A = 2·
→
a ·
→
r 1 −

→
a indicates random vectors and they are

used for balancing the exploration and exploitation,
→

Xp represents the position vector of the prey,
→

X is

the position vector of a grey wolf,
→
a is a control parameter that linearly decreases from 2 to 0, and

→
r

and
→
r 2 are the random vectors over the range 0 and 1.
In the basic GWO algorithm, the first three best wolves (α, β, and δ) are considered to have better

knowledge regarding the potential location of prey and they are responsible for guiding ω to hunt prey,
so the other wolves (ω) can update their positions according to α, β, and δ. The following mathematical
models are modeled in this regard [23]:

→
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A2·
→
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→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(5)

where
→

Xα,
→

Xβ, and
→

Xδ are the positions of the alpha (α), beta (β), and delta (δ), respectively;
→

Dα,
→

Dβ,

and
→

Dδ indicate the encircle step sizes of α, β, and δ, respectively;
→

C1,
→

C2, and
→

C3 and
→

A1,
→

A2, and
→

A3

are the random vectors;
→

X is the position vector of the current individual, and t represents the number
of current iterations.

2.2. The Compared GWOI Algorithm

From the basic GWO algorithm, it can be seen that this algorithm only considers the global
search in the search mechanism and lacks the local search for the population. According to Res. [36],
the global search is a rough search in the whole search space and the local search is a deep search in
the neighborhood of the current optimal solution. If the algorithm only adopts a single global search
method, once the particles guiding the global search fall into the local optimal situation (as shown in
Figure 1), the algorithm search will easily stop near the local optimal solution.
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Figure 1. Particle movement in the basic grey wolf optimization (GWO) algorithms.

In the case of solving the minimum value that is shown in Figure 1, when A is the globally optimal
particle, the search with only global guidance leads the particles with poor fitness to gather around A
rather than A′ and easily fall into the local optimum. The main reason for this phenomenon is the lack
of a further in-depth search for the neighborhood of the globally optimal particle A. Therefore, this
paper adds the local search strategy to this algorithm and proposed an improved version of the GWO,
namely, GWOI to improve the search ability of the standard GWO algorithm. As depicted in Figure 2,
after adding the local search strategy into the standard GWO algorithm, GWOI can search the local
neighborhood of the global optimal point A in depth and it can easily search for a better candidate A′.
The direct method for enhancing its local search ability is to replace the alpha, beta, and delta with the
first three optimal individuals of the current iteration in its encircling step formulas, since the GWO
algorithm search is mainly controlled by the first three best wolves.
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The improved encircling step formulas are as follows:
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where
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are the first three best locally optimal individuals.
Therefore, the mathematical models of the search agents update their positions, as follows:
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→

X(t + 1) =

→

X
′

1 +
→

X
′

2 +
→

X
′

3

3
(8)

2.3. The Compared GWOII Algorithm

Although the local search strategy is added to the GWOI algorithm to enhance its search ability,
it only focuses on the local neighborhood search of the first three best particles. Once the globally
optimal particles fall into the local optimum, the algorithm loses the ability to jump out of the local
optimum, as shown in Figure 2. If the GWO algorithm can conduct an independent local search in
the neighborhood of particles with similar fitness to the current optimal fitness, such as points B, C,
D, E, and F, the probability of finding a better solution will greatly increase. This paper proposes a
noninferior solution neighborhood independent local search technique based on this analysis. The main
idea of this method is as follows: if the fitness value error between some particles and the current
optimal particles is small, those particles are considered to be a noninferior solution and will no longer
move toward the global optimal particle, but conduct a local depth search in their neighborhood to
find a better solution that may exist. Figure 3 shows this search situation. In Figure 3, after introducing
the noninferior solution neighborhood independent local search strategy and carrying out a certain
number of iterative operations, points B, C, D, E, and F find better points B′, C′, D′, E′, and F′.Energies 2019, 12, x FOR PEER REVIEW 8 of 27 
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To implement the noninferior solution neighborhood independent local search technique,
the determination conditions of the noninferior solution are as follows [37]:

Fbi(t) − Fbest(t) < λ
[
Fb(t) − Fbest(t)

]
(9)

λ = log0.5(−t/T) (10)

where λ is the adjustment parameter, Fbi(t), Fbest(t), and Fb(t) represents the best fitness value recorded
by the ith particle in the ith iteration, the best fitness value searched by the algorithm so far, and the
average value of the optimal fitness value searched by each particle, respectively. If the algorithm
satisfies the determination condition of Equation (9) during the iteration, then the corresponding
particle is a noninferior solution; then, in the (t + 1)th iteration, the noninferior solution neighborhood
independent local search method is executed, and its mathematical expression is as follows:

→

Xi(t + 1) = pbesti(t) + Cauchy(t)·(ubi − lbi)· exp(−2·
t
T
·π)· cos(π·

t
T
) (11)

where pbesti(t) is the best position of the ith particle obtained so far, Cauchy(t) is the Cauchy random
number in the tth iteration and the reason that we chose this parameter is that it has better stability than
the standard normal uniform distribution and is more conducive to the exploration of the algorithms,
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ubi and lbi are the ith upper boundary and ith lower boundary, respectively, of the search space, and T
represents the maximum number of iterations.

Therefore, the GWOII algorithm is proposed by introducing the noninferior solution independent
local search strategy into the standard GWO algorithm. As described in Figure 4, this strategy enables
the GWOII algorithm to find a better C′ in the neighborhood of noninferior solution C. If the fitness
value of C′ is better than that of the global optimal point A, then the particles in the population will no
longer move toward A, but toward C′.
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2.4. The Proposed NGWO Algorithm

In this subsection, the GWOI algorithm is combined with the GWOII algorithm to form the
proposed NGWO algorithm. The NGWO algorithm not only retains the strong search performance of
the GWOI algorithm, but it also has the strong ability to jump out of the local optimal solution, as in
the GWOII algorithm. Figure 5 shows the superiority of NGWO over GWO, GWOI, and GWOII in
terms of optimization performance under certain optimization conditions.

In Figure 5, the local depth search method is used to search the neighborhood of the global
optimal particle A and to then find a better potential solution A′; the noninferior solution neighborhood
independent local search technique is adapted to search the noninferior solution B, C, D, E, and F,
and better particles B′, C′, D′, E′, and F′ are found. Moreover, among these better particles, the fitness
of C′ is better than that of the global optimal particle A′. Therefore, the particles in the population move
toward particle C′ instead of toward particle A′, and particle C′ becomes the globally optimal particle.

Energies 2019, 12, x FOR PEER REVIEW 8 of 27 

 

 
Figure 3. Particle movement under the guidance of the noninferior solution neighborhood 
independent local search strategy. 

 
Figure 4. Particle movement in the GWOII. 

2.4. The Proposed NGWO Algorithm 

In this subsection, the GWOI algorithm is combined with the GWOII algorithm to form the 
proposed NGWO algorithm. The NGWO algorithm not only retains the strong search performance 
of the GWOI algorithm, but it also has the strong ability to jump out of the local optimal solution, as 
in the GWOII algorithm. Figure 5 shows the superiority of NGWO over GWO, GWOI, and GWOII 
in terms of optimization performance under certain optimization conditions. 

In Figure 5, the local depth search method is used to search the neighborhood of the global 
optimal particle A and to then find a better potential solution A’; the noninferior solution 
neighborhood independent local search technique is adapted to search the noninferior solution B, C, 
D, E, and F, and better particles B’, C’, D’, E’, and F’ are found. Moreover, among these better 
particles, the fitness of C’ is better than that of the global optimal particle A’. Therefore, the particles 
in the population move toward particle C’ instead of toward particle A’, and particle C’ becomes the 
globally optimal particle. 

 
Figure 5. Particle movement in the novel GWO (NGWO) algorithms.



Energies 2019, 12, 2274 8 of 26

Figure 6 details the flowchart of the proposed NGWO algorithm, and Algorithm 1 presents the
pseudocode of the proposed NGWO.Energies 2019, 12, x FOR PEER REVIEW 10 of 27 

 

 
Figure 6. Flow chart of the proposed NGWO algorithm. 

3. Economic Load Dispatch Formulations 

The ELD problem can be described as an optimization problem to minimize the total fuel cost of 
the individual dispatchable generating power while being subject to different constraints. We adopt 
the problem descriptions and formulations from refs. [38,39]. 

3.1. Objective Function 

The ELD problem sums all the costs of the committed generators. Mathematically, this problem 
can be modeled in Equation (12), as: 

( )
n

i i
i

F F P
=

=å
1

 (12) 

( )i i i i i i iF P a P b P c= + +2  (13) 

where F  is the total cost function of n committed generating units, ( )i iF P  is the generating cost 
function of the ith generator with the generation output Pi, and ai, bi, and ci are the smooth cost fuel 
coefficients of the ith generator, which are constants. 

Figure 6. Flow chart of the proposed NGWO algorithm.



Energies 2019, 12, 2274 9 of 26

Algorithm 1. Pseudo code of the NGWO algorithm

Begin
Initialize the prey wolf population Xi (i = 1, 2, . . . , n) and set the maximum number of iterations T.
Initialize a, A, and C
Calculate fitness function value of each search agent f (Xi)
Xα = the global best search agent; X′α = the local best search agent
Xβ = the global second search agent; X′β = the local second search agent
Xδ = the global third search agent; X′δ = the local third search agent
while t < T do

for each search agent
Update the position of the current search agent by Equation (8)

end for
Update a, A, and C

Calculate the fitness function value of all search agents
for each search agent

if Equation (9) is ture
Update the position of the current search agent by Equation (11)
end if

end for
Update Xα, Xβ, Xδ, X′α, X′β and X′δ
t = t + 1
end while
return Xα and f (Xα)

3. Economic Load Dispatch Formulations

The ELD problem can be described as an optimization problem to minimize the total fuel cost of
the individual dispatchable generating power while being subject to different constraints. We adopt
the problem descriptions and formulations from refs. [38,39].

3.1. Objective Function

The ELD problem sums all the costs of the committed generators. Mathematically, this problem
can be modeled in Equation (12), as:

F =
n∑

i=1

Fi(Pi) (12)

Fi(Pi) = aiP2
i + biPi + ci (13)

where F is the total cost function of n committed generating units, Fi(Pi) is the generating cost function
of the ith generator with the generation output Pi, and ai, bi, and ci are the smooth cost fuel coefficients
of the ith generator, which are constants.

In real-life, the valve-point loading effects are modeled by adding a higher-order nonlinearity
rectified sinusoid contribution to the power generating systems and they are represented using
Equation (13), as follows:

Fi(Pi) = aiP2
i + biPi + ci +

∣∣∣ei × sin( fi × (Pmin
i − Pi))

∣∣∣ (14)

where ei and fi represent the nonsmooth cost fuel coefficients of the ith generator; and, Pmin
i is the

minimum generating capacity of the ith generator.
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According to the description above, the objective function of the ELD problem with the valve-point
effect can be formulated as:

minF =
n∑

i=1

(aiP2
i + biPi + ci +

∣∣∣ei × sin( fi × (Pmin
i − Pi))

∣∣∣) (15)

3.2. Constraints and Variables

The constraints and variables of Equation (15) are listed, as follows [40–43]:

3.2.1. Power Balance Constraints and Variables

The whole power demand must equal to the total power generated by available units minus the
total transmission loss, which can be modeled as:

n∑
i=1

Pi − Ploss = Pdemand (16)

where Ploss and Pdemand are the value of power demand and whole transmission loss, respectively,
in the system. Generally, Ploss is calculated by Kron’s loss formula, as shown in Equation (17).

Ploss =
n∑

i=1

n∑
j=1

PiBi jP j +
n∑

i=1

Bi0Pi + B00 (17)

where Bi j, Bi0, and B00 are the loss coefficients, which are assumed to be constants under
normal circumstances.

3.2.2. Generating Capacity Limits and Variables

The actual output Pi that is generated by the ith available unit should range between its minimum
generation capacity and maximum generation capacity:

Pmin
i ≤ Pi ≤ Pmax

i (18)

where Pmin
i and Pmax

i are the minimum and maximum generating capacity of the ith generator, respectively.

3.2.3. Ramp Rate Limits and Variables

In real circumstances, the operating range of each unit is restricted by its ramp-rate limit constraint:

max(Pmin
i , P0

i −DRi) ≤ Pi ≤ min(Pmax
i , P0

i + URi) (19)

where P and P0
i are the current and previous power output, respectively, and URi and DRi are the

ramp-up and ramp-down limits of generator i, respectively.

3.2.4. Prohibited Operating Zones Constraints and Variables

In the actual situation, the valve-point loading effects affect the power system, and each generator
contains some discontinuous POZs where the generator cannot work. Therefore, the feasible operating
zones of each unit should be avoided in these prohibited zones and they can be demonstrated,
as follows:

Pmin
i ≤ Pi ≤ Plower

i,1
Pupper

i, j−1 ≤ Pi ≤ Plower
i, j

Pupper
i,ni

≤ Pi ≤ Pmax
i

(20)
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where Plower
i, j and Pupper

i, j are the lower and upper bounds, respectively, of the jth POZs of the ith
generating unit, where j ∈ [1, ni], and ni is the total number of POZs of unit number i.

4. Implementation of NGWO Method in Solving the ELD Problem

In this subsection, the connection between the NGWO algorithm and the ELD problem was
developed to obtain an efficient and high-quality solution. The NGWO algorithm was primarily
employed to determine the optimal power generation for each unit that was operational during a
particular period to minimize the total power generation cost. Two following definitions should be
described in detail before using the proposed NGWO method to solve the ELD problem.

4.1. Constraints Handling in ELD Problems with NGWO Approache

The key point in applying the NGWO method to optimizing the ELD problem is how the NGWO
algorithm handles the constraints that exist in the problem. In general, most of the researchers are more
likely to employ the penalty function methods to treat the constrained optimization problems [44].
The introduction of a penalty function can transform a constrained problem into an unconstrained
problem and build a single objective function, so using an unconstrained optimization method can
minimize it. When using the NGWO algorithm to solve a constrained ELD problem, it is common to
handle constraints using principles of penalty functions, as follows [44]:

min f =
{

f (Pi), ifPi ∈ Fl
f (Pi) + penalty(Pi), otherwise

(21)

where, penalty(Pi) is 0 if no constraint is violated; otherwise it is positive value, Fl indicates the
feasible region.

4.1.1. ELD Problem without the Valve-Point Loading Effects

In our work, when using the NGWO algorithm to handle the ELD problem without considering
the valve-point loading effects, the map methods is built, as in Equation (22).

P j
i (t + 1) = Pmin

i + xi(Pmax
i − Pmin

i ) (22)

where, xi is a value between 0 and 1 obtained by the NGWO method, and the meanings of Pmin
i and

Pmax
i are shown in Section 3.2.

After establishing the map method, Equation (13) is rewritten as:

minF =
n∑

i=1

Fi(Pi)·

1− q·max(
n∑

i=1

Pi − Pdemand, 0)

 (23)

where, q is a positive constants (penalty factors).

4.1.2. ELD Problem with Considering the Valve-Point Loading Effects

In this article, the map method used for handling the valve-point loading effects in NGWO
approaches is according to Equations (22)–(24), as follows:

Plower,i = max(Pmin
i , P0

i −DRi) (24)

Pupper,i = min(Pmax
i , P0

i + URi) (25)

P j
i (t + 1) = Plower,i + xi·(Pupper,i − Plower,i) (26)
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where, t is the current iteration, the meanings of Pmin
i , Pmax

i , P0
i , DRi, and URi are shown in Section 3.2,

xi is a value between 0 and 1 that is obtained by the NGWO method.
Next, if the equality Equation (16) and inequality Equations (19) and (20) are not solved, then

Equation (15) is rewritten as:

minF =
n∑

i=1

Fi(Pi) + q·max

1−

n∑
i=1

Pi − Ploss

Pdemand
, 0

 (27)

where, q is a positive constant (penalty factors), the meanings of Ploss and Pdemand are shown in
Section 3.2.

4.2. Implementation Steps of NGWO to ELD Problem

This work presents a quick solution to the ELD problem while utilizing the NGWO algorithm
to obtain global optimal or near global optimal generation quantity of each generator unit.
The development steps of the proposed technique to solve the ELD problem were detailed, as below.

Step 1: Initialize the population size N and the maximum number of iteration T, and randomly
generate the grey individuals of the population between 0 and 1.

Step 2: Calculate the fitness value.
Step 2.1 If it is the ELD problem without the valve-point loading effects, map these initialized grey

wolf individuals to the feasible domain of the practical operation constraints according to Equation (22).
Calculate the total cost function of n committed generating units by using Equation (23) as the
fitness value.

Step 2.2 If the valve-point loading effects are considered in the ELD problem, then map these
initialized grey wolf individuals to the feasible domain of the practical operation constraints according
to Equation (26), and employ the loss coefficients B, B0, and B00 to calculate the transmission loss Ploss
while using Equation (17). Calculate the total cost function of n committed generation units using
Equation (27) as the fitness value.

Step 3: Compare each individual’s fitness value to find out Xa, Xβ, Xδ, X′α, X′β, and X′δ.
Step 4: Update the position of the current search agent by Equation (8).
Step 5: Update parameters a, A, and C.
Step 6: Calculate Equation (9). If Equation (9) is satisfied, then update the position of the current

search agent by Equation (11).
Step 7: Use Step 2 to calculate fitness function value for each individual search agents.
Step 8: Update Xα, Xβ, Xδ, X′α, X′β, and X′δ.
Step 9: If the number of iterations t reaches the maximum T, then go to Step 10. Otherwise, go to

Step 3.
Step 10: The latest generated individual Xα is the optimal and then maps Xα according to Step

2 to obtain P(Xα). P(Xα) is the optimal generation power of each unit, and its fitness value F(P(Xα)) is
the minimum total generation cost.

Based on above analysis, the pseudocode of the NGWO algorithm employed to solve the ELD
problem is shown in Algorithm 2.
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Algorithm 2. Pseudo code of NGWO algorithm employed to solve the ELD problem

Begin
Initialize the prey wolf population Xi (I = 1, 2, . . . , n) and set the maximum number of iterations T.
Input the relevant constraint parameters of the generator unit.
If the ELD problem has no valve-point loading effects, then map the initialized grey wolf
individuals to the feasible domain according to Equation (22) to obtain P(Xi). Otherwise, map the
initialized grey wolf individuals to the feasible domain according to Equation (26) to obtain P(Xi),
and then calculate the transmission loss Ploss by using Equation (17).
Initialize a, A, and C
Calculate fitness function value of each search agent F(P(Xi)) according to Equation (27) for
considering the valve-point loading effects. Otherwise, calculate F(P(Xi)) by using Equation (23).
Xα = the global best search agent; X′α = the local best search agent
Xβ = the global second search agent; X′β = the local second search agent
Xδ = the global third search agent; X′δ = the local third search agent
while t < T do

for each search agent
Update the position of the current search agent by Equation (8)

end for
Update a, A, and C

Calculate the fitness function value for each search agents according to Equation (27) for
considering the valve-point loading effects. Otherwise calculate the fitness function value of
all search agents by utilizing Equation (23).
for each search agent

if Equation (9) is satisfied
Update the position of the current search agent by Equation (11)
end if

end for
Update Xα, Xβ, Xδ, X′α, X′β and X′δ
t = t + 1
end while
return P(Xα) and F(P(Xα))

5. Numerical Simulation Results and Analysis

To verify the applicability of NGWO for solving the ELD problem, the performance of the basic
GWO, the compared GWOI, the compared GWOII, and the proposed NGWO algorithms are assessed
on the following ELD cases:

Case I. A 3-generator system for load demand of 850 MW, and valve-point loading effects
are considered.

Case II. A 13-generator system for a load demand of 2520 MW, and valve-point loading effects
are considered.

Case III. A 40-generator system for a load demand of 10500 MW, and valve-point loading effects
are considered.

Case IV. A 6-generator system with a quadratic cost function, POZs and transmission loss, and a load
demand of 1263 MW.

Case V. A 15-generator system with a quadratic cost function, POZs and transmission loss, and a
load demand of 2630 MW.

In this paper, the parameters set for each case study mentioned above are listed below.
Each optimization technique was coded in MATLAB 2015a and executed on a Windows 10, 4-GHz,
2-GB RAM processor. In addition, the numbers of 50 independent runs were recorded for the compared
GWOI, GWOII, and the proposed NGWO algorithms to validate the robustness of the proposed
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optimization technique. Furthermore, the population size was set to 30 for each case. Finally, for each
ELD case, the maximum number of iterations was set to 500.

5.1. Case I: 3-Generator System

This case study consists of three generating units with quadratic cost functions and the effects of
valve-point loadings are considered [45]. Table 1 provides the data of the generating units. In this case
study, NGWO is compared with GWO, GWOI, GWOII, GA, and PSO [46], CJAYA and MP-CJAYA [37],
and EP [47], in terms of the mean (Fmean) and the best (Fbest) total generation cost. Table 2 records the
comparison results. Figure 7 shows the convergence curve of the total generation cost for the mean
solution, and Figure 8 explicitly shows the robustness of GWO, GWOI, GWOII, and NGWO in 30 trials.

Table 1. Generating units’ parameters for Case I with value-point loading.

Generator Pimin (MW) Pimax (MW) ai bi ci ei fi

1 100 600 0.001562 7.92 561 300 0.0315
2 50 200 0.004820 7.97 78 150 0.063
3 100 400 0.001940 7.85 310 200 0.042

As shown in Table 2, GWO, GWOI, GWOII, and NGWO continuously decrease the values of
Fbest and Fmean, and NGWO achieves the very competitive minimum value of 8223.104 $/h relative
to that of GA of 8222.07 $/h, as well as the very close minimum Fmean value 8233.567 $/h relative to
that of MP-CJAYA of 8232.06 $/h. Therefore, the NGWO could obtain the second best results when
compared to the above eight mentioned algorithms. The convergence curve in Figure 7 shows that the
convergence rates of GWO, GWOI, GWOII, and NGWO continuously improved, and NGWO had the
fastest convergence rate. Figure 8 confirms that NGWO achieved the best robustness.

Table 2. Best outputs of different methods for three-units system (PD = 850 MW).

Unit GA [46] PSO [46] MP-CJAYA [37] CJAYA [37] EP [47] GWO GWOI GWOII NGWO

1 398.700 300.268 350.2464 350.0254 300.264 299.838 300.618 300.248 300.562
2 399.600 400.000 400.000 400.000 400.000 399.600 399.600 399.600 399.600
3 50.100 149.732 99.7576 99.9511 149.736 150.57 149.803 150.153 149.843

Ptotal(MW) 848.400 850.000 850.004 849.977 850.000 850.011 850.021 850.010 850.005
Fmean ($/h) 8234.72 8234.09 8232.06 8289.41 8234.16 8305.91 8284.772 8240.313 8233.567
Fbest ($/h) 8222.07 8234.07 8223.29 8226.18 8234.07 8223.61 8223.367 8223.197 8223.104
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5.2. Case II: 13-Generator System

This case study is the second system with both valve-point loading effects and multiple fuel
options and it comprises 13 generating units with quadratic cost functions. Table 3 shows all detailed
data, which are taken from refs. [38,43]. The total power demand is 2520 MW. With an increasing
number of generators, this system becomes more nonlinear and complex when compared to Case I.
The results obtained by GWO, GWOI, GWOII, and NGWO were compared with GA [46], CPSO [48],
JAYA and CJAYA [37], and SA [48], as listed in Table 4. The comparison results confirm that NGWO
achieved the optimum total generation cost of both Fmean and Fbest among the other algorithms, which
were 24,366.12 $/h and 24,185.45 $/h, respectively. Figure 9 shows the convergence curves of GWO,
GWOI, GWOII, and NGWO for the mean value of the total generation cost in 30 trials. From Figure 9,
GWO and GWOI have better convergence rates in the early iteration than GWOII and NGWO, but they
easily fall into the local optimal solution, and GWOII and NGWO more easily obtain the global optimal
solution in the later iteration. Figure 10 describes the distribution of the total generation cost of GWO,
GWOI, GWOII, and NGWO in 30 trials. NGWO was more robust than GWO, GWOI, and GWOII.

Table 3. Generating units’ parameters for Case II with value-point loading.

Generator Pimin (MW) Pimax (MW) ai bi ci ei fi

1 00 680 0.00028 8.10 550 300 0.035
2 00 360 0.00056 8.10 309 200 0.042
3 00 360 0.00056 8.10 307 200 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063

10 40 120 0.00284 8.6 126 100 0.084
11 40 120 0.00284 8.6 126 100 0.084
12 55 120 0.00284 8.6 126 100 0.084
13 55 120 0.00284 8.6 126 100 0.084
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Table 4. Best outputs of different methods for 13-units system (PD = 2520 MW).

Unit GA [46] CPSO [48] CJAYA [37] JAYA [37] SA [46] GWO GWOI GWOII NGWO

1 627.05 628.32 628.3185 628.3185 668.40 647.3842 645.5569 630.9811 630.9951
2 359.40 299.83 299.1992 299.2009 359.78 306.3995 306.9539 300.8038 297.9355
3 358.95 299.17 299.1993 306.9105 358.20 309.6117 306.5356 302.7475 299.9253
4 158.93 159.70 159.7330 159.7339 104.28 175.1400 169.6878 160.1702 157.9267
5 159.73 159.64 159.7331 159.7337 60.36 66.8791 168.4922 161.0252 159.6433
6 159.68 159.67 159.7331 159.7338 110.64 162.7466 174.9721 160.9845 159.2335
7 159.53 159.64 159.7330 109.8673 162.12 174.3111 167.1394 159.1231 159.7630
8 158.89 159.65 159.7330 159.7342 163.03 61.2250 116.8800 110.4278 159.6615
9 110.15 159.78 159.7331 159.7340 161.52 175.1400 116.8800 159.7720 159.4265

10 77.27 112.46 110.0403 114.8012 117.09 116.7600 116.8800 116.8577 76.8790
11 75.00 74.00 114.7994 114.8001 75.00 116.7600 109.9096 77.0418 79.5038
12 60.00 56.50 55.0000 92.4018 60.00 99.9167 59.0347 91.4990 86.8040
13 55.41 91.64 55.0000 55.0027 119.58 108.5598 66.5129 88.6915 94.1941

Ptotal (MW) 2520 2520 2519.96 2519.97 2520 2520.83 2521.74 2520.13 2520.21
Fmean ($/h) – – 24,385.7604 24,476.2547 – 24,442.08 24,471.53 24,395.58 24,366.12
Fbest ($/h) 24,418.99 24,211.56 24,178.8040 24,220.7529 24,970.91 24,231.18 24,244.69 24,198.47 24,185.45

“–” indicates the cost value is missing.
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5.3. Case III: 40-Generator System

In this subsection, the largest ELD problem system consisting of 40 generators, in which the
valve-point effect is considered, with a total load demand of 10,500 MW, is selected to investigate the
effectiveness of the NGWO algorithm. Table 5 provides the test data for this case study, in which
the valve-point loading has also been included in the fuel cost functions [47]. Due to the large
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number of generator units in this test system, it has a much more complex solution when compared
to the previous solution; therefore, the test system is very suitable for testing the difference in the
optimization performance of different improvement strategies for the same algorithm. Table 6 reports
the comparison results of the proposed NGWO method with NPSO [49], PSO-LRS [37], MPSO [13],
CJAYA [37], IGA [50], GWO, GWOI, and GWOII. The table shows that NGWO solved the large-scale
ELD problem with a high-quality optimum, and its optimization ability was slightly worse than that of
CJAYA, but was better than that of the other methods. In these eight comparison algorithms, NGWO
achieved the second optimization results. In Figure 11, the convergence curves of four different GWO
versions are compared, and it can be observed that NGWO and GWOII dramatically accelerated the
convergence rate. However, GWO and GWOI were easily trapped in the local optimum. Figure 12
is the distribution of the optimal total generation cost values that were obtained by GWO, GWOI,
and GWOII in 30 runs. This figure demonstrates that these three algorithms show poor stability when
optimizing this large-scale power system. However, the stability of the NGWO algorithm is relatively
better. All of the above comparisons provide strong evidence demonstrating the effectiveness of
NGWO in solving large-scale ELD problems.
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Table 5. Generating units’ parameters for Case III with value-point loading.

Generator Pimin (MW) Pimax (MW) ai bi ci ei fi

1 36 114 0.00690 6.73 94.705 100 0.084
2 36 114 0.00690 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 46 97 0.01140 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.60 455.76 200 0.042

10 130 300 0.00606 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.20 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.40 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.10 801.32 300 0.035
26 254 550 0.00277 7.10 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.01140 5.35 148.89 120 0.077
31 60 190 0.00160 6.43 222.92 150 0.063
32 60 190 0.00160 6.43 222.92 150 0.063
33 60 190 0.00160 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035
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Table 6. Best outputs of different methods for 40-units system.

Unit NPSO [49] PSO-LRS [37] MPSO [50] CJAYA [37] IGA [50] GWO GWOI GWOII NGWO

1 113.9891 111.9858 114.000 114.0000 110.97 109.0947 109.7268 107.6544 111.3177
2 113.6334 110.5273 114.000 111.6651 110.88 112.0471 111.7342 109.2161 112.7551
3 97.5500 98.5560 120.000 119.9876 98.17 115.4584 119.2197 94.7874 118.6377
4 180.0059 182.9622 182.222 188.2606 178.85 179.8333 181.6041 182.3441 183.3649
5 97.0000 87.7254 97.000 96.9763 87.78 46.1649 89.8836 86.9731 91.8097
6 140.0000 139.9933 140.000 139.9488 140.00 83.1571 125.1816 109.1907 104.3697
7 300.0000 259.6628 300.000 264.0949 260.37 261.6345 265.0775 259.4910 297.6533
8 300.0000 297.7912 299.021 299.9814 286.83 292.4025 290.2216 284.1803 289.4349
9 284.5797 284.8459 300.000 284.9042 285.14 284.7149 285.2586 285.1526 298.4044

10 130.0517 130.0000 130.000 130.0908 204.86 132.9049 134.9231 129.3500 129.3500
11 243.7131 94.6741 94.000 94.0011 165.98 101.6726 167.9983 317.4787 241.9702
12 169.0104 94.3734 94.000 94.0000 167.75 319.8174 183.6314 157.3563 166.9113
13 125.0000 214.7369 125.000 125.1028 214.31 215.0746 219.5396 300.6095 214.8490
14 393.9662 394.1370 304.485 394.2529 305.65 394.9259 394.9259 305.0848 215.6690
15 304.7586 483.1816 394.607 484.1262 393.66 398.1829 212.7154 395.3099 305.6922
16 304.5120 304.5381 305.323 304.5950 394.60 304.1546 484.5572 203.9544 394.6479
17 489.6024 489.2139 490.272 490.8265 489.22 490.0842 494.3478 489.6721 494.7618
18 489.6087 489.6154 500.000 489.3438 489.25 493.2515 491.2367 492.3490 493.1559
19 511.7903 511.1782 511.404 511.3775 511.23 511.4229 514.3755 514.3882 512.7416
20 511.2624 511.7336 512.174 512.1395 510.69 511.9422 514.3755 511.7323 520.8929
21 523.3274 523.4072 550.000 523.6621 524.74 532.3762 522.6016 532.2046 526.1137
22 523.2196 523.4599 523.655 523.3534 525.52 532.2484 523.6988 527.3193 532.1443
23 523.4707 523.4756 534.661 524.9677 522.98 530.7732 523.6988 527.3193 536.8421
24 523.0661 523.7032 550.000 524.2850 522.22 526.1112 536.1385 539.9336 524.4669
25 523.3978 523.7854 525.057 522.9279 523.26 524.4545 523.5451 526.6306 525.2461
26 523.2897 523.2757 549.155 523.2298 523.32 523.4934 524.0780 524.8658 529.3289
27 10.0208 10.0000 10.000 10.0000 10 11.5028 14.8568 9.9500 9.9500
28 10.0927 10.6251 10.000 10.0047 10 9.9541 21.0962 9.9500 9.9500
29 10.0621 10.0727 10.000 10.0000 10 10.3272 13.1286 9.9500 9.9500
30 88.9456 51.3321 97.000 97.0000 88.86 91.6019 88.5089 90.3385 88.4106
31 189.9951 189.8048 190.000 190.0000 162.30 188.8475 188.0180 159.6875 188.9088
32 190.0000 189.7386 190.000 189.9503 177.94 165.2531 166.2968 188.9923 188.8126
33 190.0000 189.9122 190.000 190.0000 160.18 188.9197 182.0808 173.1974 186.9624
34 165.9825 199.3258 200.000 169.8860 166.54 189.2968 164.9636 189.6808 195.0897
35 172.4153 199.3065 200.000 199.8549 164.80 180.4605 172.6948 192.1671 171.5047
36 191.2978 192.8977 200.000 199.9896 170.68 184.2693 191.0765 157.5027 176.1085
37 109.9893 110.0000 110.000 109.9712 108.17 89.6748 108.8942 104.4095 89.5297
38 109.9521 109.8628 110.000 109.9977 100.68 90.1485 100.8804 86.74132 89.3589
39 109.8733 92.8751 110.000 109.9871 109.34 57.0464 27.8744 100.2970 109.3222
40 511.5671 511.6883 512.964 511.2250 511.28 514.3622 511.7717 512.43873 512.5412

Ptotal (MW) 10,499.9989 10,499.9452 10,500 10,499.97 10,500 10,499.97 10,499.96 10,499.97 10,499.93
Fmean ($/h) 122,221.3697 122,558.4565 – 122,581.85 122,811.41 124,796.61 125,155.07 123,314.39 122,787.77
Fbest ($/h) 121,704.7391 122,035.7946 122,252.265 121,799.88 121,915.93 122,602.37 122,678.91 122,430.74 121,881.81

5.4. Case IV: 6-Generator System

This case study comprises six generating units with constraints of transmission loss, together with
two POZs with ramp-up and ramp-down. The generator data and two POZs are recorded in Table 7,
and Table 8 shows the loss B-coefficients [11]. The algorithm used to find the global optima for this
problem always encounters challenging complexity, owing to the decision spaces being nonconvex
and the cost functions being convex and represented by quadratic functions.

To validate the effectiveness of our method on this test system, NGWO is compared with SA [46],
GA [51], MTS [52], NPSO [49], PSO [46], JAYA [37], GWO, GWOI, and GWOII in terms of the total
generation cost. Table 9 provides the comparison confirming that GWOI obtained the lowest best total
generation cost (Fbest) of 15,443.25 $/h among all of the techniques, while JAYA and NGWO achieved
the second and third lowest Fbest of 15,447.09 $/h and 15,449.17 $/h, respectively. In addition, Table 10
summarizes the best total generation cost (Fbest), worst total generation cost (Fworst), and mean total
generation cost (Fmean) of the four versions of GWO. From Table 10, we can observe that NGWO
provided the lowest Fbest and Fmean of 15,449.17 $/h and 15,449.86 $/h, respectively, and GWOII obtained
the lowest Fworst of 15,452.41 $/h. Figure 13 plots the distribution of the total generation cost for the
mean solution, which shows that NGWO is the fastest among the four versions of GWO in terms of
the convergence rate and it approaches the global optimum. In addition, NGWO has the most robust
characteristics, as described in Figure 14.
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Table 7. Ramp rate limits and prohibited zones of units for Case IV.

Generator Pimin (MW) Pimax (MW) ai bi ci P0
i URi DRi Prohibited Zones

1 100 500 0.0070 7.0 240 440 80 120 [210, 240], [350, 380]
2 50 200 0.0095 10.0 200 170 50 90 [90, 110], [140, 160]
3 80 300 0.0090 8.5 220 200 65 100 [150, 170], [210, 240]
4 50 150 0.0090 11.0 200 150 50 90 [80, 90], [110, 120]
5 50 200 0.0080 10.5 220 190 50 90 [90, 110], [140, 150]
6 50 120 0.0075 12.0 190 110 50 90 [75, 85], [100, 105]

Table 8. Transmission loss coefficients for Case IV.

B = 1 × 10−2 0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002

0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001
0.0007 0.0009 0.0031 0 −0.001 −0.0006
−0.0001 0.0001 0 0.0024 −0.0006 −0.0008
−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.015

B0 = 1×10−3 −0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635
B00 = 10× 0.0056

Table 9. Best outputs of different methods for 6-units system.

Generator SA [46] GA [51] MTS [52] NPSO [49] PSO [46] JAYA [37] GWO GWOI GWOII NGWO

1 478.1258 462.0444 448.1277 447.4734 447.5823 457.9858 446.6281 447.2399 446.9060 448.7973
2 163.0249 189.4456 172.8082 173.1012 172.8387 176.8785 171.7686 175.0336 172.1000 174.4309
3 261.7146 254.8535 262.5932 262.6804 261.3300 250.0717 264.6710 262.6065 263.8918 262.9964
4 125.7665 127.4296 136.9605 139.4156 138.6812 129.3748 141.3356 138.8324 139.8172 138.2484
5 153.7056 151.5388 168.2031 165.3002 169.6781 172.8886 166.5389 167.2797 164.4018 164.9710
6 93.7965 90.7150 87.3304 87.9761 85.8963 88.4618 85.0000 85.0000 88.8170 86.46551

Ptotal (MW) 1276.1339 1276.0270 1276.0232 1275.96 1276.0066 1275.6611 1276.3156 1276.0229 1276.0155 1275.4658
Ploss (MW) 13.1317 13.0268 13.0205 12.9470 13.0066 12.6665 13.3099 13.0222 13.0066 12.8486
Fbest ($/h) 15,461.10 15,457.96 15,450.06 15,450.00 15,450.14 15,447.09 15,450.07 15,443.25 15,449.96 15,449.17

Table 10. Comparison results of 6-units system.

Algorithm Fbest ($/h) Fworst ($/h) Fmean ($/h)

SA [46] 15,461.10 15,545.50 15,488.98
GA [51] 15,457.96 15,524.69 15,477.71

MTS [52] 15,450.06 15,453.64 15,451.17
NPSO [49] 15,450.00 15,454.00 15,452.00
PSO [46] 15,450.14 15,491.71 15,465.83
JAYA [37] 15,477.09 15,622.16 15,500.11

GWO 15,450.07 15,487.14 15,453.41
GWOI 15,450.15 15,455.17 15,451.13
GWOII 15,449.96 15,452.41 15,450.48
NGWO 15,449.17 15,460.10 15,449.86
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Figure 14. Total generation cost obtained by GWO, GWOI, GWOII, and NGWO for 30 trials in Case IV.

5.5. Case V: 15-Generator System

This case study comprises a larger 15-unit system with quadratic cost functions and it has the
same constraints as those in case IV. Table 11 shows the generator data and POZs, in which three POZs
exist in generators 2, 5, and 6, and generator 12 has two POZs. The transmission loss coefficient data
are taken directly from Ref. [53]. The best output results that were achieved by GWO, GWOI, GWOII,
and NGWO are compared with those of SA [46], GA [47], MTS [52], TSA [54], PSO [46], and AIS [55],
as recorded in Table 12. The table shows that NGWO obtained the lowest best generation cost among
all of the abovementioned methods. Table 13 compares the Fbest, Fworst, and Fmean of the four versions
of GWO with those of the techniques that are listed above. As shown in Table 13, NGWO achieved the
best Fbest and Fmean and the third best Fworst. GWOII provided the best Fworst, and MTS obtained the
second best Fbest, Fworst, and Fmean. Figure 15 shows the convergence curves of average evaluation
values of the 15-generator systems while using the four versions of the GWO method. The NGWO
was the fastest algorithm to converge to the global optimal solution as can be seen from the simulation.
Figure 16 displays the distribution outline of the best solution in 30 runs and, in most of the trials,
the NGWO method obtained a better-quality solution and strong, robust characteristics.
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Table 11. Ramp rate limits and prohibited zones of units for Case V.

Generator Pimin (MW) Pimax (MW) ai bi ci P0
i URi DRi Prohibited Zones

1 150 455 0.000299 10.1 671 400 80 120
2 150 455 0.000183 10.2 574 300 80 120 [185, 225], [305, 335], [420, 450]
3 20 130 0.001126 8.8 374 105 130 130
4 20 130 0.001126 8.8 374 100 130 130
5 150 470 0.000205 10.4 461 90 80 120 [180, 200], [305, 335], [390, 420]
6 135 460 0.000301 10.1 630 400 80 120 [230, 255], [365, 395], [430, 455]
7 135 465 0.000364 9.8 548 350 80 120
8 60 300 0.000338 11.2 227 95 65 100
9 25 162 0.000807 11.2 173 105 60 100

10 25 160 0.001203 10.7 175 110 60 100
11 20 80 0.003586 10.2 186 60 80 80
12 20 80 0.005513 9.9 230 40 80 80 [30, 40], [55, 65]
13 25 85 0.000371 13.1 225 30 80 80
14 15 55 0.001929 12.1 309 20 55 55
15 15 55 0.004447 12.4 323 20 55 55

Table 12. Best outputs of different methods for 15-units system.

Generator SA [46] GA [47] MTS [53] TSA [54] PSO [46] AIS [55] SPSO [48] GWO GWOI GWOII NGWO

1 453.6646 445.5619 453.9922 440.500 454.7167 441.159 439.12 455.0000 455.0000 455.0000 455.0000
2 377.6091 380.0000 379.7434 346.800 376.2002 409.587 407.97 380.0000 380.0000 380.0000 380.0000
3 120.3744 129.0605 130.0000 110.880 129.5547 117.298 119.63 130.0000 130.0000 130.0000 130.0000
4 126.2668 129.5250 129.9232 122.460 129.7083 131.258 129.99 130.0000 130.0000 130.0000 130.0000
5 165.3048 169.9659 168.0877 177.740 169.4407 151.011 151.07 170.0000 165.3122 167.8379 160.5430
6 459.2455 458.7544 460.0000 459.110 458.8153 466.258 460.00 159.0815 460.0000 460.0000 460.0000
7 422.8619 417.9041 429.2253 406.410 427.5733 423.368 425.56 430.0000 430.0000 430.0000 430.0000
8 126.4025 97.8230 104.3097 107.550 67.2834 99.948 98.57 102.8806 60.8698 78.4634 84.1915
9 54.4742 54.2933 35.0358 107.270 75.2673 110.684 113.49 43.5154 69.1738 48.3551 57.7845

10 149.0879 144.2214 155.8829 140.560 155.5899 100.229 101.11 125.8636 158.4501 148.3092 146.7789
11 77.9594 77.3302 79.8994 78.470 79.9522 32.057 33.91 80.0000 80.0000 80.0000 80.0000
12 93.9489 77.0371 79.9037 74.170 79.8947 78.815 79.96 80.0000 80.0000 80.0000 80.0000
13 25.0022 31.1537 25.0220 31.950 25.2744 23.568 25.00 33.2702 30.1938 30.5576 32.7497
14 16.0636 15.0233 15.2586 37.380 16.7318 40.258 41.41 26.4876 17.6755 18.5833 17.2977
15 15.0196 33.6125 15.0796 22.470 15.1967 36.906 35.61 15.0116 15.1082 23.69718 15.4832

Ptotal (MW) 2663.29 2661.23 2661.36 2663.70 2661.19 2662.04 2662.4 2662.2318 2662.1458 2660.96 2660.54
Ploss (MW) 33.2737 31.2363 31.3523 33.8110 31.1697 32.4075 32.431 32.2317 31.0156 30.8550 30.0148
Fbest ($/h) 32,786.40 32,779.81 32,716.87 32,918.00 32,724.17 32,854.00 32,858 32,743.2959 32,733.8961 32,734.6249 32,712.6131

Table 13. Comparison results of 15-units system.

Algorithm Fbest ($/h) Fworst ($/h) Fmean ($/h)

SA [46] 32,786.40 33,028.95 32,869.51
GA [47] 32,779.81 33,041.64 32,841.21

MTS [53] 32,716.87 32,796.15 32,767.21
TSA [54] 32,917.87 33,245.54 33,066.76
PSO [46] 32,724.17 32,841.38 32,807.45

SPSO [48] 32,858.00 33,331.00 33,039.00
AIS [55] 32,854.00 32,892.00 32,873.25

GWO 32,743.30 32,857.96 32,784.96
GWOI 32,733.90 32,889.63 32,783.22
GWOII 32,734.62 32,817.91 32,774.82
NGWO 32,712.61 32,830.61 32,752.78
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6. Conclusions and Future Work

In this paper, we successfully applied the proposed NGWO technique to solve the ELD problem
by considering the ramp rate limits, POZ constraints, and nonsmooth cost functions. The NGWO
algorithm was validated to improve both the global exploration capability and the convergence
rates and it had the best robustness when compared to the other three versions of the GWO
algorithms. Furthermore, the results, when compared to all the other compared algorithms in five
cases, demonstrated the outstanding superiority of the NGWO method in solving the ELD problem.

The superiority of the NGWO algorithm in solving ELD problems was proven. Although our
research has not been yet applied to any utility companies or energy providers, we believe that the
application of this algorithm in the future will surely improve the operational level of these companies.
Next, an interesting application would be to apply the algorithm to training neural networks, optimizing
restrictive engineering structures, and solving multiobjective optimization problems. However, for the
large-scale power systems of Cases II, III, and V, the robustness of the NGWO algorithm in solving
these problems is not as perfect as in solving Cases I and IV, so the optimization performance of the
NGWO algorithm can still be improved.
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