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Abstract: The problem of secure load frequency control of smart grids is investigated in this paper.
The networked data transmission within the smart grid is corrupted by stochastic deception attacks.
First, a unified Load frequency control model is constructed to account for both network-induced
effects and deception attacks. Second, with the Lyapunov functional method, a piecewise delay
analysis is conducted to study the stability of the established model, which is of less conservativeness.
Third, based on the stability analysis, a controller design method is provided in terms of linear matrix
inequalities. Finally, a case study is carried out to demonstrate the derived results.

Keywords: load frequency control; multi-area power systems; network communication;
deception attack

1. Introduction

In recent years, the smart grid has become a significant generation of power system network to
provide high quality power service for 21st century needs. For the purpose of energy scheduling,
overall regulation and the quality of power service, interconnected multi-area power systems are
pivotal in the operation of a smart grid [1]. An important objective of a power system is to study
the equilibrium problem or stability analysis of frequency, of which the variation mainly depends
on the active power. In the 1970s, Elgerd and Fosha firstly applied Control Theory to the load
frequency control (LFC) problem of interconnected power systems [2]. Since then, many researchers
have been working on the LFC analysis with variety of control methods [3–9]. To mention a few,
Reference [3] designed an adaptive load frequency controller for a two-area power system and
proposed an optimal control scheme. An optimization approach for LFC controller design with
genetic algorithms was presented in [4], where the criteria were given in terms of linear matrix
inequalities (LMIs). Reference [5] investigated the LFC problem of isolated grid and proposed a
multivariable generalized predictive controller.

On the other hand, networked control systems have been a hot topic in past decades. With wireless
communication between devices, the superiority on more flexibility, less cost and convenient
maintenance enable this type of system to play a significant role in many fields such as wireless
communication, industrial manufacturing and intelligent control. However, in a networked control
system, transmission delays and packet dropouts are inevitable in data communication, which would
affect or even deteriorate the stability and control performance. Many results on network-based system
analyses were carried out in [10–15] taking into account the network-induced delays and packet
losses. Note that most of the obtained results are delay-dependent. To reduce the conservativeness
of these results, a few novel analysis methods were presented, such as free weighting matrix [16],
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the input–output approach [17], and piecewise analysis method [18]. Specifically, the idea of the
piecewise analysis method was firstly proposed in [19], where the time delay’s variation interval was
divided into two subintervals with equal length according to a central point. Reference [18] then
extended this method and investigated the stability of both discrete and continuous time systems
with more than two subintervals divided. In addition, the conservativeness of the method was also
discussed compared with other existing works.

With the popularity of interconnected multi-area power systems, the power system network
is becoming more and more complex. Thus, control and regulation of power systems through
wireless communication is of significance. In a network communication environment, other than
the network-induced phenomena mentioned above, open channels also encounter serious security
issues. Some malicious adversaries may launch invasive attacks into data transmission networks in a
smart grid, resulting in significant impacts on the national economy and social stability. Thus, the the
security issues concerned with power systems should be valued. In existing works, some results on
secure performance of power systems have been presented [20–25]. Specifically, references [20,21] were
concerned with the load redistribution attacks in power systems and investigated the modeling method
and secure estimation problem, respectively. Reference [22] designed a defending method against
time delay attacks into LFC mechanism of distributed power systems. An event-triggered scheme was
proposed in [23] to compensate the effects of denial-of-service attacks in smart grid. Reference [24]
investigated a type of resonance attacks on LFC problem in multiple area power systems. However,
there has been little attention paid to secure LFC of smart grids under stochastic deception attacks.
Deception attacks [26] can stochastically deteriorate the integrity of a transmitted data packet and
severely affect the performance of power systems, which should not be neglected in the secure control
of power systems, especial in an interconnected power system network in a smart grid.

In this paper, the secure LFC problem of smart grids is addressed. The data packets received
and sent by the remote PI controller encounter, not only network-induced phenomena. but also
deception attacks launched by adversaries. The rest of the paper is arranged as follows. In Section 2,
a unified model for network-based LFC of multi-area power systems is established taking into account
networked phenomena and deception attacks. In Section 3, a piecewise delay method is used to
constructed Lyapunv–Krasovskii function, through which the stability of established system model is
analyzed. Based on the criteria on stability, the design method for desired PI controller is proposed.
In Section 4, a case study of three area power systems is given to show the effectiveness of the obtained
results. Finally, a conclusion is stated in Section 5.

Notations: Rn denotes the n dimensional Euclidean space. Rn
+ denotes the positive orthant

of Rn. Augmented matrix diagN{U} (diagN{Ui}) represents the diagonal matrix diag{U, ..., U}
(diag{U1, ..., UN}) of N blocks. E{·} represents the mathematical expectation. The matrices in the
current research are all assumed to have compatible dimensions.

2. Preliminaries

In this section, a unified system model for LFC of a multiple area power system with corrupted
network communication will be constructed. In the specific modeling, the adversarial attacks as well
as network-induced phenomena including transmission delay, packet loss and packet disorder are all
taken into account.

2.1. Multi-Area Power Systems in Smart Grid

The diagram of ith area power system in a smart grid is given in Figure 1, which is similar to that
of [23,27]. Based on this diagram of ith area power system, we will elaborate the operation of multiple
area power systems with network-based load frequency controller in the following.
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Figure 1. The framework of network-based LFC of ith area power system.

The deviation of frequency of i-th power system area is given by

∆ ḟi = −
Di
Mi

∆ fi −
1

Mi
∆Pi

tie +
1

Mi
∆Pmi −

1
Mi

∆Pdi (1)

where ∆ fi is the frequency deviation in area i; ∆Pi
tie denotes the deviation of tie-line power exchange

between areas; ∆Pmi denotes the mechanical output deviation of generator; ∆Pdi is the i-th load
deviation; Di is the damping coefficient of area i; Mi denotes the inertia of the generator in area i.

The deviation of tie-line power exchange between two areas is described by

∆Ṗi
tie = 2π

n

∑
j=1,j 6=i

Tij(∆ fi − ∆ f j) (2)

where Tij is the synchronization coefficient between area i and j.
The valve position equation is governed by

∆Ṗvi = −
1

RiTgi
∆ fi −

1
Tgi

∆Pvi +
1

Tgi
ui(t) (3)

where ∆P denotes the deviation of ith valve position; ui(t) is the control input of area i; Ri is the droop
coefficient of area i; Tgi denotes the time constant of the governor in ith area.

The mechanical power equation of generator is given as

∆Ṗmi = −
1

Tchi
∆Pmi +

1
Tchi

∆Pvi (4)

where Tchi is the time constant of the turbine. Furthermore, in area i, the ACE signal is defined as

ACEi = βi∆ fi + ∆Pi
tie (5)

Consisting of frequency deviation and net power exchange, ACE is the input signal of PI controller,
of which the control scheme is designed as

ui(t) = −KPi ACEi(t)− KIi

∫
ACEi(t) (6)

where KPi and KIi are the proportional gain and integral gain of the PI controller.
Combining the above analyses, and defining

x(t) = [xT
1 (t), xT

2 (t), ..., xT
n(t)]

T, u(t) = [uT
1 (t), uT

2 (t), ..., uT
n(t)]

T

y(t) = [y1(t)T, y2(t)T, ..., yn(t)T]T, w(t) = [∆Pd1(t), ∆Pd2(t), ..., ∆Pdn(t)]T
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xi(t) = [∆ fi, ∆Pi
tie, ∆Pmi, ∆Pvi,

∫
ACEi]

T, yi(t) = [ACEi(t),
∫

ACEi(t)]T

A = [Aij]n×n, B = diagn{Bi}, C = diagn{Ci}, F = diagn{Fi}

we can derive an augmented model of multiple area smart grid system as{
ẋ(t) = Ax(t) + Bu(t) + Fw(t)

y(t) = Cx(t)
(7)

with

Aii =


− Di

Mi
− 1

Mi
1

Mi
0 0

2π ∑n
j=1,j 6=i Tij 0 0 0 0

0 0 − 1
Tchi

1
Tchi

0
− 1

RiTgi
0 0 − 1

Tgi
0

βi 1 0 0 0

 , Aij =


0 0 0 0 0

−2πTij 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Bi =


0
0
0
1

Tgi

0

 , Fi =


− 1

Mi

0
0
0
0

 , Ci =

[
βi 1 0 0 0
0 0 0 0 1

]

and we also have the augmented load frequency control signal is

u(t) = Ky(t) = KCx(t) (8)

where K = diagn{Ki} and Ki = [−KPi,−KIi].

2.2. LFC under Corrupted Network Communication

In the current research, the ACE signal will be transmitted to a PI controller through wireless
network channels, which leads to inevitable network-induced phenomena including transmission
delays, packet dropouts, packet disorders and so on. Denoted by h the sampling period. ik, k = 1, 2, ...
are integers satisfying {i1, i2, ...} ⊂ {s|s = 1, 2, ...}. Then sh, s = 1, 2, ... denote all the sampling instants.
ikh denotes the sampling instant of the data packet which successfully arrives at the controller side.
All the data packets have been stamped with time stamp before transmitted. With the employed ZOH,
the data information will not be updated until the ZOH receive a new packet. Another important
function of ZOH is to avoid packet disorder. Specifically, if the packet x((sh), s) with stamp s reaches
ZOH earlier than packet (x((s− 1)h), s− 1) due to the network-induced delay or packet loss, the packet
with stamp s− 1 will be ignored and packet x((sh), s) will be updated to the controller side. Thus,
with the effects of networked communication, we have

u(t) = KCx(ikh), t ∈ [ikh + τk, ik+1h + τk+1) (9)

where τk is the network-induced delay denoting the time from the sampling instant ikh to the instant
when the governor receive the control signal. It is noted that if ik+1 = ik + 1, then there is no packet
dropout between packets (x(ikh), ik) and (x(ik+)h, ik+1); if ik+1 = ik + p + 1, p ∈ N+, p packets have
been dropped during network transmission.
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Due to the open broadcasting nature of network communication, the wireless transmission is
vulnerable to adversarial attacks. Considering the effects of deception attacks which can deteriorate
the integrity of the transmitted signal, we can derive the corrupted control signal ũ as

ũ(t) = u(t) + α(t)v(t) (10)

where v(t) = −u(t) + ξ(t) is the deception attack signal launched by adversaries and ξ(t) is an
energy-bounded signal belonging to L2[0,+∞). α(t) is a stochastic variable subject to Bernoulli
distribution with probabilities Prob{α(t) = 1} = α0 and Prob{α(t) = 0} = 1− α0, α0 ∈ [0, 1).

Furthermore, we let τ(t) = t− ikh, t ∈ [ikh + τk, ik+1h + τk+1). It is easy to have

τm ≤ τk ≤ τ(t) ≤ ik+1h− ikh + τk+1 ≤ τM

where τm and τM are two known constants.
Thus, the networked control signal can be written as

u(t) = (1− α(t))KCx(t− τ(t)) + α(t)ξ(t), t ∈ [ikh + τk, ik+1h + τk+1) (11)

based on which, (7) should be expressed as{
ẋ(t) = Ax(t) + (1− α(t))BKCx(t− τ(t)) + α(t)Bξ(t) + Fw(t)

y(t) = Cx(t), t ∈ [ikh + τk, ik+1h + τk+1)
(12)

Remark 1. Combining the above analyses, construction of system (12) synthesizing the network-induced time
delay, packet dropout, packet disorder and deception attack. Specifically, time interval [ikh + τk, ik+1h + τk+1)

describes the varying transmission delays and packet dropouts. ZOHs prevent the negative effects of packet
disorders. Through defining the stochastic variable α(t), the deception attacks can be easily processed into
parameters of system model.

To facilitate the LFC analysis of multiple area power systems, the following two Lemmas need to
be introduced.

Lemma 1. [28] Under the condition τ̄m ≤ τ(t) ≤ τ̄M and ẋ(t + ·) : [−τ̄M,−τ̄m] → Rn, t ∈ R+, then the
following inequality holds for ∀R > 0:

−(τ̄M − τ̄m)
∫ t−τ̄m

t−τ̄M

ẋT(s)Rẋ(s)ds ≤
[

x(t− τ̄m)

x(t− τ̄M)

]T [
−R R
R −R

] [
x(t− τ̄m)

x(t− τ̄M)

]
(13)

Lemma 2. [29] For ∀x, y ∈ Rn, and a positive scalar ε, one have

xTy + yTx ≤ εxTx + ε−1yTy (14)

Lemma 3. [18] Under the condition τ̄m ≤ τ(t) ≤ τ̄M where τ(·) : R+ → R+, for any constant matrices Ξ1,
Ξ2 and Ω, inequality

(τ(t)− τ̄m)Ξ1 + (τ̄M − τ(t))Ξ2 + Ω < 0

holds if and only if

(τ̄M − τ̄m)Ξ1 + Ω < 0

(τ̄M − τ̄m)Ξ2 + Ω < 0
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The objective of this paper is to design a PI controller for multiple area power systems such that

(1) System (12) with both w(t) = 0 and ξ(t) = 0 is asymptotically stable;
(2) For nonzero load signal w(t) and attack signal ξ(t), system (12) under zero initial condition is

said to satisfy H∞ performance if the following inequality holds:

E{‖y(t)‖2} ≤ γE{‖w(t)‖2 + ‖ξ(t)‖2}

3. Main Results

In this section, through a piecewise delay method, the sufficient conditions for H∞ stability
of system (12) are proposed. Then, with some reasonable matrix processing, a design approach to
controller gain is provided with the presence of deception attacks.

To facilitate the following development, (12) can be further written as

ẋ(t) = φ(t) + (α0 − α(t))ψ(t) (15)

where

φ(t) = Ax(t) + (1− α0)BKCx(t− τ(t)) + α0Bξ(t) + Fw(t)

ψ(t) = BKCx(t− τ(t))− Bξ(t)

To reduce the conservativeness of the analysis, the variation range of delay τ(t) is divided into
two intervals with equal length. Let δ = τM−τm

2 and τ0 = τm + δ, then two sets can be defined as

Θ1 = {t|τ(t) ∈ [τm, τ0]}
Θ2 = {t|τ(t) ∈ [τ0, τM]}

from which one can have Θ1
⋃

Θ2 = R+ and Θ1
⋂

Θ2 = ∅. In the sequent research, we mainly
investigate the performance of system (15) over these two sets.

3.1. H∞ Stability Analysis

Theorem 1. For given scalars α0 ≥ 0, γ > 0, τM ≥ τm ≥ 0 and matrices K, system (12) is asymptotically
stable satisfying H∞ performance if there exist positive definite matrices R1, R2, R3, M, N, S and T such that
the following inequalities hold:Φi + Σi

11 + (Σi
11)

T ∗ ∗
Σij

21 Σi
22 ∗

Σ31 0 Σ33

 < 0, i = 1, 2 j = 1, 2 (16)

where

Φ1 =



Φ11 ∗ ∗ ∗ ∗ ∗ ∗
(1− α0)CTKTBTP 0 ∗ ∗ ∗ ∗ ∗

R1 0 −Q1 − R1 ∗ ∗ ∗ ∗
0 0 0 −Q2 − R3

δ ∗ ∗ ∗
0 0 0 R3

δ −Q3 − R3
δ ∗ ∗

FTP 0 0 0 0 −γ2 I ∗
α0BTP 0 0 0 0 0 −γ2 I


Φ11 = PA + ATP + Q1 + Q2 + Q3 − R1 + CTC
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Φ2 =



Φ11 ∗ ∗ ∗ ∗ ∗ ∗
(1− α0)CTKTBTP 0 ∗ ∗ ∗ ∗ ∗

R1 0 −Q1 − R1 − R2
δ ∗ ∗ ∗ ∗

0 0 R2
δ −Q2 − R2

δ ∗ ∗ ∗
0 0 0 0 −Q3 ∗ ∗

FTP 0 0 0 0 −γ2 I ∗
α0CTBTP 0 0 0 0 0 −γ2 I


Σ1

11 =
[
0 −N + M N −M 0 0 0

]
Σ2

11 =
[
0 T − S 0 S −T 0 0

]
Σ11

21 =
√

δNT, Σ12
21 =

√
δMT, Σ21

21 =
√

δST, Σ22
21 =

√
δTT

Σ1
22 = −R2, Σ2

22 = −R3

Σ31 =



τmR1Aφ√
δR2Aφ√
δR3Aφ

τm
√

α0(1− α0)δR1Aψ√
α0(1− α0)δR2Aψ√
α0(1− α0)δR3Aψ


, Σ33 = diag{−R1,−R2,−R3,−R1,−R2,−R3}

Aφ =
[

A BKC 0 0 0 F α0B
]

Aψ =
[
0 BKC 0 0 0 0 −B

]
Proof of Theorem 1. A Lyapunov-Krasovskii functional V(x(t)) is built as

V(x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) (17)

where

V1(x(t)) = xT(t)Px(t)

V2(x(t)) =
∫ t

t−τm
xT(s)Q1x(s)ds +

∫ t

t−τ0

xT(s)Q2x(s)ds +
∫ t

t−τM

xT(s)Q3x(s)ds

V3(x(t)) = τm

∫ t

t−τm

∫ t

s
ẋT(v)R1 ẋ(v)dvds +

∫ t−τm

t−τ0

∫ t

s
ẋT(v)R2 ẋ(v)dvds

+
∫ t−τ0

t−τM

∫ t

s
ẋT(v)R3 ẋ(v)dvds

Calculating the expectation of derivative LV(x(t)), we have

E{LV1(x(t))} = 2xT(t)Pφ(t)

E{LV2(x(t))} = xT(t)(Q1 + Q2 + Q3)x(t)− xT(t− τm)Q1x(t− τm)− xT(t− τ0)Q2x(t− τ0)

− xT(t− τM)Q3x(t− τM)

E{LV3(x(t))} = ẋT(t)(τ2
m + δR2 + δR3)ẋ(t)− τm

∫ t

t−τm
ẋT(s)R1 ẋ(s)ds−

∫ t−τm

t−τ0

ẋT(s)R2 ẋ(s)ds

−
∫ t−τ0

t−τM

ẋT(s)R3 ẋ(s)ds

(18)

Using Lemma 1, we have
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−τm

∫ t

t−τm
ẋT(s)Rẋ(s)ds ≤

[
x(t)

x(t− τm)

]T [
−R1 R1

R1 −R1

] [
x(t)

x(t− τm)

]
(19)

Now we will discuss the derivation of E{V(x(t))} on sets Θ1 and Θ2, respectively.
Case 1: t ∈ Θ1, i.e., τm ≤ τ(t) ≤ τ0.
Similar to (19), we have

−
∫ t−τ0

t−τM

ẋT(s)R3 ẋ(s)ds ≤
[

x(t− τ0)

x(t− τM)

]T [
− R3

δ
R3
δ

R3
δ − R3

δ

] [
x(t− τ0)

x(t− τM)

]
(20)

Combining (19) and (20) and with free weighting matrix technology, we have

E{LV3(x(t))} = φT(t)(τ2
mR1 + δR2 + δR3)φ(t) + α0(1− α0)ψ

T(t)(τ2
mR1 + δR2 + δR3)ψ(t)

+

[
x(t)

x(t− τm)

]T [
−R1 R1

R1 −R1

] [
x(t)

x(t− τm)

]

+

[
x(t− τ0)

x(t− τM)

]T [
− R3

δ
R3
δ

R3
δ − R3

δ

] [
x(t− τ0)

x(t− τM)

]
+
∫ t−τm

t−τ0

ẋT(s)R2 ẋ(s)ds

+ 2ζT(t)N
[
x(t− τm)− x(t− τ(t))−

∫ t−τm

t−τ(t)
ẋ(s)ds

]
+ 2ζT(t)N

[
x(t− τ(t))− x(t− τ0)−

∫ t−τ(t)

t−τ0
ẋ(s)ds

]
where ζ = [xT(t), xT(t− τ(t)), xT(t− τm), xT(t− τ0), xT(t− τM), wT(t), ξT(t)]T.

Then by Lemma 2, we can derive

−2ζT(t)N
∫ t−τm

t−τ(t)
ẋ(s)ds ≤ (τ(t)− τm)ζ

T(t)NR−1
2 NTζ(t) +

∫ t−τm

t−τ(t)
ẋT(s)R2 ẋ(s)ds

−2ζT(t)M
∫ t−τ(t)

t−τ0

ẋ(s)ds ≤ (τ0 − τ(t))ζT(t)NR−1
2 NTζ(t) +

∫ t−τ(t)

t−τ0

ẋT(s)R2 ẋ(s)ds
(21)

With above analyses, we have

E{LV(x(t))}+E{yT(t)y(t)} − γE{wT(t)w(t) + ξT(t)ξ(t)}
= ζT(t)Φ1ζ(t) + ζT(t)AT

φ(τ
2
mR1 + δR2 + δR3)Aφζ(t)

+ ζT(t)AT
ψ[α0(1− α0)(τ

2
mR1 + δR2 + δR3)]Aψζ(t)

+ ζT(t)(Σ1
11 + Σ1

11
T
)ζ(t) + (τ(t)− τm)ζ

T(t)NR−1
2 NTζ(t) + (τ0 − τ(t))ζT(t)MR−1

2 MTζ(t)

(22)

From (16) with i = 1, j = 1, 2, and according to Lemma 3 as well as Schur complement,
one can derive

E{LV(x(t))}+E{yT(t)y(t)} − γE{wT(t)w(t) + ξT(t)ξ(t)} ≤ 0 (23)

Case 2: t ∈ Θ2, i.e., τ0 ≤ τ(t) ≤ τM.
By Lemma 1, we have

−
∫ t−τm

t−τ0

ẋT(s)R3 ẋ(s)ds ≤
[

x(t− τm)

x(t− τ0)

]T [
− R2

δ
R2
δ

R2
δ − R2

δ

] [
x(t− τm)

x(t− τ0)

]
(24)

Then with
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ζT(t)S
[
x(t− τ0)− x(t− τ(t))−

∫ t−τ0

t−τ(t)
ẋ(s)ds

]
= 0

ζT(t)T
[
x(t− τ(t))− x(t− τM)−

∫ t−τ(t)

t−τM

ẋ(s)ds
]
= 0

(25)

and using similar methods in Case 1, we have

E{LV(x(t))}+E{yT(t)y(t)} − γE{wT(t)w(t) + ξT(t)ξ(t)}
= ζT(t)Φ2ζ(t) + ζT(t)AT

φ(τ
2
mR1 + δR2 + δR3)Aφζ(t)

+ ζT(t)AT
ψ[α0(1− α0)(τ

2
mR1 + δR2 + δR3)]Aψζ(t)

+ ζT(t)(Σ2
11 + Σ2

11
T
)ζ(t) + (τ(t)− τm)ζ

T(t)SR−1
2 STζ(t) + (τ0 − τ(t))ζT(t)TR−1

2 TTζ(t)

(26)

which also leads to (23) according to (16) with i = 1 and j = 1, 2. Thus combining the results of two
cases above, we have

E{LV(x(t))} ≤ −E{yT(t)y(t)}+ γE{wT(t)w(t) + ξT(t)ξ(t)} (27)

If w(t) = 0 and ξ(t) = 0, one can easily have E{LV(x(t))} ≤ 0, which implies system (15)
with w(t) = 0 and ξ(t) = 0 is asymptotically stable. With the presence of disturbance input and
deception attack, integrating both sides of (27) from t0 to t with t→ +∞, we can have E{yT(t)y(t)} ≤
γE{wT(t)w(t) + ξT(t)ξ(t), which completes the proof.

Remark 2. A piecewise delay analysis method is adopted in constructing Lyapunov–Krasovskii functional
candidate. Specifically, the time delay variation interval is divided into two subintervals with equal length,
which can effectively reduce the conservativeness of the results. Furthermore, the delay interval can also be
divided into more than two subsets, which can lead to less conservativeness [18].

3.2. Networked Load Frequency Controller Design

As we can see, when controller gain K is unknown, the inequality in Theorem 1 is nonlinear,
which cannot be solved directly. In this subsection, we are going to present the design approach to
gain K based on Theorem 1.

Theorem 2. For given scalars α0 ≥ 0, γ > 0, τM ≥ τm ≥ 0, system (12) is asymptotically stable satisfying
H∞ performance if there exist positive definite matrices X, Y, R̃1, R̃2, R̃3, M̃, Ñ, S̃ and T̃ such that the following
inequalities hold: 

Φ̃i + Σ̃i
11 + (Σ̃i

11)
T ∗ ∗

Σ̃ij
21 Σ̃i

22 ∗
Σ̃31 0 Σ̃33

Σ̃41 0 0 −I

 < 0, i = 1, 2 j = 1, 2 (28)

where

Φ̃1 =



Φ̃11 ∗ ∗ ∗ ∗ ∗ ∗
(1− α0)YTBT 0 ∗ ∗ ∗ ∗ ∗

R̃1 0 −Q̃1 − R̃1 ∗ ∗ ∗ ∗
0 0 0 −Q̃2 − R̃3

δ ∗ ∗ ∗
0 0 0 R̃3

δ −Q̃3 − R̃3
δ ∗ ∗

FT 0 0 0 0 −γ2 I ∗
α0BTX 0 0 0 0 0 −γ2 I
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Φ̃11
1 = AX + XAT + Q̃1 + Q̃2 + Q̃3 − R̃1

Φ̃2 =



Φ̃11 ∗ ∗ ∗ ∗ ∗ ∗
(1− α0)YTBT 0 ∗ ∗ ∗ ∗ ∗

R̃1 0 −Q̃1 − R̃1 − R̃2
δ ∗ ∗ ∗ ∗

0 0 R̃2
δ −Q̃2 − R̃2

δ ∗ ∗ ∗
0 0 0 0 −Q̃3 ∗ ∗

FT 0 0 0 0 −γ2 I ∗
α0BTX 0 0 0 0 0 −γ2 I


Σ̃1

11 =
[
0 −Ñ + M̃ Ñ −M̃ 0 0 0

]
Σ̃2

11 =
[
0 T̃ − S̃ 0 S̃ −T̃ 0 0

]
Σ̃11

21 =
√

δÑT, Σ̃12
21 =

√
δM̃T, Σ̃21

21 =
√

δS̃T, Σ̃22
21 =

√
δT̃T

Σ̃1
22 = −R̃2, Σ2

22 = −R̃3

Σ̃31 =



τmR̃1Ãφ√
δR̃2Ãφ√
δR̃3Ãφ

τm
√

α0(1− α0)δR̃1Ãψ√
α0(1− α0)δR̃2Ãψ√
α0(1− α0)δR̃3Ãψ


, Σ̃33 = diag{−R̃1,−R̃2,−R̃3,−R̃1,−R̃2,−R̃3}

Ãφ =
[

AX BY 0 0 0 FX α0BX
]

Ãψ =
[
0 BY 0 0 0 0 −BX

]
Proof of Theorem 2. Let X = P−1, R̃i = XRiX, Y = KCX, Q̃i = XQiX, i = 1, 2, 3, M̃ =

XMX, Ñ = XNX, S̃ = XSX, T̃ = XTX. Then pre- and post-multiplying inequality (16)
with diag{X, X, X, X, X, I, I, X, R−1

1 , R−1
2 , R−1

3 , R−1
1 , R−1

2 , R−1
3 }, and together with Schur complement,

one can easily arrive at inequality (28).

In the case where K is unknown, linear matrix inequality (28) provided in Theorem 2 is solvable.
However, the controller gain is still unsolvable due to the nonlinearity form KCX. Now we are in the
position to design controller gain. In the following, we use a similar method in [23] for linearization.

Theorem 3. For given scalars α0 ≥ 0, γ > 0, τM ≥ τm ≥ 0, system (12) is asymptotically stable satisfying
H∞ performance if there exist positive definite matrices X, Y R̃1, R̃2, R̃3, M̃, Ñ, S̃ and T̃ such that the following
inequalities hold: 

Φ̃′i + Σ̃i′
11 + (Σ̃i′

11)
T ∗ ∗

Σ̃ij′
21 Σ̃i′

22 ∗
Σ̃′31 0 Σ̃′33
Σ̃′41 0 0 −I

 < 0, i = 1, 2 j = 1, 2 (29)

[
−εI ∗

VC− CX −I

]
< 0, ε→ 0 (30)

where Φ̃′i, Σ̃i′
11, Σ̃ij′

21, Σ̃i′
22, and Σ̃′41 can be obtained from Φ̃i, Σ̃i

11, Σ̃ij
21, Σ̃i

22, and Σ̃41 by replacing KCX with UC,
respectively. Sequently, the load frequency controller gain can be computed with K = UV−1.
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Proof of Theorem 3. To solve the infeasible term KCX, we let VC = CX. The coupling terms KCX in
inequality (28) would be transformed into a W-problem proposed in [30]. Then using an alternative
method in [27], we have (VC − CX)T(VC − CX) = 0, which leads to optimization problem (30)
according to schur complement. Since C is full row rank matrix, one can deduce that M is full
rank and invertible. Thus together with KCX = UC, the output feedback gain can be calculated by
K = UV−1.

With the design approach proposed in Theorem 3, PI controller gains for multiple power systems
can be computed through solving the linear matrix inequalities (29) and (30) using YALMIP toolbox
with SeDuMi optimization in MATLAB (R2016a).

4. A Case Study

In this section, we are going to present a practical network-based load frequency control for
multi-area power systems in smart grid. In the numerical simulation, an interconnected three-area
smart grid is considered. The parameters of three areas are chosen as follows [31].

Area 1: D1 = 1, M1 = 10, R1 = 0.05, Tch1 = 0.3s, Tg1 = 0.1s, β1 = 2
R1

+ D1.
Area 2: D2 = 1.5, M2 = 12, R2 = 0.05, Tch2 = 0.17s, Tg2 = 0.4s, β2 = 4

R2
+ D2.

Area 3: D3 = 1.8, M3 = 12, R3 = 0.05, Tch3 = 0.02s, Tg3 = 0.35s, β3 = 3
R3

+ D3.

In addition, we set T12 = 0.2p.u./rad, T23 = 0.12p.u./rad, T31 = 0.25p.u./rad, α0 =

0.3, and the sampling period h = 0.01s. The deception attack signal is chosen as ξ(t) =

[0.1 exp−0.01t sin(0.1t), 0.05 exp−0.01t sin(0.12t), 0.15 exp−0.01t sin(0.1t)]T. In the following we are going
to present an algorithm to implement the output feedback PI controller design.

By using Algorithm 1, we can design the network-based load frequency control scheme for
multiple area power systems with communication under deception attacks. Specifically, matrices U, V
and K can be calculated as follows.

U =

−0.1315 −0.1392 −0.0580 0.1356 −0.0310 −0.0160
0.0873 −0.1089 −0.0445 −0.0047 0.0589 −0.2566
0.1119 0.1158 −0.0116 −0.2923 −0.0806 −0.2823

 ,

V =



0.9213 −0.1039 0.3873 −0.5374 0.0218 1.0320
0.0284 1.0932 0.0312 −0.4359 0.1994 −0.9024
0.1435 0.2947 0.2498 0.0002 0.0982 0.9175
−1.2934 0.4358 −0.1434 0.0494 −0.8763 0.4711
0.1044 0.0014 0.0003 0.8624 0.9724 0.8163
−1.0693 −0.9324 0.0927 0.9427 −0.9375 0.9375



K =

−0.1384 −0.1405 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 −0.2318 −0.0932 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 −0.2029 −0.1245

 ,

which implies the controller gains of corresponding three areas are K1 = [−0.1384,−0.1405],
K2 = [−0.2318,−0.0932], K3 = [−0.2029,−0.1245]. As is seen, without a secure control mechanism,
the deviation of frequency of three-area power systems encountered in deception attacks is shown in
Figure 2, which cannot reach stable performance. In the sequent, the evolution of frequency deviation
of the attacked three-area power systems with secure control scheme is given in Figure 3, which shows
the effectiveness of the designed control strategy. Furthermore, we can see that deception attacks were
launched 593 times into the communication network. The evolution of stochastic variable α(t) in the
first five seconds is given in Figure 4, where α(t) = 1 implies the deception attack is launched into
network at time t. Besides, the deceptive signal α(t)v(t) launched into the communication network is
shown in Figure 5, from which one can clearly see the attack instants and the corresponding values of
a deceptive signal.
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Algorithm 1 Output feedback PI load frequency controller design for three-area power systems.

Require: Di, Mi, Ri, Tchi, Tgi, βi, Tij, i = 1, 2, 3, j = 1, 2, 3, α0.
Ensure: The given parameters are reasonable in describing multi-area power systems with

Equations (1)–(6);
1: Using the input parameters to calculate the corresponding matrices in the augmented system (7)

including Aii, Aij, Bi, Fi, Ci, i = 1, 2, 3, j = 1, 2, 3;
2: Solving linear matrix inequalities (29) and (30) using YALMIP toolbox with SeDuMi optimization;
3: Gaining matrices U, V;
4: Calculating K = UV−1; return K;
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Figure 2. Frequency deviation of three areas without secure control scheme.
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Figure 3. Frequency deviation of three areas with secure control scheme.
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Figure 4. The evolution of α(t).
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Figure 5. Deception attack α(t)v(t).

5. Conclusions

The network-based Load frequency control problem of multiple area power systems against
deception attacks has been investigated in this paper. With data transmitted through a wireless
network, packets may be delayed or dropped in communication channels, and may also be corrupted
by stochastic deception attacks. A dedicated system model has been provided to account for these
negative effects on system performance. Based on the established model, the LFC problem has been
investigated with a piecewise delay analysis method which is of less conservativeness. A controller
design approach has been proposed in terms of linear matrix inequalities. A numerical example of
three area power systems has been given to demonstrate the obtained results.
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