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Abstract: Exact models are a necessary prerequisite for optimal hardware configuration and the
design of high-performance controllers. The photovoltaic system is considered a dynamic nonlinear
multimodal system, where an optimization method must be used to resolve non-linearity and to
identify the parameters describing the models of such systems. This has incited several researchers
to work on and to develop several optimization methods. Recently, a number of methods have
been proposed, including deterministic approaches, as well as probabilistic and stochastic numerical
approaches, that aimed at obtaining a more accurate model for the PV cell and module array.
This paper demonstrates the application of a performance optimization method based on discrete
symbiotic organism search (DSOS), that mimics the behaviors of an organism in an ecosystem to
survive. The high performance of such a method is attributable to the simplicity of the algorithm
used; this algorithm is different from other heuristic algorithms, in that the GA needs two tuning
parameters, i.e., the cross over and mutation rate, while the harmony search needs three rules to adjust
and improvise new harmony, being memory consideration, pitch adjustment, and random choosing.
Meanwhile, in the ABC algorithm, three phases are introduced to find the best food source, that is,
the employed bee, the onlooker bee, and the scout bee phases, while the DSOS algorithm did not need
any tuning parameters, wherein the proposed algorithm was used in both a single diode and double
diode model across three test cases in the study. Compared to other previously published works,
the level of performance of the algorithm is high in both implementation and accuracy; the DSOS
algorithm is more capable of reaching the best set of solutions. The Mann-Whitney-Wilcoxon test to
evaluate the discrete solutions of the algorithm for multiple runs with a 5% degree of confidence was
evaluated and performed with a good level of accuracy.

Keywords: metaheuristic optimization; photovoltaic array modeling; parameter extraction; discrete
symbiotic organism search; single and double diode model

1. Introduction

The continuous integration of renewable energy resources and the increased use of the photovoltaic
system to generate green and efficient energy have given researchers more opportunities to study the
generation of green power. The goal has been to enhance the output from this energy source, as well as
to enhance the efficiency of the panel.

Over the last two decades, several countries have sought the benefits that these sustainable
resources can supply. Photovoltaic energy is ubiquitous in rural and urban areas. Due to their
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topography, previously inaccessible villages have now been electrified by photovoltaic systems. In
Africa, where water resources are limited, people pump water using energy from photovoltaic systems.
In addition, many telecommunications base stations that are far from urban areas, or that are located
on mountains and along highways, are supplied by photovoltaic energy [1]. Therefore, by using cheap
photovoltaic energy to power communications systems, for example, this may help to reduce the
likelihood—or keep users informed—of a situation like a forest fire. That is why we have to focus on
increasing the implementation of this kind of energy and to take advantage of the cell and the module
array of the photovoltaic system.

The global efficiency of the photovoltaic system is achieved through accurate mathematical
modeling from the solar cell to the panel.

In fact, the mathematic model for the smallest entity (the cell) of the photovoltaic generator is a
multivariable nonlinear problem. Thus, it has to be accurately studied to fit the physical model, as well
as the experimental measurements and results.

Over the last few years, several researchers have been interested in the optimization problem
relating to the extraction of solar cell and module array parameters, bearing in mind that an accurate
model can increase the output in terms of power generated by any photovoltaic system. This is
interesting, because a diode ideality factor that is inaccurate by even 1% can result in approximately a
10% loss of power in the MPP.

Several methods and parameter extraction techniques based on the deterministic approach have
been studied, whilst other methods based on the probabilistic, stochastic numerical approach have
been used to develop an accurate model for the PV cell. However, it can be demonstrated that no
single process can ensure a completely potent result for the parameter extraction problem.

Several methods have been used to get over the non-linearity of the optimization problem and to
overcome the implicit form between the current and voltage that characterizes the mathematic model
of the photovoltaic cell and module. Below is an overview of the literature associated with the problem
of parameter optimization or estimation of the solar cell, as well as the status of current research.

The electrical parameters describing the electrical equivalent circuit operation of the cell differ
from one model to the next. A PV array (or cell) is described by the generated current (I) versus the
output voltage of the panel (V), and by the power (P) versus the voltage (V). Therefore, either the cell
or the panels can be modeled as a DC current source [2].

In the literature, we find different mathematical models depending on the number of diodes in
the model described. In most cases, researchers are interested in the single diode model (SDM) and the
double diode model (DDM), illustrated in Figures 1 and 2, respectively. Some other researchers have
become interested in the multi-diode model aimed at characterizing with more efficiency the behaviors
of a wide range of PV technologies [3]. Unfortunately, the SDM and DDM are both implicit equations
and have the weakness of being explicitly unsolvable by standard mathematical operations [4].

In 1987, Amed. A and Alfor [5] applied an analytical method based on the Lambert W function
to extract the five parameters of a single diode model for several commercial panels and cells. Their
results showed that the absolute error between the measured data and the calculated model was about
8 × 10−4 for the current and 0.6 for the voltage. As a result, the maximal absolute power error was
about 48 × 10−5.
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However, there are also other different analytical methods used by other researchers (Phang 1984,
Wolf 2013; Farivar 2011) [5–7]. In 1986, J.C.H. Phang in Reference [8] developed a novel analytical
method for the rapid extraction of solar cell SDM parameters using experimental data. The resulting
parameter values were found to significant improvements, with less than a 5% error for most of the
solar cells studied [8–13]. The double diode model (DDM) illustrated in Figure 2 is also widely used by
researchers due to its higher accuracy where more parameters are used in this model, and therefore,
more calculations are performed [14–22].

Recently, the three diode model (TDM) was used to increase the accuracy of the parameter
model of the solar cell. The three diode model is considered to be the most precise for congregating
the delicate patterns of multi-crystalline silicon solar cells. The authors used seven parameters:
X =

(
Iph, I01, I02, I03, , n1, n2, n3, Rs, Rsh

)
, where they fixed the ideal factors of the first and the second

diode: n1 = 1 and n2 = 2. Otherwise, the system would have had nine parameters and the solution
would have been more expensive for the fitness function to converge on the global minima, whilst
avoiding being trapped in local minima [23].

To work around the algebraic calculations and to improve the accuracy of the analytical model,
for the simplification of the implicit form of the equation, progress in digital and learning tools for the
deterministic and stochastic numeric methods has been used to extract the parameter estimations of
the mathematical model of the PV cell. This was done to find an adjustment fit amongst the analytical
and experimental measurement curves of the solar cell.

Among the methods based on the gradient descent approach, we cite the Newton–Raphson
method (NRM) [1–4,8,11,23–29]. This method was formulated around an iterative calculation for
solving a multivariable system of nonlinear equations (NLNRM). The NRM uses the function values
and their derivatives in an analytic model of the function. This method is height performed for smooth
unimodal problems, but when there is some discontinuity in the objective function the method is not
accurate. In such a case, the use of a non-gradient algorithm should be adopted (that is, no derivative
is provided if it is not a gradient-based or gradient free algorithm), such as the Hook Jeeves pattern
search and Nelder–Mead downhill simplex, which are gradient free algorithms. To fit the curves with
more accuracy, the NRM uses the entire data points, as well as a curve-fitting technique. A set of
parameters (three, four, or five parameters) is to be calculated within this iterative method. As far as
that goes, the Levenberg–Marquardt algorithm(LM) based on an iterative approach [2,20,23–30], is an
example of a deterministic method. These methods need continuity, convexity, and differentiability to
be applied, and they are efficient in their convergence with local research, but their performance is
related to the choice of the initial guess, similar to the Newton–Raphson method.

A stochastic algorithm which include two types of methods: Heuristic methods, which means that
we have to find or discover by calculation and error, such that for the problem there is no guarantee
that a minimal solution is reached. Meta-heuristic methods, where meta means beyond or height level.
Actually, researchers tend to name all stochastic algorithms with randomization and local search as
metaheuristic techniques [31,32].
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The first programming method used for evaluating the parameters of a solar cell was developed in
1981. (Charles, 1981, Laplaze and Youm, 1985; Chan and Phang, 1987), Recently, researchers have used
different diversities and varieties of algorithms , inter alia, several other packages of stochastic methods,
comprising of genetic algorithms (GAs) [32–35], harmony search (HS) [3], as well as the differential
evolution method (DE) [24]. Others include modified differential evolution named as the improved
adaptive differential evolution (IADE) with cross over rate repairing techniques and ranking-based
mutation, The cantilever beam problem as well as the test function was optimisated using a heuristic
method [36], the flower pollination algorithm (FPA) [37], particle swarm optimization (PSO), and other
related algorithms like artificial bee swarm optimization (ABSO) [38], parallel PSO; quantum swarm
optimization, and cat swam optimization (CSO) [39]. In addition, there is the bird mating optimizer
(BMO), cuckoo search (CS) [40], and other related algorithms, such as the modified cuckoo search,
improved cuckoo search, and the binary cuckoo search [18]. There is also the teaching learning-based
optimization (TLBO) [41], where this algorithm does not require specific controlling parameters to
obtain global solutions for continuous non-linear functions, and it involves less computational effort
and a higher consistency. On the other hand, the other heuristic algorithms require significant effort
to determine the optimum algorithm controlling parameters. Improper tuning leads to chances of
achieving a local optimal solution, but they suffer from an increase in the computational effort. Such
techniques include the simplified TLBO (STLBO) [42], generalized oppositional TLBO (GOTLBO) [43],
and the self-adaptive TLBO (SATLBO), which constitute some form of a derivative from the teaching
learning algorithm [3], etc.

To extract the cell or panel parameters, numerical methods adopt the calculation of the means of an
objective or fitness function (FF). The objective function is the least mean square of the errors calculated
between the experimental and simulated I-V curves of the algorithm tray to minimize this fitness
function. In a state of multi-objective optimization, we have to minimize either the norm of the vector,
which is the difference between the experimental and simulated value of the I–V (Euclidian distance),
or the compound of the vector error. This methodology seems to require a higher computation order
compared to analytical methods.

The parameter extraction of a cell or a PV array is a multimodal optimization (where we can find
several local minima). These stochastic methods have the goal of improving the search capacity, and
thus, the main aims included: avoiding getting trapped in a local minimum, simplicity, and reliability
of the method, low computational cost, and robustness. Whilst they are more likely to carry the right
global solution; stochastic methods do have some limitations when the optimization algorithm faces
multimodal functions.

In the case of the classical PSO and GA, these methods maintain a trend that moves toward the
local minima, since their elitist mechanism enforces premature convergence and their behavior worsens
if there is a multimodal function [44].

Other stochastic programming-based algorithms exist in the literature, but are used in other
subjects, one of them being the multi-stage stochastic programming-based on artificial bee colony
(MSSP-ABC) applied for multiple H-MG applications [45].

The literature review shows that the methods for extracting parameters from PV cells and
modules are amongst the most important research topics in the area. This problem is considered
as a multivariable nonlinear optimization problem; however, it has been resolved, or the solution
has been approached using different numerical algorithms based on optimization approaches. As a
consequence, several new methods capable of accurately and reliably determining the PV parameters
have been developed by researchers. Other methods include are analytic methods, numerical methods,
and hybrid methods.

This paper presented a robust and powerful swarm intelligent optimization inspired algorithm
called the symbiotic organism search (DSOS). This metaheuristic-based algorithm was introduced for
the first time by Cheng and Prayogo [36] where they examined design engineering problems from the
structural engineering field to optimize and resolve a cantilever beam problem, where the objective



Energies 2019, 12, 2246 5 of 32

was to minimize the vertical deflection of an I-beam. With two constraints, the cross-sectional area and
the stress constraints had to be simultaneously satisfied under the given loads.

In the electrical field, we anticipate to use the symbiotic organism search to extract the five and
seven parameters of the mathematical models of PV cells and module arrays.

The proposed algorithm simulated a symbiotic interaction strategy used by different organisms to
survive in an ecosystem.

The significant contributions of this study can be described as follows:

• The prerequisite of this algorithm was that it did not need to find a good set of parameters.
• It did not need any specific parameter requirement to be tuned like the genetic algorithm, which

needs at least a cross over type, cross over rate adjustment, and % of mutation rate.
• Finding the appropriate interval for each solution takes additional cost in time and computing;

that is not necessary in the case of DSOS the search space of the algorithm can be more width.

The paper is organized as follow: Section 2 exhibits the essential of the electric model that
describes and depicts the PV cells and module arrays; Section 3 presents the parameter extraction
formulation problem, which characterizes the mathematical models of the cell (that is, the SDM and
DDM). Section 4 depicts the DSOS essentials and introduces the proposed methodology for the five
and seven parameter extractions of the cell. Section 5 analyses the efficiency of the proposed method
compared to previous research; however, in this section, two cases are studied and compared, and the
results obtained by the proposed method are compared with other methods defined in the literature.
Finally, Section 6 finalizes and concludes this paper.

2. Mathematical Models of PV Systems

This section reveals the mathematic model of both the single diode and double diode model (SDM
and DDM) topologies that are incorporated in the proposed method.

The SDM is frequently used in the literature because of its simplicity and accuracy in describing the
electric cell model. However, the DDM is preferred by some authors owing to its improved accuracy.

2.1. Single Diode Model Formulation (SDM)

The SDM equivalent circuit utilized in this paper is depicted in Figure 1a.
Its key advantages are its simplicity and accuracy. There were five parameters in this model, and

it corresponded to a direct current source connected antiparallel to one diode, including serial Rs and
parallel Rsh resistors plugged in at the diode terminal.

For a paired value of illumination and temperature, a conversion of the absorbed light photons
to the photocurrent Iph was conducted. The latter represents the leakage current at the PN junction.
Furthermore, the defects presented by the materials at this junction and the losses arising from the
different contacts and connections were modeled by the shunt resistance Rsh and series resistance
Rs, respectively.

The diode used was characterized by two intrinsic parameters, which were the saturation current
I0 and the ideality factor n. The characteristic I = f (V) generated by the solar cell was obtained by
placing a variable load at the output of the cell [34]. The implicit mathematical model obtained by
applying Kirchhoff’s laws to the equivalent circuits, with consideration for the electrical parameters of
the Shockley’s diode equation, yielded the following Equation (1) as in Reference [23], for the current
generated at a specific condition defined by the temperature and irradiance in the PV cell. The equation
can be expressed as:

I = Iph − I0

(
eq(V+I.Rs

n.k.T )
− 1

)
−

V + I.Rs

Rsh
= f (I, V,ϕ) (1)

where ϕ5 =
(
Iph, I0, n, Rs, Rsh

)
= (x(1), x(2), x(3), x(4), x(5)), the vector of five unknown parameters.

I0 is the saturation current of the diode, Iph is the light-generated current, and n is the diode ideality
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factor. Rs and Rsh are useful gauges for the values of the serial and shunt resistance, k: is the Boltzmann’s
constant, and q is the electron charge.

For the double diode model (DDM), the vector of the unknown parameters becomes:

ϕ7 =
(
Iph, I0, I1, n1, n2, Rs, Rsh

)
= (x(1), x(2), x(3), x(4), x(5), x(6), x(7)).

For the three diode model (TDM), the vector of the unknown parameters becomes:

ϕ9 =
(
Iph, I0, I1, I2, n1, n2, n3, Rs, Rsh

)
= (x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9)).

In the data sheet of any PV panel, the manufacturer does not provide the five parameters (I0, Iph, n,
Rs, and Rsh) or the seven or nine parameters, respectively; while only limited experimental data under
the standard test conditions (STC) (T = 25 ◦C, G = 1000 W/m2) are provided. The experimental data
provided by the manufacturers includes the (Voc) [46]: the open-circuit voltage, (Isc): the short-circuit
current, (Vmp): the voltage at the maximum power point, (Imp): the current at the maximum power
point, (b): the open-circuit voltage/temperature coefficient, (a): the short circuit current/temperature
coefficient, and (Pmax-e): the maximum experimental peak output power.

2.2. Extracting the Five Parameters Under the Standard Test Conditionsfor the Single Diode Model

To rxtract the five parameters of the SDM under STC condition we have to express the short circuit
current from Equation (1), that leeds to Equation (2):

Isc = Iph − I0

(
eq( Isc .Rs

n.k.T )
− 1

)
−

Isc.Rs

Rsh
(2)

Iph � I0

(
eq( Isc .Rs

n.k.T )
− 1

)
�

Isc.Rs

Rsh
then Isc ≈ Iph (3)

Point 1: At the open circuit point (V = Voc), I = 0. Therefore, Equation (1) can be re-written as:

0 = Iph − I0

(
eq( Voc

n.k.T ) − 1
)
−

VOC
Rsh

(4)

Additionally, I0 can be expressed as:

I0 ≈
Iph −

VOC
Rsh

eq·
VOC
n.k.T − 1

; (5)

Considering that Rsh � Voc, Equation (5) gives:

I0 ≈
Iph

eq·
VOC
n.k.T − 1

(6)

2.3. Extracting the Seven Parameters Under the STC Double Diode Model

To rxtract the seven parameters of the DDM under STC condition we use the same methedology
we have to express the short circuit current from Equation (1) and we add one term that refers to the
second diode in the model , that leeds to Equation (7):

Isc = Iph − I0

(
eq( Isc .Rs

n1.k.T ) − 1
)
− I1

(
eq( Isc .Rs

n2.k.T ) − 1
)
−

Isc.Rs

Rsh
(7)

Iph � I0

(
eq( Isc .Rs

n1.k.T ) − 1
)
+ I1

(
eq( Isc .Rs

n2.k.T ) − 1
)
�

Isc.Rs

Rsh
then Isc ≈ Iph (8)



Energies 2019, 12, 2246 7 of 32

Point 2: At the open circuit point (V = Voc), Isc = 0. Therefore, Equation (7) can be re-written as:
Considering that the applied voltage across the diode is VD = Voc

0 = Iph − I0

(
eq( Voc

n1.k.T ) − 1
)
− I1

(
eq( Voc

n2.k.T ) − 1
)
−

Voc

Rsh
(9)

In addition, if we consider that n1 = n2 = n, then Io can be expressed as:

I0 ≈ I1 ≈
Iph −

VOC
Rsh

2(eq·
VOC
n.k.T − 1)

(10)

Considering that Rsh � Voc, Equation (10) gives:

I0 ≈ I1 ≈
Iph

2(eq·
VOC
n.k.T − 1)

(11)

Figure 2 depicted a diagram illustration of a PV module including a combination of Ns cells
connected in series and Np strings connected in parallel (Ns*Np), this configuration is well used
to describe the mathematic model behaviors of a solar module or a solar system, a set of modules
connected in series and in parallels.

3. Methodology of the Symbiosis Organism Search (DSOS) Algorithm

The current DSOS algorithm mimics the interactive behaviors and the relationships amongst any
two distinct organisms in nature or an ecosystem. This relationship is known as symbiosis, and it is
characterized by an advantage to the different organisms for the purposes of sustenance and survival.
Therefore, symbiosis is the prolonged and mutually beneficial association between organisms.

3.1. Main Idea of the Discrete Symbiotic Organisms Search (DSOS)

In Greek, the word symbiosis means living together. In 1878, De Bary first used the term to explain
the cohabitation between two different species.

A symbiotic relationship may be obligatory when a pair of organisms depends on each other for
survival or it may be facultative when the two organisms cohabitate in a mutually beneficial manner
without a relationship.

Examples of symbiotic relationships found in an ecosystem can be mutualism, commensalism,
predation, or parasitism, although in general, predation is considered as a kind of parasitism.

When benefits to both govern the relationship between two distinct species, we talk about
mutualism, for example, the pollination with a bee or when a small crab that lives in a mussel receives
protection and food, while the inside of the mold is cleaned by the crab. However, both can also
live separated.

Commensalism is a relationship in an ecosystem between two different organisms where one
benefits and the other is neutral or unaffected, for example, the jackal feeds on the remains of prey left
by the lions.

Finally, parasitism defines a relationship of paired distinct species on which one benefits at the
expense of the second, which is harmed. For example, end parasites in humans and the disease they
cause, that is, Malaria.

Figure 3 depicts a set of the symbiotic organisms in the same ecosystem, where the relationship
in an ecosystem is dynamic and the organism develops many tools to adapt to a change in their
environment. Therefore, from the time that it is built, the symbiotic relationship continues to shape
and sustain all changes in the ecosystem.
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3.2. Flowchart of the DSOS

The working principle of the DSOS is presented in the flow chart Figure 4, the algorithm starts
with an objective function to be defined by the user several inputs describing the ecosystem, as well as
an initialization of a set of n random solutions.
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The description of the principal of this flow chart is presented in Section 3.3. and the computational
procedure in Section 3.4.

3.3. The Discrete Symbiotic Organisms Search Algorithm (DSOS)

DSOS-based algorithms imitate symbiotic interactions between a couple of organisms in the same
ecosystem. In the optimization problem, each organism denotes a potential solution, and it is totally
defined by its position in the solution space.

Like all population-based algorithms, the DSOS iteratively uses a population of candidate solutions
in the search space to search for a global solution.

In each iteration, all the organisms adjust their position according to the mutualism, commensalism,
and parasitism biological interaction models of the ecosystem.

The first set of organisms or population is called an ecosystem, and it is randomly generated.
Every candidate in this ecosystem represents a solution for the given optimization problem, and
each candidate in the ecosystem has a fitness value which reflects the degree of appurtenance to the
aimed objective.

This algorithm is different from other heuristic algorithms in that the GA needs two tuning
parameters, that is, the cross over and mutation rate, while the harmony search needs three rules to
adjust and improvise new harmony, being memory consideration, pitch adjustment, and random
choosing. Meanwhile, in the ABC algorithm, three phases are introduced to find the best food source,
that is, the employed bee, the onlooker bee, and the scout bee phases.

In the current algorithm (DSOS), three phases need to be considered, that is, the mutualism phase,
commensalism phase, and the parasitism phase.

Therefore, the process of the basic code of the DSOS algorithm is as follows:
Initialization (eco-size, initial population, stopping criteria);
REPEAT (for all organisms in the ecosystem)

• Determine the best organism,
• Mutualism phase: % interaction benefit for both sides,
• Commensalism phase: % benefit to one side and the other side is neutral.
• Parasitism phase: % benefit to one side and the other is well harmed.

UNTIL the stopping criteria is met.
For a further theoretical approach, the next section describes how these three phases are

described mathematically.

3.3.1. Mutualism

Given a set of bees and flowers in an ecosystem, both organisms have a mutual benefit.
Xi denotes an organism matched to the ith member of the ecosystem (for example, the ith bee).

Another organism is Xj, which denotes a flower selected randomly. The pair (Xi, Xj) engages in a
mutualistic relationship, where both organisms engage with a goal of the increased chance of survival
in the ecosystem.

A new candidate solution Xnew for the paired Xi and Xj, is calculated based on the mutualistic
symbiosis for both Xi and Xj as follows: Equations (12) and (13).

Xi−new = Xi + rand(0, 1) × (Xbest −Mutual_Vector× BF1). (12)

X j−new = X j + rand(0, 1) × (Xbest −Mutual_Vector× BF2). (13)

Mutual_Vector = (0.5) × (Xi + X j). (14)

where rand (0, 1) is a vector of a random number.
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In nature, some mutualistic relationships grant a greater beneficial advantage to one organism
than to another. Therefore, to emulate this inequality of benefits, the benefit factors BF1 and BF2 have
been introduced in Equations (1) and (2), so that these factors represent the level of benefit to each
organism in the adverse situation.

Equation (3) represents the relationship characteristics between organisms Xi and Xj, such that
the part of the equation:

(Xbest −Mutual_Vector*BF1),

reflects the mutualistic effort to increase their survival advantages. Xbest represents the highest degree of
adaptation, and each organism is updated only if their new fitness is better than pre-interaction fitness,
in other words, every organism is forced to increase their degree of adaptation to their ecosystem as
described in Reference [36].

3.3.2. Commensalism

Similar to the mutualism phase, an organism Xj is randomly selected from the ecosystem to
interact with Xi.

Xi attempts to benefit from this relationship; however, organism Xj is neither benefiting nor
being harmed. The Xnew is calculated according to this commensalism symbiosis relation and can be
modeled using Equation (15).

The part of the equation (Xbest−Xj) reflects the beneficial advantage provided by Xj to help Xi
increase its survival advantages, to a higher degree if the organism is to fit Xbest.

The organism Xi-new is replaced by Xi only if the latter is better.

3.3.3. Parasitism

In the parasitism phase, for each organism i denoted as Xi, another different organism j denoted
as Xj is randomly selected. An artificial parasite Xi-new is produced by first duplicating organism
Xi, and then modifying the randomly selected dimension d by replacing the current value with a
randomly generated value between the minimum and the maximum of the corresponding dimensions.
In other words:

Xi_new =

 Xi,k i f k , d
Xmin,k + rand(0, 1) ×

(
Xmax,k −Xmin,k

)
i f k = d

. (15)

The randomly selected Xj serves as a host to the artificial parasite Xi. If the artificial parasite is
better than the host Xj, then Xj is killed and the artificial parasite takes place of the killed organism.

In other words, both organisms have to evaluate their fitness value, and if the parasite-vector has
a better fitness value, it will kill organism Xj and take its place in the ecosystem. However, if the fitness
value of the organism Xj is better, then Xj has immunity from the parasite (for example, immunity
from Malaria) and the parasite-vector will no longer be able to live in that ecosystem.

3.4. Computation Procedure of the DSOS Algorithm

To implement the DSOS method and evaluate the effectiveness, below we depict the code of the
DSOS algorithm (Algorithm 1).
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Algorithm 1 Code of the DSOS algorithm

Define an objective function f(X); X = (x1, x2, x3, . . . ,xd) %d is the dimension
% of the problem
Inputs: ecosystem/population size and the objective function
Initialize an ecosystem of n organisms with a random solution.
% Initialize the organism randomly in the ecosystem
% Evaluate the fitness of the new solution
% Increase the number of function evaluation count.
While (t < Ecosystem)
For i = 1:n % n is the number of organisms
Find the best organism in the ecosystem Xbest

% Mutation phase
Randomly select one organism Xj, where Xi # Xj

Determine the mutual relationship vector (Mutual-Vector) and the benefit factor (BF).
Modify organism Xi and Xj using Equations (12)–(14).

If the modified organism gives a better fitness evaluation than the previous one, then update them in
the ecosystem.

% Commensalism phase
Randomly select one organism Xj, where Xi # Xj
Modify organism Xi and Xj using Equation (15)
If the modified organism gives a better fitness evaluation than the previous: then update them in

the ecosystem.

% Parasitism phase
Randomly select one organism Xj, where Xi # Xj
Generate a parasite vector from organism Xi (Equation (15))
If the parasite-vector gives a better fitness evaluation than Xj, then replace it with the parasite-vector in

the ecosystem.
End for
Then the Global Best solution is saved as an optimal solution;

End while

3.5. Formulation of the SDM Solar Cell Parameter Estimation Problem

Many electric models for the solar cell have been proposed to describe the I-V characteristics. The
main circuit models are the single diode and double diode models.

3.5.1. Single Diode Model Formulation SDM

At the maximum point, V = Vmp and I = Imp. At the maximum power point, Equation (1) can be
re-written as:

Imp = Iph − I0

(
eq(

Vmp+Imp .Rs
n.k.T )

− 1
)
−

Vmp + Imp.Rs

Rsh
, (16)

Differentiation gives:

dI
dV

= −I0 ×

[
q

n·k·T
·

(
1 +

dI
dV
·Rs

)
eq·(V+I.Rs

n.k.T )

]
−

1
Rsh
×

(
1 +

dI
dV
·Rs

)
, (17)

We have to calculate this amount at different points on the characteristic:



Energies 2019, 12, 2246 12 of 32

At the short circuit point (V = 0; I = Isc). Applying the short circuit condition to Equation (17),
we obtain:

dI
dV

∣∣∣∣∣
V=0

= −I0 ×

[
q

n·k·T
·

(
1 +

dI
dV

∣∣∣∣∣
V=0
·Rs

)
eq·( Isc .Rs

n.k.T )

]
−

1
Rsh
·

(
1 +

dI
dV

∣∣∣∣∣
V=0
·Rs

)
, (18)

At the open circuit point (V = Voc); I = 0. Equation (17) can also be written as:

dI
dV

∣∣∣∣∣
I=0

= −I0 ×

[
q

n·k·T
·

(
1 +

dI
dV

∣∣∣∣∣
I=0
·Rs

)
eq·( Voc

n.k.T )

]
−

1
Rsh
·

(
1 +

dI
dV

∣∣∣∣∣
I=0
·Rs

)
(19)

The derivative of the solar PV power with respect to the voltage gives the last independent
equation. This derivative is equal to zero at the maximum power point, and it is obtained as:

dP
dV

=
d(I·V)

dV
= I +

dI
dV
·V = 0 ↔

I
V

= −
dI
dV

(20)

So at the MPP (V = Vmp and I = Imp), Equation (17) becomes:

dI
dV

∣∣∣∣∣
(Vmp,Imp)

= −
Imp

Vmp
, (21)

The substitution of Equation (21) in to Equation (17) gives:

−
Imp

Vmp
= −I0 ×

[
q

n·k·T
·

(
1−

Imp

Vmp
·Rs

)]
−

1
Rsh
×

(
1−

Imp

Vmp
·Rs

)
, (22)

We note Rs0 and Rsh0 as:
dI
dV

∣∣∣∣∣
V=Voc

= Rs0, (23)

And
dI
dV

∣∣∣∣∣
I=Isc

= Rsh0 , (24)

To get the vector of the five parameters we have to solve Equations (2), (4), (7), (8), and (13).

3.5.2. Double Diode Model Formulation (DDM)

The implicit mathematical model obtained by applying Kirchhoff’s laws to the equivalent circuits,
with consideration for the electrical parameters of the two Shockley’s diode equations, gives the
following equation for the current generated in the PV cell at a particular operating point.

The equation can be expressed as:

I = Iph − I01

(
e

q(V+I.Rs
n1.k.T )

− 1
)
− I02

(
eq(V+I.Rs

n2.k.T )
− 1

)
−

V + I.Rs

Rsh
= f (I, V,ϕ), (25)

where ϕ =
(
I01, I02, Iph, n1, n2, Rs, Rsh

)
, represents the vector of seven unknown parameters.

3.6. Parameter Optimization Problem for SDM and DDM

To identify the intrinsic parameter of the vectors ϕ =
(
I0, Iph, n, Rs, Rsh

)
for the SDM, it is

described using Equation (1) or ϕ =
(
I01, I02, Iph, n1, n2, Rs, Rsh

)
For the DDM, it was described using

Equation (13), and we fitted the best model described by either Equation (1) or Equation (13) to
the experimental data V = g(I). Through minimization of the squared error of the theoretical and
experimental curves, we defined an objective function (OF) that evaluated the degree of correspondence
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between the estimated and calculated parameters as a sum of the squared errors (SSE), which is
given by:

g(I, V,ϕ) =
N∑

k=1

[
Imes,k − fk(I, V,ϕ)

]2
=

N∑
k=1

(∆Ek)
2 (26)

∆Ek =
∣∣∣Imeasured,k − I calculated,k

∣∣∣ (27)

Theoretically, the (OF) value should be zero when the best values of the parameters are obtained,
and estimated to fit the experimental results.

Imes,k is the kth measurement data of Ipv.
∆Ek is the absolute error between Imes,k and I calculated = f (I, V,ϕ) from Equation (1).
ϕ =

(
Iph,I0, n, Rs, Rsh

)
: Vector of the five unknown intrinsic parameters for the SDM.

ϕ =
(
Iph,I01, I02, n1, n2, Rs, Rsh

)
: Vector of the seven unknown intrinsic parameters for the DDM.

N is the number of measurement points.
Objective: The minimum of the SSE leads to optimal values of the parameters: ϕ = ϕopt.
The optimization of the objective function cannot be done analytically due to the non-linearity

of the characteristic I = g(V), and due to the difficulty for the structural parameters Rs and n to be
expressed in the exponential term. As a consequence, the numerical method based on the last square
principal was more appropriate to minimize such a function.

Various evaluation criteria have been used in the literature to qualify the accuracy and effectiveness
of the proposed optimization algorithm based on a statistical approach.

The relative error (RE): this factor is based on the error between the extracted and the measured
parameter set. It has been used in previous research to calculate and compare the accuracy of the
optimization method.

RE =

∣∣∣∣∣∣ Imeasured,k − I calculated,

I measured,k

∣∣∣∣∣∣ (28)

The root mean square error (RMSE): This criterion compares the experimental and the calculated
or fitted data, and it gives an error as the output.

RMSE =

√√√
1
N

k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣2 =

√√√
1
N

k=N∑
k=1

[gk(Ik, Vk,ϕ)]2 (29)

The normalized deviation as described in Reference [47].

D(%) =
1

100
∗

(
Imeasured,k − Icalculated,k

Imeasured,k

)
(30)

Several other statistical parameters have been used in the literature to demonstrate the effectiveness
and the competitiveness of the optimization method.

Examples of statistic variables that have been used include the normalized mean square error
(NMSE), root mean square deviation (RMSD), normalized root mean square deviation (NRMSD),
mean absolute error (MAE), mean absolute error in power (MAEP), mean bias error (MBE), mean
square error (MSE), sum square error (SSE), residual error of the fitness function (REFF), absolute error
(AE), mean relative error (MRE), coefficient of determination (R2), mean absolute bias error (MABE),
mean absolute percentage error (MAPE), individual absolute error (IAE), error between simplified
parameters (ESP), and the absolute current error (ACE).
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3.7. Symbiosis Organism Search Implementation

Statistical errors were evaluated to check the accuracy of the proposed method. The statistic
variables used include the: absolute error (AE), mean absolute error (MAE), root mean squared error
(RMSE), and the weighted RSME proposed in Reference [48]. One or more of these parameters were
calculated and compared for the different methods.

AE =
k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣ (31)

MAE =
1
N

k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣ (32)

SSE =
k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣2 (33)

RMSE =

√√√
1
N

k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣2 =

√√√
1
N

k=N∑
k=1

(∆Ek)
2 (34)

NRMSD =
RMSD

Isc
× 100% (35)

ξ =
RMSE

Isc
=

1
Isc

√√√
1
N

k=N∑
k=1

∣∣∣Imeasured,k − Icalculated,k
∣∣∣2 =

1
Isc

√√√
1
N

k=N∑
k=1

(∆Ek)
2 (36)

3.8. Measurement and Experiment Results

To illustrate the effectiveness of the symbiosis organism search method in determining the five
electrical parameters of the solar cell data, it was necessary to establish and situate the current study
versus relevant previous works, and to highlight the effectiveness of the SOS method.

The data cited in Reference [47] by (T. EASWARAKHANTHAN and all (1986)) was measured
from a PWP-201 type Photowatt panel, including 36 polycrystalline Silicon cells connected in series,
operating under a 1000 w/m2 solar irradiance and at 45 ◦C.

A second case was studied and it referred to a 57 diameter commercial (R, T, C France) Silicon
solar panel, under 1000 w/m2 and at 33 ◦C temperature.

The third case concerned the Sharp ND-R250A5 PV module, where the electrical characteristics
of this module were Isc = 8.68 A, Voc = 37.6 V, Impp = 8.10 A, and Vmpp = 30.9 V. This panel contained
60 polycrystalline silicon cells connected in series under 1040 w/m2 and at 59 ◦C. The 36 measurements
were cited in Reference [3].

The data were obtained through measurements performed on one cell at 33◦C and one module at
45◦C using a single diode model of a photovoltaic module. The technical characteristics of the cell and
the module used are shown in Table 1.



Energies 2019, 12, 2246 15 of 32

Table 1. Cell and module parameters of the single diode model.

Cell (33 ◦C) Module (45 ◦C)

Iph (A) 0.7608 1.0318
Is (µA) 0.3223 3.2876

Gsh (£−1) 0.0186 0.0018
Rs (£−) 0.0364 1.2057

n 1.4837 48.4500
σ (%) 0.6251 0.7805
Isc (A) 0.7603 1.0300
Voc (V) 0.5728 16.7780
Vm (V) 0.4507 12.6790
Im (A) 0.6894 0.9120

FF 0.7135 0.6680

3.8.1. Simulation and experimental results of the Single Diode Model

Table 2 depict a comparison between the individual absolute error (IAE) of experiment
measurement and computed data using DSOS, LMSA, GGHS, ABSO and CPSO, however Table 3
presents a comparaison between SSE and RMSE of DSOS versus 12 different stockastique methods
from previous research.

Table 2. Comparison of the experimental measurement and computed data from the solar cell
(Photowatt-PWP201 PV Cell) at 33 ◦C.

N◦ V imes
(V)

Iimes
(A)

Îcal
(DOSE)

IAE
‘DSOS’ D (%) IAE

LMSA
IAE

GGHS
IAE

ABSO
IAE

CPSO

1 −0.2057 0.7640 0.7661000 0.002100 −0.013 11.5761 × 10−5 25.4092 × 10−5 19.9357 × 10−5 27.2179 × 10−5

2 −0.1291 0.7620 0.7631000 0.001100 −0.091 68.0671 × 10−5 81.1919 × 10−5 73.5839 × 10−5 43.0953 × 10−5

3 −0.0588 0.7605 0.7611000 0.000600 −0.118 86.3281 × 10−5 98.8025 × 10−5 89.2356 × 10−5 74.0421 × 10−5

4 0.0057 0.7605 0.7602720 0.000228 0.039 34.6856 × 10−5 22.8090 × 10−5 34.1728 × 10−5 35.3308 × 10−5

5 0.0646 0.7600 0.7591460 0.000854 0.118 95.3669 × 10−5 84.0396 × 10−5 97.0345× 10−5 85.4218 × 10−5

6 0.1185 0.7590 0.7585000 0.000500 0.132 97.3813 × 10−5 86.5670 × 10−5 101.025 × 10−5 77.8602 × 10−5

7 0.1678 0.7570 0.7575000 0.000500 −0.013 69.0271 × 10−5 17.2188× 10−5 1.50171 × 10−5 34.8729 × 10−5

8 0.2132 0.7570 0.7562120 0.000788 0.119 88.6778 × 10−5 78.8905 × 10−5 95.5786 × 10−5 53.6411 × 10−5

9 0.2545 0.7555 0.7560000 0.000500 0.051 44.53071× 10−5 35.3713× 10−5 52.5346× 10−5 4.61184× 10−5

10 0.2924 0.7540 0.7541000 0.000100 0.040 37.01388× 10−5 28.7037× 10−5 45.5357 × 10−5 45.0681 × 10−5

11 0.3269 0.7505 0.7516000 0.001100 −0.120 85.8429 × 10−5 92.9424 × 10−5 77.6748 × 10−5 124.115 × 10−5

12 0.3585 0.7465 0.7472610 0.000761 −0.107 82.7345 × 10−5 88.1240 × 10−5 76.0912 × 10−5 111.361 × 10−5

13 0.3873 0.7385 0.7392600 0.000760 −0.217 160.213 × 10−5 163.391 × 10−5 156.431 × 10−5 172.219 × 10−5

14 0.4137 0.7280 0.7285100 0.000510 0.082 61.6337 × 10−5 60.9190 × 10−5 61.3997 × 10−5 71.5867 × 10−5

15 0.4373 0.7065 0.7073010 0.000801 −0.071 49.2923 × 10−5 47.9481 × 10−5 53.8447 × 10−5 17.5705 × 10−5

16 0.4590 0.6755 0.6753990 0.000101 0.015 18.2486 × 10−5 20.3482 × 10−5 10.3140 × 10−5 63.6238 × 10−5

17 0.4784 0.6320 0.6312000 0.000800 0.190 119.491 × 10−5 120.108 × 10−5 110.694 × 10−5 161.040 × 10−5

18 0.4960 0.5730 0.5730000 0.000000 0.140 102.652 × 10−5 99.2188 × 10−5 96.3482 × 10−5 118.099 × 10−5

19 0.5119 0.4990 0.4992000 0.000200 −0.080 63.89021 × 10−5 73.4145 × 10−5 16.4603 × 10−5 94.8217 × 10−5

20 0.5265 0.4130 0.4141000 0.001100 −0.097 65.7580 × 10−5 82.6002 × 10−5 243.286 × 10−5 158.721 × 10−5

21 0.5398 03165 0.3170100 0.000510 −0.221 99.2379 × 10−5 122.715 × 10−5 18.4533 × 10−5 255.847 × 10−5

22 0.5521 0.2120 0.2121610 0.000161 −0.236 11.2783 × 10−5 39.2380 × 10−5 15.6971 × 10−5 222.111 × 10−5

23 0.5633 0.1035 0.1022000 0.001300 0.870 130.599 × 10−5 102.001 × 10−5 154.636 × 10−5 111.047 × 10−5

24 0.5736 −0.010 −0.009230 0.000770 3.000 122.858 × 10−5 146.201 × 10−5 103.23 × 10−5 354.617 × 10−5

25 0.5833 −0.123 −0.124300 0.001300 −0.894 254.525 × 10−5 240.977 × 10−5 272.460 × 10−5 61.7820 × 10−5

26 0.590 −0.21 −0.20750 0.00250 0.334 152.25 × 10−5 152.95 × 10−5 155.92 × 10−5 273.84 × 10−5
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Table 3. Results obtained from different optimization methods using the SDM for the commercial solar
cell. (Photowatt-PWP201 PV Cell) at 33 ◦C.

Iph (A) I0 (µA) n Rs (£) Rsh (£) SSE RMSE ξ

GA [49] 0.76190 0.80870 1.57510 0.02990 42.3729 9.4632 × 10−3 1.9078 × 10−2 2.51 × 10−2

SA [50] 0.76200 0.47980 1.51720 0.03450 43.1034 9.3839 × 10−3 1.8998 × 10−2 2.50 × 10−2

PS [51] 0.76170 0.99800 1.60000 0.03130 64.1026 5.8005 × 10−3 1.4936 × 10−2 1.96 × 10−2

NR [47] 0.76080 0.32230 1.48370 0.03640 53.7634 2.4445 × 10−3 9.6964 × 10−3 1.28 × 10−2

DE [52] 0.76080 0.32300 1.48060 0.03640 53.7185 1.4265 × 10−4 2.3423 × 10−3 3.08 × 10−3

CPSO [53] 0.76070 0.40000 1.50330 0.03540 59.0120 4.9952 × 10−5 1.3861 × 10−3 1.82 × 10−3

ABSO [38] 0.76080 0.30620 1.47580 0.03660 52.2903 2.5547 × 10−5 9.9124 × 10−4 1.30 × 10−3

GGHS [54] 0.76090 0.32620 1.48220 0.03630 53.0647 2.5528 × 10−5 9.9097 × 10−4 1.30 × 10−3

LMSA [34] 0.76078 0.31849 1.47976 0.03643 53.3264 2.5297 × 10−5 9.8640 × 10−4 1.30 × 10−3

IADE [55] 0.76070 0.33613 1.48520 0.03621 54.7643 9.8900 × 10−4 6.1706 × 10−3 8.12 × 10−3

TLBO [42] 0.76074 0.32378 1.48136 0.03641 54.4029 9.8845 × 10−4 6.1689 × 10−3 8.11 × 10−3

STLBO [42] 0.76078 0.32302 1.48114 0.03638 53.7187 9.8602 × 10−4 6.1613 × 10−3 8.10 × 10−3

DSOS
(current Method) 0.759533 0.195478 1.4526 0.0392996 72.7785 1.20836 × 10−5 4.5918 × 10−4 3.48943 × 10−3

The bold values in the last line are the calculated values of the five parameters obtained from the symbiotic organism
search (SOS). The best fitness value of the objective function is 4.5918 × 10−4. The bold value in the RMSE colon is
the best result obtained with the correspondent algorithm.

The Figure 5 depict the value of the objective function minimized for each parameters of the
Photowatt solar cell and Figure 6 presents the individual absolute error (IAE) a comparison between
different methods.
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The objective function OF needs to be minimized to find the optimal set of parameters that
describe the electrical characteristics of the solar cell.

Table 4 present Lower and upper bounds of the five parameters for the solar cell and Table 5
show a Comparison of the experimental measurements and the computed data from the module array:
(Photowatt-PWP201 PV Module) at 45 ◦C. however Table 6 deoict a comparaison of the numerical
results obtained from 9 various optimization methods published earlier using the SDM for the module
array: (Photowatt-PWP201 PV module) at 45 ◦C.

Table 4. Lower and upper bounds of the five parameters for the solar cell.

Parameters Iph (A) I0 (µA) n Rs (£) Rsh (£)

Lower 0.5 0 1 0 50
Upper 1 0.5 1.5 0.5 100

Table 5. Comparison of the experimental measurements and the computed data from the module array:
(Photowatt-PWP201 PV Module) at 45 ◦C.

N◦ Vi (V) Ii (A) Îcal
‘DSOS’

IAE
‘DSOS’ D (%) IAE

“PS”
IAE

“GA”
IAE

“Bouzidi”

1 −1.9426 1.0345 1.033 0.00150 0.184 — — —

2 0.1248 1.0315 1.031 0.00050 0.126 0.002135 0.010190 7.7476 × 10−5

3 1.8093 1.0300 1.028 0.002000 0.175 0.003030 0.00869848 0.00164534

4 3.3511 1.0260 1.0262 0.000200 −0.029 0.001267 0.00991153 0.00049525

5 4.7622 1.0220 1.024 0.002000 −0.235 0.000558 0.01122849 0.00077184

6 6.0538 1.0180 1.022 0.004000 −0.432 0.002262 0.01245763 0.00197105

7 7.2364 1.0155 1.02 0.004500 −0.433 0.001986 0.01172839 0.00124347

8 8.3189 1.0140 1.016 0.002000 −0.217 0.000419 0.008880327 0.00155399

9 9.3097 1.0100 1.0123 0.002300 −0.020 0.002528 0.00632724 0.00398586

10 10.2163 1.0035 1.001 0.002500 0.309 0.006023 0.00237690 0.00772169
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Table 5. Cont.

N◦ Vi (V) Ii (A) Îcal
‘DSOS’

IAE
‘DSOS’ D (%) IAE

“PS”
IAE

“GA”
IAE

“Bouzidi”

11 11.0449 0.9880 0.9852 0.002800 0.364 0.006603 0.00133367 0.00844289

12 11.8018 0.9630 0.9608 0.002200 0.363 0.006499 0.00097747 0.00836817

13 12.4929 0.9255 0.9245 0.001000 0.270 0.005437 0.00160795 0.00721723

14 13.1231 0.8725 0.8742 0.001700 −0.012 0.002350 0.00432213 0.00393147

15 13.6983 0.8075 0.8086 0.00110 0.012 0.002308 0.00407491 0.00359833

16 14.2221 0.7265 0.7286 0.00210 −0.220 0.000119 0.00630370 0.00082416

17 14.6995 0.6345 0.6363 0.00175 −0.331 0.001255 0.00732234 0.00068144

18 15.1346 0.5345 0.5347 0.00020 −0.243 0.000617 0.00662565 0.00040412

19 15.5311 0.4275 0.4272 0.00030 −0.327 0.001154 0.00712186 0.00126106

20 15.8929 0.3185 0.3167 0.00180 −0.063 0.000390 0.00553537 1.3616 × 10−5

21 16.2229 0.2085 0.2059 0.00260 0.336 0.001615 0.00423231 0.00103447

22 16.5241 0.1010 0.0966 0.000444 2.673 0.005205 0.00052532 0.0044828

23 16.7987 −0.008 −0.0095 0.00148 −2.500 0.000561 0.00495155 0.00022555

24 17.0499 −0.111 −0.1116 0.00060 0 0.000051 0.00524400 0.00075112

25 17.2793 −0.209 −0.2089 0.00010 −0.048 0.000244 0.00470115 0.00052498

26 17.4885 −0.303 −0.3009 0.00210 0.330 0.002267 0.00683625 0.00295655

Table 6. Results obtained from the different optimization methods using the SDM for the module array:
(Photowatt-PWP201 PV module) at 45 ◦C.

Iph(A) I0 (µA) n Rs (£) Rsh (£) RMSE ξ

GA [56] 1.0441 3.4360 1.34962 1.1968 555.556 Nc Nc
PS [56] 1.0313 3.1756 1.34136 1.2053 714.286 0.0118 1.96 × 10−2

El Nagaar [51] 1.0331 3.6642 1.35614 1.1989 833.333 2.9251 × 10−3 2.48 × 10−3

Peng [57] 1.0313 3.2212 1.34228 1.2132 625.000 6.3448 × 10−0.3 7.49 × 10−3

Cong [58] 1.0305 3.4823 1.35118 1.2013 981.982 2.266 × 10−3 2.20 × 10−3

Bouzidi [59] 1.0339 3.0760 1.33850 1.2030 555.556 4.0067 × 10−3 3.89 × 10−3

Al Hajri [51] 1.0313 3.1756 1.34135 1.2053 714.286 3.3269 × 10−3 3.23 × 10−3

Phang [8] 1.0319 64.0490 1.76024 0.0832 561.034 3.5432 × 10−3 3.44 × 10−2

Cubas [48] 1.0342 1.3214 1.25543 1.3535 559.680 2.9355 × 10−3 2..85 × 10−3

(DSOS) 1.0338 3.1488 1.4139 1.2135 773.380 5.752 × 10−4 T = 259 ms

Table 7 depict Lower and upper bounds of the five parameters for the solar module array:
(Photowatt-PWP201 PV Module) at 45 ◦C. this interval is mandatory to have a good convergence in a
few iteration .

Table 7. Lower and upper bounds of the five parameters for the solar module array: (Photowatt-PWP201
PV Module) at 45 ◦C.

Parameters Iph (A) I0 (µA) n Rs (£) Rsh (£)

Lower 0.01 0.01 0.01 0.001 0.001
Upper 1.2 5 2 2 5000

Table 8 presents the computed results using DSOS and GCPSO and the experiment measurement
for the (Sharp ND R250 A5 PV Module), at 1040 w/m2 and 59 ◦C.



Energies 2019, 12, 2246 19 of 32

Table 8. Comparison of the experimental measurements and the computed data from the module array:
(Sharp ND R250 A5 PV Module), at 1040 w/m2 and 59 ◦C.

N◦ Vi(V) Ii(A) Ical
(DSOS)

IAE
(DSOS)

Ical
(GCPSO)

IAE
(GCPSO)

1 0.000 9.1500 9.1458000 0.00422953 9.14377047 0.00622953
2 7.7100 9.1400 9.1399000 0.00013317 9.14168233 0.00168233
3 10.9800 9.1200 9.12596243 0.00596243 9.13887739 0.01887739
4 14.5500 9.1100 9.1134749 0.0034749 9.12574851 0.01574851
5 16.3600 9.1000 9.10148715 0.00148715 9.10450087 0.00450087
6 18.0000 9.0700 9.06698347 0.00301653 9.06239347 0.00831337
7 19.1500 9.0200 9.01188479 0.00811521 9.00539847 0.01460153
8 20.0400 8.9500 8.94512790 0.00487210 8.93702852 0.01297148
9 20.8700 8.8600 8.85488479 0.00511521 8.84484259 0.01515741

10 21.6700 8.7300 8.72377676 0.00622240 8.72087510 0.00912490
11 22.3600 8.5800 8.5784094 0.00119060 8.57859883 0.00140117
12 23.0200 8.4000 8.4005014 0.00058140 8.40537373 0.00537373
13 23.6200 8.2000 8.2058125 0.00581250 8.21159590 0.01159590
14 24.1500 8.0000 8.0031538 0.00315380 8.00863240 0.00863240
15 24.6100 7.8000 7.8009372 0.00093720 7.80668549 0.00668549
16 25.0200 7.6000 7.5997143 0.00028570 7.60570866 0.00570866
17 25.3900 7.4000 7.4008003 0.00080030 7.40703581 0.00703581
18 25.7500 7.2000 7.1976296 0.00237040 7.19787656 0.00212344
19 26.3800 6.8000 6.7945823 0.00341770 6.79445213 0.00554787
20 26.9400 6.4000 6.3962879 0.000361210 6.39677884 0.00322116
21 27.4600 6.0000 5.99992389 0.00007611 5.99588450 0.00411550
22 27.9400 5.6000 5.5990248 0.00097520 5.60010457 0.00010457
23 28.4000 5.2000 5.198805 0,0015950 5.19888971 0.00111029
24 28.8400 4.8000 4.7967827 0.0022173 4.79618216 0.00381784
25 29.2500 4.4000 4.3968621 0.0011379 4.40523919 0.00523919
26 29.6600 4.0000 3.99991486 0.00008514 4.00005387 0.00005387
27 30.0500 3.6000 3.597963 0.00203700 3.60219710 0.00219710
28 30.4400 3.2000 3.1934659 0.00643410 3.19293749 0.00706251
29 30.8100 2.8000 2.796529 0.00437100 2.79474323 0.00525677
30 31.1700 2.4000 2.398787 0.00121300 2.39857399 0.00142601
31 31.5200 2.0000 1.99631505 0.00218495 2.00561158 0.00561158
32 31.8800 1.6000 1.5985872 0,0012128 1.59394801 0.00615199
33 32.2200 1.2000 1.19897656 0.00102344 1.19829368 0.00170632
34 32.5500 0.8000 0.79895766 0.00102340 0.80851159 0.00851159
35 32.8900 0.4000 0.39146489 0.008535110 0.40119395 0.00119395
36 33.2200 0.0000 −0.00047210 0.00047210 0.00058606 0.00058606

Table 9 summarizes the values of the five parameters and the objective function values. The results
obtained by the DSOS method are also compared to other previous results found in the literature.

Table 9. Results obtained from different optimization methods using the SDM for the module array:
(Sharp ND R250 A5 PV Module), at 1040 w/m2 and 59 ◦C.

Iph(A) I0 (µA) N Rs (£) Rsh (£) RMSE ξ

GCPSO [3] 9.144865 0.99585 1.206579 0.59187049 4999.9999 7.697717 × 10−3 8.86834 × 10−4

DSOS 9.150421 0.99557 1.328 0.58387 3000 3.5162 × 10−3 4.05092 × 10−4

The previous results were obtained using the genetic algorithm GA [49], simulated annealing
(SA) [50], pattern search (PS) [51], Newton-Raphson (NR) [47], differential evolution (DE) [52], chaos
particle swarm optimization (CPSO) [53], artificial bee swarm optimization (ABSO) [38], global harmony
search-based algorithms (GGHS) [54], the Levenberg–Marquardt algorithm combined with simulated
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annealing (LMSA) [34], the basic teaching–learning-based optimization algorithm (TLBO) [42], and the
simplified teaching–learning-based optimization algorithm (STLBO) [42].

3.8.2. Simulation and experimental results of the Double Diode Model

To verify the effectiveness of the DSOS, we increased the number of unknown parameters to
seven, and then we recorded the objective functions for the three cases.

4. Results

We used three experimental studies as case studies, and we compared our results with
measurements taken from previous works. We used Matlab version R2017a for the implementation of
the SOS code method, and the optimization tool box for the GA was used as well. The experimental
results shed light on the effectiveness of the proposed method, and they showed that the proposed
method had potential.

Table 2 depicts the data measurements, as well as the current that was calculated using the set of
parameters calculated using the SOS algorithm. In this case, the data set was related to the (R-T-C)
Silicon solar cell at 33 ◦C, and the same table shows the IAE values of the 26 measurements obtained
using the SOS method, as well as from the other heuristic algorithms: LMSA, GGHS, ABSO, and
CPSO.Amongst all the methods listed in this paper, for the three cases that were studied, the two first
were well studied in previous research, whilst the third was used in only one paper by Nunes and al. in
Reference [3]. The first case dealt with the solar cell Photowatt-PWP201 PV Cell .A comparison of the
experimental measurement and computed data from the solar cell (Photowatt-PWP201 PV Cell) at 33
◦C is presented in Tables 2–4. the second with the Photowatt-PWP201 module array. A comparison of
the experimental measurements and the computed data from the module array: (Photowatt-PWP201
PV Module) at 45 ◦C is depicted in Tables 5–7 ; and the third case study is related to the Sharp ND R250
A5 PV Module array in both the SDM and DDM a comparison of the experiment and computed data
from this module was presented in Tables 8 and 9 To investigate the quality of the DSOS algorithm
versus the algorithms cited below We recorded and we plotted the individual absolute error (IAE)
among five different algorithms. Figure 6 shows the reported IAE values of the Photowatt –PWp 201
PV cell, however Figure 7 depict For the Photowatt –PWp 201 Module and Figure 8 presents For the
Sharp ND R250 A5 PV Module array. From this figure, we concluded the superior performance of the
DSOS algorithm.
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Figure 7. Comparison of the individual absolute error (IAE) between five different algorithms. For the
Photowatt –PWp 201 Module.

The DSOS method showed outstanding accuracy the value of the RMSE presented in the
manuscript in the different cases justify this accuracy, the calculated RMSE = 4.5918 × 10−4 for the solar
cell parameters, the RMSE = 4.5918 × 10−4 for the solar cell parameters, the RMSE = 5.752 × 10−4 for
the Photowatt-PWP201 module array), and finally in Table 9 the RMSE = 3.5162 × 10−3 for the Sharp
ND R250 AS PV Module). All these values were associated with the single diode model. The fitness
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function value of the SDM for the experiment on the Sharp ND R250 AS PV was 1.97578 × 10−2 using
the GA and 3.516 × 10−3 using DSOS.
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Figure 8. Comparison of the IAE between five different algorithms For the Sharp ND R250 A5
PV Module.

The same methodology was used after increasing the number of optimizing parameters to seven.
This case study related to DDM application held for all the three situations discussed below.

All the results using the DSOS optimization method showed better outcomes compared to all the
cited methods, in terms of quality of the solution of the fitness function and the convergence rate.

To reach an optimum, the DSOS algorithm required a bound of the unknown parameters as
shown in, Tables 10–15, when where the upper band and lower band of the set of parameters forced
the algorithm to minimize the number of runs and to save the computational cost in achieving a global
minimum quickly.

Table 10. Results obtained from different optimization methods using the DDM for the commercial
solar cell: (Photowatt-PWP201 PV Cell) at 33 ◦C.

Iph(A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£) RMSE ξ

CWOA [44] 0.76077 0.24150 0.6000 1.4565 1.9899 0.03666 55.2016 9.8272 × 10−4 1.2925 × 10−3

SA [50] 0.7623 0.4767 0.0100 1.51720 2.0000 0.03450 43.1034 1.8998 × 10−2 2.50 × 10−2

PS [51] 0.76170 0.99800 0.0001 1.60000 1.1920 0.03130 64.1026 1.4936 × 10−2 1.96 × 10−2

HS [54] 0.76176 0.12545 0.25470 1.49439 1.49989 0.03545 46.82696 0.001260 1.28 × 10−2

BFA [60] 0.76090 0.09400 0.04530 1.3809 1.5255 0.03510 60.0000 1.2000 × 10−3 3.08 × 10−3

CPSO [53] 0.76078 0.22732 0.72785 1.45151 1.99769 0.03540 59.0120 1.3861 × 10−3 1.82 × 10−3

ABSO [38] 0.76080 0.30620 0.38191 1.47580 1.98152 0.03660 52.2903 9.9124 × 10−4 1.30 × 10−3

GGHS [54] 0.76090 0.32620 0.13504 1.48220 1.92009 0.03630 53.0647 9.9097 × 10−4 1.30 × 10−3

ABC [44] 0.7608 0.04070 0.28740 1.44950 1.48850 0.03640 53.78040 9.8610 × 10−4 1.2969 × 10−3

IADE [55] 0.76070 0.33613 0.03674 1.48520 2.0000 0.03621 54.7643 6.1706 × 10−3 8.12 × 10−3

TLBO [42] 0.76074 0.32378 1.448974 1.48136 1.99997 0.03641 54.4029 6.1689 × 10−3 8.11 × 10−3

STLBO [42] 0.76078 0.32302 0.036740 1.48114 2.0000 0.03638 53.7187 6.1613 × 10−3 8.10 × 10−3

DSOS 0.76348 0.37497 0.0410 1.51932 1.86743 0.03603 37.0405 5.3308 × 10−3 7.011 × 10−3

Table 11. Lower and upper bounds for the seven parameters of the solar cell.

Parameters Iph (A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£)

Lower 0 0.001 0.001 0.5 0.5 0.001 0.01
Upper 1 1 1 2 2 1 100
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Table 12. Results obtained from different optimization methods using the DDM for the module array:
(Photowatt-PWP201 PV Module) at 45 ◦C.

Iph(A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£) RMSE ξ

GCPSO [3] 1.03238 2.51292 1.00 × 10−6 1.317304 1.31694 1.23928 744.7154 2.04653 × 10−3 1.9869 × 10−3

DSOS 1.03361 0.9993 0.337913 1.298703 1.64699 1.30577 536.8256 8.6097 × 10−4 1.96699 × 10−3

Table 13. Lower and upper bounds for the seven parameters of the module array: Photowatt-PWP201.

Parameters Iph (A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£)

Lower 0.1 1 × 10−6 1 × 10−6 1 1 1 1
Upper 2 1 1 2 3 5 1000

Table 14. Results obtained from different optimization methods using the DDM for the module array:
(Sharp ND R250 AS PV Module), at 1040 w/m2 and 59 ◦C as in Reference [3].

Iph(A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£) RMSE ξ

GCPSO
[3] 1.03238 2.51292 1.0× 10−6 1.317304 1.31694 1.23928 744.7154 2.046× 10−3 1.98× 10−3

SOS 9.16851 1.59997 0.9999 1.37237 1.62591 0.56772 795.6674 76.12× 10−3 8.77× 10−3

Table 15. Lower and upper bounds for the seven parameters of the module array: (Sharp ND R250 A5
PV Module), at 1040 w/m2 and 59 ◦C [3].

Parameters Iph (A) I0 (µA) I1 (µA) n1 n2 Rs (£) Rsh (£)

Lower 8 1 0.1 1 1 0.1 100
Upper 10 2 1 2 2 1 1000

To have sufficient visibility of the bound of the parameters so to minimize the search time,
we plotted (discrete curves) the value of the OF versus the value of the five parameters for all the
population of the ecosystem set (the population was a discrete value) so we could localize the trajectory
of convergence of the different organisms in the ecosystem. These results are depicted in Figures 9
and 10 for the SDM of the three case studies.
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Figure 11 present the Fitness function value versus the seven parameters for the DDM during
5046 iterations from the solar cell (Photowatt-PWP201 PV Cell) at 33 ◦C convergence.
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Another method was proposed in this paper to follow the convergence trajectory of the set of
organisms, and as a result to obtain the best choice to bind the parameters. We plotted the fitness
function versus the iterations and the values of the parameters in the SDM and DDM, and the results
showed that we cannot achieve the same solution after a hundred iterations, but we could have the
best certitude if we started with a best bound. Figure 12 depicts the trajectory of the Iph parameter
for the SDM and DDM. In this case, after 5046 iterations, the same solution was obtained. Unlike in
Figures 13 and 14, there was a difference between the solution from the SDM and DDM for the Rsh and
Rs parameters.
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Figure 15 plotted Measured and computed current versus voltage for the SDM and DDM using
the DSOS algorithm. Of the solar cell in 33 ◦C and in Figure 16 the output power versus the voltage is
depicted and the power losses in a wrong modeling.
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Figures 17 and 18 depicts the objective function value versus the seven parameters for the DDM
during 5046 iterations from the case study 2, for the Photowatt-PWP201 module array however
Figures 19 and 20 plotted current versus voltage for the SDM and DDM and power versus voltage of
measurement and computed data respectively in case of the Photowatt-PWP201 PV Module at 45 ◦C.Energies 2019, 12, x FOR PEER REVIEW 26 of 32 
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Figure 20. Measured and computed power versus voltage for the SDM and DDM using the
SOS algorithm.

In the case three we studied the performance of the DSOS algorithm with the Sharp ND R250 AS
PV. The obtained results for convergence of the seven parameters for the DDM during 5046 iterations.
Is presented in Figure 21 however Figure 22 depicts a comparison in the fitness function value of the
rate of convergence of the Iph parameter.
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Figure 23 plotted the current versus the voltage of measured and computed data for the SDM and
DDM using the DSOS algorithm from the Sharp ND R250 AS PV and Figure 24 present the power
versus the voltage in this case a power can be loosed if the parameter identification are not accuracy
so the model is ill., the 3D curves (discrete curves) that were plotted in some figures demonstrated
that there was no linearity between the five and seven unknown parameters. Therefore, the more
we increased the number of runs and the more we started with a predetermined bound, the more
we could fit a better optimal solution. To verify this, we plotted the objective function value versus
the value of the unknown parameters and the iterations: f itness = f (iter, x(i)), and we depicted the
trajectory of the convergence of x(i) f or 1 ≤ i ≤ 5.
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5. Discussion

In order to have a clear view and to ensure the effectiveness of the DSOS algorithm versus other
algorithms, some statistical assessments need to be verified, instead of the canonical mean comparison
methods. This is because, in some similar situations, it would sometimes be observed that the mean
was significantly better. However, after a deep observation of the simulation data we found the
contrary. That is why a stronger method of comparison should be adopted.

Amongst a very large variety of statistical assessment methods, and because there is no theoretical
model designed for stochastic simulation results generated by evolutionary algorithms, we considered
that the Mann-Whitney U-test, the student’s t-test, and the Wilcoxon rank sum test could be used
to verify the strangeness of the algorithm versus other methods. Since the different data from the
algorithms were independent, we adopted the Mann-Whitney-Wilcoxon test to evaluate the differences
between unpaired samples. This test was done with a 5% degree of confidence to judge the difference
between the DSOS algorithm and other methods. The result showed a highly significant difference
between the algorithms (p < 0.03), mostly for the GA.

The Matlab code Mann-Whitney-Wilcoxon non parametric test for two unpaired samples was
provides by Cardillo G. (2009). MWWTEST: in MathWorks. The results of the test are depicted in
Table 16.

Table 16. Statistical analysis based on Mann–Whitney–Wilcoxon test.

p < 5% LMSA GGHS ABSO CPSO (R-T-C France Photo Cell)

SDM
0.010805 0.009335 0.010805 0.01834 p value one tail
0.026110 0.01867 0.021611 0.02669 p value two tails

p < 5% PS GA Bouzidi (Photowatt-PWP201 PV Module)

SDM
0.022649 1.8604 × 10−6 0.044380 p value one tail
0.045298 3.7208 × 10−6 0.008876 p value two tails

p < 5% GCPSO (Sharp ND R250 A5 PV Module)

SDM
0.0012979 p value one tail
0.0025959 p value two tails

6. Conclusions

This paper introduced a novel symbiosis organism search algorithm to solve the global optimization
of nonlinear multimodal problems. The application of this algorithm was to estimate the electrical
parameters of a solar cell and module array. The proposed algorithm was based on the relationships
between organisms in an ecosystem, where it imitated symbiotic interactions between a pair of
organisms in the same ecosystem and the benefits derived from each other.

In order to situate the effectiveness of the DSOS in parameter estimations of the solar cell and
module panel, the results were compared with other types of algorithms, including iterative calculation
methods, gradient and no gradient methods, as well as other determinist methods. Some other
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stochastic algorithms, heuristic and meta-heuristic, were referenced to compare some of the results,
for example, particle swarm optimizations algorithms: PSO, ASO, CPSO, LMSA, GGHS, TLBO,
STLBO, etc.

The proposed algorithm was tested in three real case studies using data measured from a solar
cell and module array. The results fit better than the experimental measurement. The RMSE and
the IAE were used to minimize the optimization problem and to compare the results with other
different methods.

The DSOS algorithm was more able to reach the best set of solutions than the PSO. It also has the
global ability to explore the optimal solution (Global solution), and it also performs significantly better
for large dimension problems. The algorithm can provide a global minimum compared to the PSO
and GA, where the solution can be trapped in the local minima. On the other hand, the SOS is also
free of tuned parameters, compared to the GA and PSO where a good set of tuned parameters is a
requirement to obtain an acceptable solution.

In future work, we anticipate that this method may be used in other optimization problems in
power system management to minimize the cost function in a multisource network. We also aim to
introduce some other modifications to better fit other situations. We also have the intention to use the
SOS algorithm for renewable energy management, to find an optimal power management mechanism
for grid connected systems, thereby enhancing the viability of photovoltaic and wind turbines as
alternative energy sources.
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