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Abstract: Wind power forecasting plays a vital role in renewable energy production. Accurately
forecasting wind energy is a significant challenge due to the uncertain and complex behavior of
wind signals. For this purpose, accurate prediction methods are required. This paper presents a
new hybrid approach of principal component analysis (PCA) and deep learning to uncover the
hidden patterns from wind data and to forecast accurate wind power. PCA is applied to wind data to
extract the hidden features from wind data and to identify meaningful information. It is also used to
remove high correlation among the values. Further, an optimized deep learning algorithm with a
TensorFlow framework is used to accurately forecast wind power from significant features. Finally,
the deep learning algorithm is fine-tuned with learning error rate, optimizer function, dropout layer,
activation and loss function. The algorithm uses a neural network and intelligent algorithm to predict
the wind signals. The proposed idea is applied to three different datasets (hourly, monthly, yearly)
gathered from the National Renewable Energy Laboratory (NREL) transforming energy database.
The forecasting results show that the proposed research can accurately predict wind power using a
span ranging from hours to years. A comparison is made with popular state of the art algorithms and
it is demonstrated that the proposed research yields better predictions results.

Keywords: wind power forecast; feature extraction and selection; TensorFlow deep learning; principal
component analysis; windfarm

1. Introduction

Recently, energy production has been investigated widely due to the risk of energy crises and
global climate change. The production of renewable energy performs an essential role in the economic
growth of a country. Wind power is considered a necessary resource for electrical power production.
The installed capacity of wind farms worldwide has increased 30 times to a total of 435 GW, with 17%
cumulative growth in the last few years. In 2020, wind energy is expected to supply approximately
12% of the total worldwide requirement [1,2].

The uncertain features and lower controllability of wind power raises the problems of power
stability and reservations to the power systems [3]. Furthermore, wind speed may be easily affected by
height and different types of obstacles. Therefore, intelligent and accurate power forecasting tools are
required to improve the accuracy of stable power predictions and decrease operational costs. Many
kinds of research have designed different types of algorithms to forecast wind power. Commonly,
the wind power forecasting methods are divided into three main categories, i.e., numeric weather
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prediction (NWP), statistics-based and hybrid [4,5]. Mathematical models are designed to predict valid
NWP, which is more valuable for longer horizons in terms of accuracy. However, it is hard to develop
an exact mathematical model without the in-depth knowledge of physics and atmosphere. Such a
model uses different methodological factors which are hard to measure.

Statistical methods are used to predict the correlation among various features of historical wind
data with the help of explanatory variables. These require only wind data for forecasting, and thus,
these tools are of particular interest for different types of engineering applications. The prediction
accuracy of statistical methods decreases in long forecasting horizons.

The artificial neural network (ANN) [6], convolution neural network (CNN) [7], support vector
regression (SVR) [8] and back propagation neural network (BPNN) [9] are the most-used statistical
methods. The ANN is a framework which further contains different machine learning algorithms
to process the complex type of data. Such kinds of algorithms learn from data samples and then
accomplish specific actions according to inputs. The CNN is a particular type of artificial neural
network which uses a perceptron to analyze data in supervised learning. The BPNN is used to calculate
the weights based on gradients in the neural network, and generalizes the feedforward in a multilayer
neural network. It uses a chain rule to compute the gradient in a loop manner for each layer.

Time series-based models also use wind farm historical data (mainly in minutes or hours) for wind
speed and power forecasting. These are useful for ultra-term low wind signals because they can extract
the hidden stochastic characteristics. The models include Box–Jenkins models [10], Kalman filters [9]
and ANN [11]. The Box–Jenkins model is a time series model that works on nonlinear estimation, so
upcoming observations may not be expended to modify parameters directly. Complete assessment
can require complex calculations. The Kalman filter, also known as a linear quadratic estimator, uses
a finite linear estimated value for forecasting future values so needs less calculations as compared
to Box–Jenkins. Thus, Box–Jenkins yields better accuracy but needs a large level of calculations as
compared to Kalman filters. The Kalman filter is best for a smaller number of observations and
predictions. The ANN has received attention for dealing with real-time behavioral data because
such data may be extremely nonlinear. It uses neural network algorithms, such as a multilayer
perceptron, but does not fully employ a systematic manner because of its formal specification [12,13].
The prediction competency of statistical methods declines in longer forecasting horizons. On the
other hand, our proposed TensorFlow-based deep learning approach may be configured according to
requirements. We may add dense layers, a number of neurons, an optimizer function and dropout
layers to get better accuracy. We fine-tuned the designed approach with dropout layer parameters to
resolve the overfitting problem on large scale wind data.

However, the existing state of the art methods still did not predict the required power forecast. It
is essential to explore different characteristics of wind power for designing an accurate model. Wind
speed follows the Gaussian distribution, and the bet distribution and loss function depends on the type
of delivery [14]. The hybrid method is a combination of two or more techniques. The hybrid approach
using wavelet transform (WT) and fuzzy ARTMAP (FA) is proposed to forecast the deterministic
wind power. The support vector machine (SVM) is used to classify wind power forecast error for the
decomposed features acquired from WT and FA. The proposed idea is investigated using Cedar Creek
wind farm data for probabilistic forecasting performance [15]. The deep learning models significantly
improve the wind power forecasting accuracy as compared to the existing machine learning algorithms.
The multilayer perceptron (MLP) is used to optimize the weights, and a CNN is used to mine the
spatial feature structure. The proposed research is used to predict the NWP [16]. In hybrid methods,
the auto-regressive integrated moving average (ARIMA) model is typically used for linear behavior
and the SVM, while the ANN is used for nonlinear behavior [17]. The ARIMA is used to forecast the
future time series points based on the historical data. Depending on the area of the horizon, the hybrid
methods have performed better than individual ANN or SVM. The SVM is a supervised learning
model that is used to analyze data investigated for classification and regression evaluation. The
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hybrid methods gave better results in short-term forecasting but did not compete with other optimized
algorithms [18].

In the last few years, different hybrid wind power forecasting techniques have been proposed.
Usually, the forecasting accuracy of hybrid approaches is as least as good as that of individual methods.
Generally, hybrid methods are categorized into two classes [19]. First, the hybrid approach calculates
weighting coefficients of each technique and then, adds them to give a total weighted prediction.
In [20], the author proposed a hybrid method of grey rational analysis and distributed features of
wind speed with cumulative weighting coefficients. It combined two algorithms, the least square
support vector machine (LSSVM) with the radial basis function neural network (RBFNN). The results
have shown that the combined approach achieved better forecasting accuracy than individual models
for short-term data. In [21], the author proposed the hybrid method of artificial intelligence-based
algorithm and contrary constraint theory to forecast wind energy. The weighted features were extracted
using chaos optimization and genetic algorithms. The hybrid approach improved forecasting accuracy
by combining the meaningful features of individual techniques. Secondly, the pre-processing method
was used to retrieve essential features from nonlinear wind speed data. It was used to convert
highly correlated data into more linear and normalized factors. Recently, extensive use has been
made of different large-scale decomposition techniques integrated with hybrid forecasting models.
In [22], four different hybrid models were proposed to obtain a significant increase in multi-step wind
forecasting accuracy, combining decomposition techniques, i.e., wavelet decomposition, wavelet packet
decomposition, empirical mode decomposition and false ensemble empirical mode decomposition.

The extreme learning machine (ELM) algorithm is used for wind forecasting prediction and
classification. The ELM is employed in feedforward neural networks used for classification, regression,
clustering and feature learning based on input weights with single or multi-layer architecture. In [23],
the combined approach of Beveridge–Nelson decomposition (BND), relevance vector machine (RVM)
and Ant Lion Optimizer (ALO) is used. First, the author used the time series algorithm to decompose
the nonlinear data to deterministic and meaningful features. The BND algorithm was used to extract
the normalized stochastic components. Then, RVM is used to predict the wind forecasting accuracy
from already decomposed components. The proposed methodology is applied to the hourly real-world
wind power data collected from the Xinjiang region in China. In [24], two combined methods, i.e.,
fast ensemble empirical mode decomposition (FEEMD) and MLP neural network are used to improve
the prediction accuracy. The FEEMD algorithm is used to convert the historical data into different
useful sub-layers, and MLP is applied to predict the specific layers accurately. The combined approach
of BPNN and SVM is used to analyze the wind farm data statistically for forecasting of power and
error probability distribution. The critical phase is to compute the corresponding uncertainty value
for prediction. The combination of error estimation and error probability distribution is investigated
using the historical data of seven wind turbines for NWP. The results show that the proposed methods
provide improved results for short-term wind speed [25]. Twenty-four hours of wind speed data are
analyzed and forecasted with a state estimation-based neural network (SENN). The proposed method
used weighted least square state estimation (WLSSE) for predicting the input and output hidden layers.
The results have shown that prediction accuracy is better than using a BPNN [26]. The combined
approach of a back propagation (BP) algorithm with stacked auto-encoders (SAE) is proposed. The
SAE based on a neural network is used to retrieve the hidden features from the different sequence and,
then, the loss function is used to obtain the optimal connected weights. The BP algorithm is applied to
fine-tune the values in the neural network. Particle swarm optimization is used to select the optimal
number of neurons in the hidden layer and the learning rate. The results have shown that the proposed
method yields better accuracy as compared to a SVM and neural network [27].

Principal component analysis (PCA) is a statistical technique that can be used to decompose
the raw historical wind speed data into reduced useful features. In [28], PCA is also known as
the empirical orthogonal function (EOF), which is used to retrieve the hidden patterns from the
ocean-related and climatological data. Now, it is widely used in time series data analysis with nonlinear
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features. It is a potent tool to mine useful information and remove the noisy data in nonlinear dynamic
systems [18,29,30]. The FEEMD algorithm is used to transform the wind power time series into various
sub chains. PCA is applied to extract the reduced features’ matrix preserving the actual information.
Then, the reduced patterns are analyzed using the LSSVM and bat methods. Further, the author
explained that PCA data inputs increased the overall accuracy by preserving the actual information [31].
Deep learning can be used for predictions of useful layers in the extensive collection of big data. PCA
is used to extract valuable samples from noisy data. Then, the long short-term memory (LSTM) neural
network is applied to the principal components for numerical weather prediction. The results have
shown that the hybrid approach of PCA with deep learning has better accuracy than a SVM and
BP neural network [32]. The LSTM algorithm from the TensorFlow database is used to predict the
interaction of wind turbines. PCA is applied to get the reduced dimensions of the highly correlated time
series data. Then, the LSTM is used to analyze the beneficial relationship among the selected features
of the wind turbine data. The proposed methodology is compared with BPNN and ARIMA for forecast
errors. It is shown that the hybrid model of PCA and LSTM increases prediction accuracy [33]. The
combination of PCA and independent component analysis (ICA) is used to reduce mutual interference
among different parameters and retrieve the independent components. Further, these components
are merged with the RBF network to predict the actual characteristics of wind farms and to improve
accuracy [34].

Large-scale wind power forecasting is the main focus of many researchers [35]. The most useful
approach is to forecast power production over different regions based on hourly, monthly and yearly
historical data collected from wind turbines. In this paper, we have proposed a hybrid approach of
optimized deep learning and PCA to forecast the wind power for large-scale historical data. First,
PCA is used to expose the hidden patterns and to retain the most significant information [18,36].
PCA is applied to the historical wind data over the entire grids and eigenvalues and eigenvectors are
calculated. This reduces the matrix size by focusing on the critical features and removing noisy data.
TensorFlow is an online open source software library for numerical computation using dataflow graphs.
The optimized deep learning algorithm using TensorFlow is applied to the reduced data features to
predict the forecasting errors [37]. It uses a neural network to predict the relationship between data
features. The wind power depends on the cubic of the wind speed, as it follows the wind power curve.

The paper contributions are:

1. Reduced useful features are extracted from the massive-scale wind turbine data, i.e., hourly,
monthly and yearly;

2. The deep learning algorithm is configured using the TensorFlow framework with Keras for
prediction of wind forecast parameters;

3. The deep learning algorithm is optimized with fine-tuning parameters, i.e., dropout layer, dense
layer, learning error rate, loss and activation function;

4. A comparison is made with state-of-the-art techniques.

Section 2 describes PCA in details, Section 3 explains the deep learning model using the TensorFlow
framework, Section 4 presents the results and discussion, and Section 5 concludes.

2. Principal Component Analysis

It is difficult to analyze high dimensional datasets and to make inferences for further experiments.
PCA is a statistical technique that converts highly correlated variables into reduced uncorrelated
variables while preserving the actual information of the data. It transforms the high dimensions of
large datasets by calculating eigenvectors, also known as principal components (PCs). The resultant
PCs map the high variance of these large datasets into eigenvalues. There are several PCs that may
be computed by PCA in such a way, so that the first PC covers the highest variance, the second PC
covers the second highest variance, and so on. This removes the noisy data and maps complex data
into simple principal components, which simplifies further predictions analysis. The PCs preserve
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the actual information of the data. We select those PCs for prediction purposes which collectively
cover more variance, making it easier to perform predictions with better accuracy. PCA is a statistical
technique which extracts a set of defined and useful features from raw data by using orthogonal
transformation [38,39]. Wind farm data is mostly collected in raw form and needs to be cleaned of noisy
data. We used PCA to process complex wind datasets into simple PCs. Mathematically, p dimensional
vectors with individual coefficients are shown in Equation (1).

w(k) = (w1, w2, . . . ., wp)(k) (1)

where w denotes the unit vector and k is the linear number. It transforms each data cell (ai) in wind
farm data to a linear form of principal components scores as shown in Equation (2).

t(i) = (t1, t2, . . . ., tl)(i) (2)

where t defines the captured variances from each data cell. The components’ weights are computed as
shown in Equation (3).

tk(i) = x(i).w(k) (3)

where i = 1, . . . , n and k = 1, . . . , l; x denotes the maximum possible variance with the w coefficient
vector for each variance. The principal components’ scores are captured in such a way that the first
principal component covers the highest variance from wind data. Further, each successive component
extracts the next highest variance.

Mathematically, the first principal component (PC1) is defined as shown in Equation (4).

w(1) = argw=1max{
∑

i

(x(i).w)2
} (4)

where w is the principal component and x denotes the data cell in the wind data. Similarly, the kth
principal component is calculated by subtracting the first k − 1 from X using Equation (5), where X
represents the data matrix.

Xk = X −
k−1∑
s=1

Xw(s)w
T
(s) (5)

This retrieves values in the normalized form in a range of −1 to +1 [40]. The complete flow of
methodology steps as shown in Figure 1.

The principal components are then used as input data to deep learning based on the TensorFlow
framework. PCA provides feature extraction and selection. The proposed research is examined with
three different datasets collected within the NREL database in the US. These three datasets contain
hourly, monthly and yearly real-time wind turbine data. First, the hourly wind dataset is collected
from 20 m to 160 m distance on the ground and with a duration of 1 h, 4 h and 6 h, respectively. It
contains the data of 126,000 wind farm sites with different meteorological parameters. Second, the
monthly wind dataset is collected from the Hawaii region of the US with the mean of a 2 km grid in
January. This data contains the cumulative average of 17 years of Modern-Era Retrospective analysis
for Research and Applications (MERRA) time series data collection from different wind turbines. Third,
the yearly dataset is collected from an offshore wind statistics geodatabase that captures different wind
speed parameters for Hawaii. The real-time historical data is analyzed by the MERRA time series
for 17 years and collected as a commutative average of the different meteorological parameters from
approximately 2 km grids. The hourly wind data has highly uncorrelated data as shown in Figure 2.



Energies 2019, 12, 2229 6 of 21

Energies 2019, 12, x FOR PEER REVIEW 6 of 21 

 

 
Figure 1. Methodology for wind power forecasting using principal component analysis (PCA) and 
deep learning. 

 
Figure 2. Nonlinear and highly correlated hourly wind turbine data. 

The correlation between capacity and Grid_Id is 0.01 and 0.02 between the used_area and 
capacity variables of the hourly wind dataset. These values are collected in different types of data 
with different ranges. PCA is applied to convert the various numerical values to a linear form defined 
with zero correlated information for hourly wind turbine data as shown in Figure 3. 

Figure 1. Methodology for wind power forecasting using principal component analysis (PCA) and
deep learning.

Energies 2019, 12, x FOR PEER REVIEW 6 of 21 

 

 
Figure 1. Methodology for wind power forecasting using principal component analysis (PCA) and 
deep learning. 

 
Figure 2. Nonlinear and highly correlated hourly wind turbine data. 

The correlation between capacity and Grid_Id is 0.01 and 0.02 between the used_area and 
capacity variables of the hourly wind dataset. These values are collected in different types of data 
with different ranges. PCA is applied to convert the various numerical values to a linear form defined 
with zero correlated information for hourly wind turbine data as shown in Figure 3. 
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The correlation between capacity and Grid_Id is 0.01 and 0.02 between the used_area and capacity
variables of the hourly wind dataset. These values are collected in different types of data with different
ranges. PCA is applied to convert the various numerical values to a linear form defined with zero
correlated information for hourly wind turbine data as shown in Figure 3.
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Figure 3. The linear uncorrelated principal components (PCs) from hourly wind turbine data.

The linear combination of hourly wind turbine data is more accessible for further processing in
the deep neural network. Now, the correlation values among all variables in the hourly wind data
are zeros. Noise has been removed from the data and the captured features are decomposed into a
reduced dimensional space. There is a total of five PCs extracted for different instances in the data, but
the first three PCs capture the maximum variance. So, we used the first three PCs for the next step to
apply the deep learning algorithm. The standard deviation, proportion of variance and cumulative
proportion of all captured PCs are shown in Table 1. Then, these features are used as inputs to the deep
learning model. Further, it gives errors predictions and wind power forecasting for hourly, monthly
and yearly wind turbine data.

Table 1. PCs with standard deviation, proportion of variance and cumulative proportion.

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.4330 1.0626 0.9655 0.9015 0.2665
Proportion of variance 0.4110 0.2258 0.1865 0.1625 0.0142
Cumulative proportion 0.4110 0.6368 0.8233 0.9858 1.0000

3. Deep Learning with TensorFlow Framework

The principal components are then passed to the deep learning algorithm. TensorFlow is an
open source machine learning-based repository that works in extensive heterogeneous and complex
environments. It is used for a high level of computation, training data, sharing the state and the
operations used to mutate the states by dataflow graphs. It enables presentation of computations on
each node that may own or renew the mutable state in a dataflow graph. TensorFlow collects the node
information from the dataflow graph in a cluster through different machines and, further, throughout
numerous computational devices, for example, multicore central processing unit (CPU) and graphics
processing unit (GPU). It provides a flexible environment to the application developer and allows the
design of novel and optimized algorithms. It provides different types of applications for inference and
to train the deep neural network. It works mainly in three steps: First, processing the data; second,
designing the model; and, third, training and estimating the designed model. TensorFlow performs
computations using multidimensional arrays called tensors. These are base datatypes which provide
generalization of matrices and vectors. It describes the different properties of the physical system. The
tensors are calculated asynchronously for the data using a queues feature. These queues work like
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multi-threading technology in parallel to can speed up the operation [41,42]. We used TensorFlow
with the Keras application programming interface (API) to design a complex neural network for wind
power forecasting. Keras is a high-level API that is used to train the deep learning models. It is
user-friendly and used for fast prototyping and new modular extensions [43]. The PCA data is given
as an input to the TensorFlow framework. First, data is preprocessed and then queued for the training
phase as shown in Figure 4.
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The back and forward method are used to train the threads in a loop-like process to fine tune
the different parameters. The fine-tuning procedure is optimized with a different activation and loss
function, dropout layer, optimizer and learning rate. This process is used to obtain better accuracy
of the wind power forecast. The grid id, capacity, used area and wind speed are the input variables
and the wind power forecast is the output variable. There are ten neurons in the first hidden layer
and five neurons in the second hidden layer. All input values are preprocessed and trained using the
TensorFlow-based deep learning framework and then wind power forecast is predicted for hourly
wind turbine data as shown in Figure 5. The sigmoid method represents the nonlinear form of the
neural network model. The neural network calculates the linear arrangement of input signals and then
applies a sigmoid activation function to the outcome. It is a standard logistic activation function which
is used for handling multi-class problems [44]. Mathematically it can be defined using Equation (6).

S(x) =
1

1 + e−x (6)

where S denotes the sigmoid function and e is the exponential function for a variable x. The entropy
function is used to detect the loss to compile the deep learning model. It accepts a tensor as an input
and targets the tensor with the same shape as the output. The Adam optimizer, which is also known as
the stochastic descent gradient, is used for compiling and optimizing the deep learning model. It uses
the iterative procedure to update the network weights and calculates the individual adaptive learning
rates for each parameter in the deep learning network [45,46]. The decaying means of pas squared
gradients are shown in Equations (7) and (8) [47].

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)gt
2 (8)

where mt and vt are the estimated means of the first and second moment gradients, respectively.
The g denotes the respective gradient for each moment. It counteracts these biases by computing
bias-corrected first and second-moment estimates using Equations (9) and (10) [47].

∧
mt =

mt

1− βt
1

(9)
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∧
vt =

vt

1− βt
2

(10)
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4. Results and Discussion

The Keras API integrated with the TensorFlow framework makes it easy to turn models into
products. It can be easily deployed across a wide range of platforms, i.e., iOS, Android, Google
cloud, GPU-accelerated JavaScript, R or Python, etc. It does not lock the user into an eco-environment
and also supports several backend engines, i.e., TensorFlow from Google, Computational Network
Toolkit (CNTK) backend from Microsoft, etc. [48]. The TensorFlow framework using the Keras API is
applied to the hourly wind dataset as shown in Table 2. Four dense layers with three corresponding
dropout layers are configured in the neural network model [49,50]. The first layer is used to provide
and specify the input shape of the wind data, and is called the input layer. The second and third
layers are used to add more neurons and inference to the first input layer. These are used to get
better accuracy from the designed model. The fourth layer is used for the output or target variable to
analyze the possible outcomes. There are 100, 50 and 20 neurons used in the input and hidden dense
layers 1, 2 and 3, respectively. Similarly, the dropout layer is used with every dense layer to solve
the overfitting problem. The compile method is used to configure the learning process for each layer
with loss, optimizer and metrics parameters. Further, the designed model is trained after dense layer
and learning configurations. The training process is done automatically based on input shape and
dense layers. The deep learning approach is used to produce its own high-quality features for complex
problems and to train the features automatically in a reasonable time.

Table 2. Trained parameters with dense and dropout layers using the TensorFlow framework with
Keras for hourly wind turbine data.

Layer Type Shape Parameters

dense_1 Dense 100 600
dropout_1 Dropout 100 0

dense_2 Dense 50 5050
dropout_2 Dropout 50 0

dense_3 Dense 20 1020
dropout_3 Dropout 20 0

dense_4 Dense 3 63
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There is a total of 6733 trained parameters, of which 600 in the first layer, 5050 in the second
layer and 1020 are in the third layer. The four-dense layer is used for the target variable in which
63 parameters are trained. The same methods are applied to all three datasets. The goal is to train the
input variables in layers 1, 2 and 3 to target the output variable in layer 4. The model was complied
with 100 epochs for loss and prediction accuracy, and the resultant dynamic graph for hourly wind data
is given in Figure 6. The epoch values are given on axis and loss, and accuracy is given on the y-axis.

Energies 2019, 12, x FOR PEER REVIEW 10 of 21 

 

Table 2. Trained parameters with dense and dropout layers using the TensorFlow framework with 
Keras for hourly wind turbine data. 

Layer Type Shape Parameters 
dense_1 Dense 100 600 

dropout_1 Dropout 100 0 
dense_2 Dense 50 5050 

dropout_2 Dropout 50 0 
dense_3 Dense 20 1020 

dropout_3 Dropout 20 0 
dense_4 Dense 3 63 

There is a total of 6733 trained parameters, of which 600 in the first layer, 5050 in the second 
layer and 1020 are in the third layer. The four-dense layer is used for the target variable in which 63 
parameters are trained. The same methods are applied to all three datasets. The goal is to train the 
input variables in layers 1, 2 and 3 to target the output variable in layer 4. The model was complied 
with 100 epochs for loss and prediction accuracy, and the resultant dynamic graph for hourly wind data 
is given in Figure 6. The epoch values are given on axis and loss, and accuracy is given on the y-axis. 

 

Figure 6. The dynamic plot of the deep learning model using dense layer and dropout layers for 
hourly wind data. 

Here, acc, val_loss, val_acc represents accuracy, validation loss and validation accuracy, 
respectively. The loss, accuracy and loss, and validation loss are calculated for wind power 
forecasting. First, the loss (blue curve) is started from 0.65 and the validation loss (green curve) is 
started from 0.57 on the y-axis, which is a big difference between the two curves. After some time 
both curves behave approximately the same from around 50 on the x-axis. The fact that the loss curve 
is always higher than the validation of loss proves that there is no overfitting problem. This is also 
the case with the accuracy and validation of the accuracy graph: initially there is an overfitting 
problem because accuracy is lower than validation of accuracy but soon after they perform the same. 
The accuracy curve is above the validation of accuracy, proving that there is no overfitting problem. 
The dynamic forecasting plot of the monthly wind data before fine-tuning error configuration is 
given in Figure 7. The data is fine-tuned dynamically for monthly wind data to get better results as 
shown in Figure 8. The epoch values are given on the x-axis, and loss and mean absolute error are 

Figure 6. The dynamic plot of the deep learning model using dense layer and dropout layers for hourly
wind data.

Here, acc, val_loss, val_acc represents accuracy, validation loss and validation accuracy,
respectively. The loss, accuracy and loss, and validation loss are calculated for wind power forecasting.
First, the loss (blue curve) is started from 0.65 and the validation loss (green curve) is started from
0.57 on the y-axis, which is a big difference between the two curves. After some time both curves
behave approximately the same from around 50 on the x-axis. The fact that the loss curve is always
higher than the validation of loss proves that there is no overfitting problem. This is also the case with
the accuracy and validation of the accuracy graph: initially there is an overfitting problem because
accuracy is lower than validation of accuracy but soon after they perform the same. The accuracy
curve is above the validation of accuracy, proving that there is no overfitting problem. The dynamic
forecasting plot of the monthly wind data before fine-tuning error configuration is given in Figure 7.
The data is fine-tuned dynamically for monthly wind data to get better results as shown in Figure 8.
The epoch values are given on the x-axis, and loss and mean absolute error are given on the y-axis.
First, both curves started from different ranges on the y-axis, but soon after are flowing in the same
direction. The loss curve is above the validation loss, proving there is no overfitting problem. The
mean absolute error is lower than the validated mean absolute error, which also confirms that there
is no problem of overfitting. The mean absolute error (MAE) for monthly wind power prediction is
calculated and checked for the loss and errors on each point of the cycle. It is shown that is there an
overfitting problem that affects the overall accuracy for monthly wind power forecasting. Similarly,
the hourly and annual wind turbine data are analyzed before and after fine tuning error configuration
as shown in Figures 9–12, respectively.
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Overall, the yearly wind data behave very differently compared to hourly and monthly data. A
big difference is shown between the loss and validation curves without fine tuning configuration. The
loss curve starts from 100 while validation loss starts from 60, which shows an overfitting problem, and
approximately on the 25 epoch it shows the opposite performance. After fine-tuning configuration,
at approximately the 3 epoch it acts normally and without an overfitting problem. Further, the
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performance of the proposed model is evaluated by comparing the actual and predicted data. The
hourly wind data instances are analyzed to find which data instances are predicted and which or not.
If the diagonal line grows in a linear form, then it shows the correct prediction of each data instance
of the hourly data. The performance evaluation test of the proposed approach for hourly wind data
before fine-tuning error configuration is shown in Figure 13. First, the wind turbine data is divided
into training and testing data sets. The training data is required to train the data, and once the model is
developed, then the testing set is used to check the performance of the model predictions. The test
target represents the actual data and pred represents the predicted data. It shows the performance
evaluation test of the proposed deep learning approach with the test and test targeted data instances.
The test target is given on the x-axis, and the predicted values are given on the y-axis.
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The black circles represent the relationship between the actual data (testtarget) and the predicted
data (pred). First, the curve increases on the x-axis up to 6 epochs, but after switches to the y-axis.
The graph is not in a linear form, and it needs fine-tuning configuration to predict the wind forecast
accurately and to remove the overfitting. The fine-tuned chart for hourly wind turbine data is shown
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Again, the performance evaluation is tested for each data instance in the hourly wind dataset. The
actual data are given on the x-axis and the predicted data are provided on the y-axis. The fine-tuned
graph has a more linear form than the previous data graph. The same process is followed for all
three wind turbine datasets. Further, the designed model is fine-tuned to get the optimal values of
MAE and root mean square error (RMSE). The learning error rate, optimization function, activation
function and loss parameters are used to fine-tune the deep learning model [51]. The MAE and RMSE
values are 0.150388656, 0.055307715, respectively, for the hourly wind dataset, 0.07624394, 0.07360119,
respectively, for the monthly wind dataset and 0.2752635, 0.1485754, respectively, for the yearly dataset.
Mathematically, the MAE and RMSE are given in Equations (11) and (12), respectively [52,53]. The
MAE is the mean value between two coordinates.

MAE =

n∑
i=1
|yi − xi|

n
(11)

where y and x are two coordinates and n is the number of data points occurring between these two
coordinates. The RMSE is the root of the cumulative differences between two values or samples. The
first value is the predicted value and the second is the observed value.

RMSE =

√√√√√ T∑
t=1

(x1,t − x2,t)
2

T
(12)

where x1,t is the predicted value, x2,t is the observed value and T is the total number of values or
samples. The predicted wind power errors are compared with the popular state of the art algorithms,
i.e., BPNN, SVM, ensemble selection with back and forward procedure, CNN and AR. The comparison
of MAE and RMSE errors for hourly, monthly and yearly wind turbine datasets is shown in Table 3. In
hourly results the MAE and RMSE are better than the others. Similarly, the MAE and RMSE for the
monthly wind dataset yielded better results than other approaches. Further, for the yearly wind dataset,
the ensemble selection for MAE gave slightly better results than the proposed approach for yearly data.
Overall, it is shown that our proposed approach has better accuracy compared to other methods.

Table 3. Comparison of the mean absolute error (MAE) and root mean square error (RMSE) of the
proposed approach with other methods for hourly, monthly and yearly wind turbine data.

Errors BPNN SVM Ensemble Selection CNN AR Proposed Approach

Hourly-based MAE 0.2165 0.2475 0.1739 0.3506 0.2455 0.1503
RMSE 0.3222 0.3264 0.2927 0.4083 0.3580 0.0553

Monthly based MAE 0.0994 0.1656 0.0912 0.5211 0.2912 0.0762
RMSE 0.2590 0.2817 0.1511 0.6082 0.4507 0.0736

Yearly-based MAE 0.2840 0.3600 0.0913 0.5416 0.4903 0.2752

RMSE 0.2990 0.6000 0.1596 0.6334 0.7188 0.1485

The hourly, monthly and yearly wind turbine data for forecasting wind power are given in
Figures 15–17. The sigma (standard deviation) and mu (mean) are used to analyze the normal
distributions of all input variables against the hourly forecast, monthly forecast and yearly forecast
predictions [54]. In all three figures, hourly, monthly and annual forecasts are given, and the estimated
normal distributions are shown on the y-axis. It is used to test the distribution and normality of
data instances of individual datasets. The red line shows the standard normal form and the blue line
conforms to the data instance in all three figures. The sigma and mu standard functions are used to
investigate the normal distribution of each wind dataset. The blue curve indicates the corresponding
wind turbine data, and the linear red line shows the standard normal distribution against the x-axis.
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At the start, the hourly curve behaves better than the monthly and yearly curves, but soon after takes a
nonlinear form against the standard distribution. Overall, the annual curve performs worse than the
other two curves because it neither starts nor ends towards the standard distribution line. The monthly
curve is better than the others, which demonstrates that monthly wind power prediction accuracy is
greater than fir the other two datasets.
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The normalized mean absolute error (NMAE) and normalized root mean square error (NRMSE)
are calculated for the proposed approach and other state-of-the-art algorithms. The RMAE and NRMSE
for the hourly, monthly and yearly wind power forecast graphs are shown in Figures 18–20. The blue
line shows the normalized NMAE and the orange line shows the NRMSE. The normalized errors are
calculated in a range of 0 to 1 on the y-axis. The wind power error range is different in each figure,
which indicates the minimum and maximum limit of each wind power error on the x-axis. The NRMSE
is always higher than the RMSE, which indicates that the wind power forecasting errors are precise
and accurate. Overall, the hourly normalized errors behave the same because both curves almost
have the same direction. Secondly, the normalized errors for the monthly wind power forecasting
perform better.Energies 2019, 12, x FOR PEER REVIEW 18 of 21 
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Figure 18. Normalized errors for hourly wind power forecasting.
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Figure 19. Normalized errors for monthly wind power forecasting.
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Figure 20. Normalized errors for yearly wind power forecasting.

5. Conclusions

A new hybrid approach using PCA with a deep learning neural network is designed to forecast
wind power. The proposed deep learning approach implemented the TensorFlow framework with
the Keras API. The proposed research is examined on large scale wind turbine data gathered with
a duration of 17 years. Three datasets are obtained from NREL (US), namely, hourly, monthly and
yearly wind turbine data. First, PCA is applied to all three datasets to mine hidden information and
focus on meaningful patterns in reduced dimensional space, yielding data in a normalized form with
principal components. Then, a few PCs are selected for a deep learning experiment which contains
high variance of the data. The proposed deep learning algorithm is applied to PCs to forecast wind
power. The Keras API is used with TensorFlow to configure a more reliable neural network. Further,
the proposed algorithm is fine-tuned for the trained parameters in terms of learning error rate, dense
and dropout layers, loss and activation function, and several hidden neurons are used in each hidden
layer. The fine-tuned configuration removed the overfitting problem and increased accuracy. The MAE
and RMSE are calculated for the proposed research and, then, the corresponding errors are estimated
to forecast wind power. The results are compared with the existing methods, and it is verified that the
proposed hybrid approach outperforms. The fine tuning configuration has a wide scope for research,
and can affect the results in a positive way. Our proposed TensorFlow deep learning approach has the
following benefits over other state-of-the-art techniques, as follows.

• It gives better visualization and computations for large-scale and real-time data collected from
wind farms.

• TensorFlow integrates various APIs that are used to design deep learning architectures for large
scales of data, i.e., the GitHub framework.
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• Dense layer: we may configure input and output dense layers by our own selected activation
functions, number of neurons, input and output shapes.

• Overfitting: The dropout layer is used to resolve the overfitting problem in the data and to provide
better accuracy for large scales of wind data. We may optimize the dropout layer by fine tuning
configuration, i.e., learning error rate, loss and activation function.

• It trains the wind data automatically by fitting the model.
• We may get better accuracy by increasing the number of dense layers, the number of neurons and

a dropout layer in fine tuning control configuration
• It can be deployed in a range from cellular machines to large complex networks. It offers seamless

performance and quick updates, as it is supported by a big company, i.e., Google.

In the future, we will work to optimize the fine tuning of other parameters with extensive analysis
compared to the existing methods. The activation and loss function, dropout layer, number of neurons
in each hidden layer and the learning error rate can be enhanced to get better results. The proposed
deep learning methodology can be deployed on the physical infrastructure of wind turbines data. This
needs the wind turbines’ historical data as an input and, after, will display the future wind power
forecast with minimum error predictions.
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