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Abstract: This paper presents findings on mitigating the negative impact of renewable energy
resources variability on the energy scheduling problem, in particular for island grids and microgrids.
The methods and findings presented in this paper are twofold. First, data obtained from the City
of Summerside in the province of Prince Edward Island, Canada, is leveraged to demonstrate the
effectiveness of state-of-the-art time series predictors in mitigating energy scheduling inaccuracy.
Second, the outcome of the time series prediction analysis is used to propose a novel data-driven
battery energy storage system (BESS) sizing study for energy scheduling purposes. The proposed
probabilistic method accounts for intra-interval variations of generation and demand, thus mitigating
the trade-off between time resolution of the problem formulation and the solution accuracy. In
addition, as part of the sizing study, a BESS management strategy is proposed to minimize energy
scheduling inaccuracies, and is then used to obtain the optimal BESS size. Finally, the paper presents
quantitative analyses of the impact of both the energy predictors and the BESS on the supplied energy
cost using the actual data of the Summerside Electric grid. The paper reveals the significant potential
for reducing energy cost in renewable-penetrated grids and microgrids through state-of-the-art
predictors combined with applications of properly-sized energy storage systems.

Keywords: energy scheduling; energy storage systems; time series prediction; data-driven analysis

1. Introduction

Driven by the need for cheap, sustainable, and clean sources of energy, renewable energy resources
(RES), in particular wind and solar energies are being deployed increasingly across many countries [1].
High penetration of wind and solar energies poses some operational challenges, affecting system
stability, reliability, and economics [2]. These challenges can be categorized into two main groups: (i)
those associated with the decrease of system inertia [3]; and (ii) those associated with the intrinsic
variability and uncertainty of RES [4]. In particular, island grids and microgrids, where RES penetration
tends to be high, are more prone to negative impacts of RES variability and low system inertia [5].
In view of these challenges, numerous techniques have been proposed in the literature to alleviate
the impact of high RES penetration. These include methods pertaining to enhancing the prediction
accuracy of RES [6–8] and techniques pertaining to the use of energy storage systems (ESS) [9,10],
in particular battery energy storage systems (BESS) [11].

RES prediction techniques are categorized into three major methods [12]: (i) numerical weather
prediction (NWP) models [13]; (ii) data-driven approaches [6]; and (iii) hybrid physical and statistical
models [14]. NWP models are based on atmospheric science, utilizing differential equations derived
from physical laws, in particular the first law of thermodynamics [15]. These are difficult to construct
and are usually used for long-time forecasting, as they exhibit a poor performance for short-term
prediction. In addition, NWP models need both meteorological and topological information which
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adds to the complexity of their operation. On the other hand, statistical models ingest historical data
to predict future RES output typically for short time-intervals ahead. Statistical techniques can be
mainly categorized into linear and nonlinear methods. Amongst the linear models, autoregressive
integrated moving average models (ARIMA) [16], Kalman Filter [17], and support vector machines
(SVM) [18] are the most popular techniques. Nonlinear models include neural network approaches
such as multi-layer perceptrons and recurrent neural networks [19–21]. Finally, hybrid models include
approaches that use NWP-based predictions as part of the input for statistical techniques [22].

ESS have two main applications in renewable-penetrated grids and microgrids: (i) to enhance
system dynamic performance [11,23]; and (ii) to shift the RES output to reduce energy cost and
emissions [24]. The latter application is the focus of this paper. For example, a multi-pass dynamic
programming technique is proposed in [25] for optimal dispatch of BESS in a utility-scale grid.
A linear programming model is formulated in [26] for peak net load management and demand
charge minimization in a grid-connected PhotoVoltaic (PV)-BESS hybrid.

A price-based method is introduced in [27] to calculate the optimal dispatch of ESS considering
short-term power exchange and expected imbalance penalties of a wind farm in a utility-scale grid.
A cooperative stochastic optimal energy scheduling technique is discussed for a grid of microgrids
in Chapter 9 of [28]; the method is based on the probability distribution of RES forecasting error and
is shown to yield superior results compared to centralized techniques. These methods, along with
numerous other techniques discussed in the literature, demonstrate the positive impact of ESS on
economics of renewable-penetrated grids. However, BESS high investment cost and mediocre life
cycle remain a major concern for grid operators, highlighting the significance of proper power and
energy sizing [29].

Several techniques have been proposed in the literature for BESS sizing for a variety of
applications [30]. These can be generally classified into three main categories: (i) analytical
methods [31,32]; (ii) linear programming methods [33,34]; and (iii) nonlinear heuristic methods [35,36].
Analytical methods perform a series of simulations on varying variables of interest, in this case
BESS power and energy capacity, to calculate the key performance metrics. The variables that yield
highest performance metrics are selected as optimal. Analytical methods are usually amongst the
most effective techniques given their flexibility for performance criteria and operational constraints.
However, these methods can be computationally intensive depending on the number of simulations
and time resolution [30]. Linear programming optimization methods formulate an explicit objective
function intended to maximize the performance metrics. While these methods are computationally
efficient and relatively easy to solve, they cannot account for nonlinear elements of BESS sizing problem,
such as cycling aging. Finally, nonlinear heuristics methods can account for nonlinear constraints of
optimization; however, they may converge to non-optimal or locally optimal solutions. On top of the
aforementioned method-specific drawbacks, all of these methods suffer from the trade-off between
time resolution and results accuracy. This issue will be further discussed in Section 4.

Considering the aforementioned discussion, this paper aims to reveal the potential to improve
the economics of renewable-penetrated grids through mitigation of RES variability, particularly in the
context of energy scheduling. Thus, the City of Summerside data from 2016 to 2018 is leveraged to
reveal the significant potential for reducing energy cost in such systems. Located in Prince Edward
Island (PEI), Canada, Summerside is the second largest city in the province and operates the only
municipally-owned electric utility in PEI with a peak load of 28 MW [37]. Prior to 2009, the city
imported dominant portion of electrical energy from NB Power, with the rest being supplied by local
diesel generators. Since 2009, the city has installed 12 MW of wind turbine capacity, introducing
Canada’s first municipally owned and operated wind farm [37]. Thus, in 2017, around 25% of the
137.5 TWh electrical demand was met by the wind farm; the rest was mostly imported from NB Power.

Summerside Electric imports energy from NB power in hourly intervals and the power must be
scheduled 20 min ahead for the next interval. Thus, the city pays a commitment rate for the scheduled
power. However, the intra-interval surplus of power is exported to NB power at a real-time rate lower
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than the commitment rate, and the deficit is imported at a rate much higher than the commitment
rate. As a result, the accuracy of scheduled import plays a significant role in the overall price of
imported power from NB power. With a wind power penetration as high as 100%, wind variations
have a significant impact on the Summerside Electric power exchange with NB power. Thus, in 2018,
Summerside Electric signed a memorandum of understanding (MOU) with BluWave-ai to enhance the
energy import scheduling and control.

The work presented here shares some findings of the collaboration between BluWave-ai and
Summerside Electric, and also proposes a novel data-driven approach for BESS sizing for energy
scheduling applications. The discussion, methods, and findings presented in this paper are twofold.
First, actual data is leveraged to demonstrate the effectiveness of state-of-the-art time series energy
predictors in mitigating energy scheduling inaccuracies. Second, the outcome of the time series
prediction analysis is used to propose a novel BESS sizing study for energy scheduling purposes.
Considering the aforementioned drawbacks of current BESS sizing approaches, the proposed
probabilistic method accounts for intra-interval variations of generation and demand, thus mitigating
the trade-off between time resolution and accuracy. In addition, as part of the sizing study, a BESS
management strategy to minimize energy scheduling inaccuracies is proposed, and is then used to
obtain the optimal BESS size. The paper also presents quantitative analyses of the impact of both
the energy predictors and the BESS on the supplied energy cost using actual data of the Summerside
Electric grid. Thus, the paper contributions are as follows:

1. Leveraging a relatively large island grid’s actual data to reveal the potential of state-of-the-art
time series prediction techniques, in particular for wind energy. Note that, due to commercial
IP confidentiality, the details of the prediction engine cannot be revealed; however, general
procedures for enhancing RES prediction accuracy is discussed using actual data.

2. Proposing a data-driven approach toward BESS sizing for energy balancing purposes. Using
actual data, a novel probabilistic approach is proposed that accounts for intra-interval variations,
thus enhancing the accuracy of BESS sizing. In general, the proposed method mitigates
the trade-off between time resolution and accuracy; as a result, increasing the computation
time-interval would have a less significant negative impact on accuracy of the results. Hence,
such a method would also alleviate computational burden of analytical methods for BESS sizing.
To the knowledge of the author, this is the first time such an approach is proposed in the literature.

3. Proposing an optimal BESS energy management based on the presented data-driven approach.
4. Quantitative analysis of wind-BESS impact on energy cost using a large amount of actual data.

The rest of this paper is as follows: Section 2 introduces Summerside Electric grid and provides
some operation details. Section 3 presents the procedure and results for wind prediction improvement
using artificial intelligence (AI) prediction techniques. Note that, as part of the MoU, BluWave-ai has
also developed load predictors for Summerside Electric. However, for the sake of brevity, the results of
load predictors are only briefly mentioned in Section 3. Section 4 proposes a data-driven BESS sizing
method for Summerside grid and similar systems. Section 5 analyzes the economics of wind-BESS
integration into island grids and microgrids. Section 6 provides brief conclusions and future work.

2. Summerside Electric Grid

A single-line diagram of Summerside Electric grid is shown in Figure 1. The grid consists of five
load feeders and two diesel generators connected to bus 2, six load feeders and three diesel generators
connected to bus 3, and four wind turbines. Peak load is around 28 MW, while the total generation
capacity is 15 MW of diesel generation and 12 MW of wind power. The city’s energy demand is mostly
imported from NB Power, which includes up to 9 MW of external wind power from West Cape wind
farm. The remaining power is supplied by Summerside Electric wind farm, with diesel generators
being rarely used for back-up purposes.
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Figure 1. Single-line diagram of Summerside Electric grid.

Summerside Electric schedules its energy import in hourly intervals and the power must be
scheduled 20 min ahead for the next interval. At the moment, scheduling is performed via Summerside
Electric Energy Transmission Scheduling System (SEETSS), which includes wind and load predictors.
The city pays a commitment rate for the scheduled power. However, the intra-interval surplus of
power is exported to NB power at a real-time rate lower than the commitment rate, and the deficit is
imported at a rate much higher than the commitment rate.

Figure 2 illustrates the City of Summerside energy supply mix between August 2016 to August
2018. Approximately 75% of the energy is supplied by importing power from NB Power inter-tie 69 kV
line. Approximately 25% is supplied by the Summerside Electric wind farm, with only 0.23% of the
energy supplied by diesel generation. Thus, throughout this paper, diesel generation is neglected,
assuming that the energy is supplied by NB Power and the local wind farm.

74.92%

24.85%

0.23%

Total = 273.5 TWh

Import

Wind

Diesel

Figure 2. Summerside energy supply between August 2016 to August 2018.

3. Wind Power Prediction

Figure 3 demonstrates the hourly wind production and the power duration curve of the
Summerside wind farm in 2017, revealing the high variability of the wind power output. In this
figure, the gray line represents the hourly wind generation, and the black line demonstrates the total
hours the power output is within a certain range. The objective is to predict wind power output for the
next hour, 20 min in advance. Thus, the prediction procedure shown in Figure 4 is adopted, consisting
of multiple steps. Each step is briefly described next, and the wind prediction results are provided at
the end of this section.
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Figure 3. Summerside 2017 hourly wind generation and power duration curve.
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Figure 4. Schematic of wind prediction procedure.

3.1. Experimental Data

The experimental data used here for wind prediction are provided by Summerside Electric
and Environment and Climate Change Canada and include the City of Summerside Electric and
meteorological measurements. The data consist of three separate datasets: (i) dataset 1 has 17,568
data points of seven features corresponding to two years of hourly averaged data of Summerside
Electric supervisory control and data acquisition (SCADA) system, measured from August 2016 to
August 2018; (ii) dataset 2 has 52,560 data points of 98 features corresponding to one year of 10-minute
averaged data of Summerside Electric wind turbines, measured from August 2017 to August 2018;
and (iii) dataset 3 has 17,568 data points of 18 features corresponding to two years of hourly averaged
meteorological data of the City of Summerside, measured from August 2016 to August 2018. Dataset 1
includes features such as power outputs of four wind turbines and wind speed. Dataset 2 includes
features such as electrical data and turbines temperature. Dataset 3 includes features such as dew point
temperature, air pressure, and relative humidity. A summary of the datasets is provided in Table 1.

Table 1. Datasets summary.

Number of Data Points Resolution Number of Features Source

Dataset 1 17,568 Hourly 7 Summerside Electric
Dataset 2 52,560 10-min 98 Summerside Electric

Dataset 3 17,568 Hourly 18
Environment and Climate

Change Canada

3.2. Data Processing

The aforementioned datasets are processed prior to feature selection and predictor training phases.
Data processing consists of two major steps: (i) data imputation, i.e., replacing missing data with
substitute values; and (ii) stationarity test and treatment, i.e., eliminating trend and seasonality. In this
case, less than 1% of all features of interest are missing values, which are simply replaced by their
previous data point due to their insignificant portion of entire data. Thus, the rest of this subsection
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discusses treating time series non-stationarity, including trending and seasonality. Seasonality is the
presence of cyclic patterns at specific regular intervals, such as daily, monthly, etc.; note that the interval
is not necessary every season, i.e., a 3-month period.

A time series is defined stationary if its generating process is time invariant [38]. Thus, statistical
properties such as mean and variance of a stationary time series remain constant over time. It is
known that non-stationarity adversely affects the accuracy of time series prediction, thus should
be appropriately treated prior to forecasting [39]. To demonstrate this process and without loss of
generality, a snippet of data is used as shown in Figure 5; the sample pertains to generation output
of one turbine during a two-week period in October 2017. The outputs of other turbines are similar.
As seen in Figure 5, visual observation cannot detect any pattern in data or in its mean and variance,
mainly due to highly stochastic nature of wind output. To further evaluate the stationarity, two
techniques are discussed next, namely augmented Dickey–Fuller (ADF) test and signal decomposition.
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Figure 5. Wind turbine hourly output during a two-week period in October 2017.

Statistical stationarity tests investigate time series mean non-stationarity, i.e., whether the series
tend to move away from any initial point as time goes on [40]. Consider time series yt as follows:

∆yt = Tt + zt,

Tt = α + βt,

zt = φzt−1 + εt, εt ∼ N (0, σ2),

(1)

where α, β, and φ are constant parameters. Thus, time series yt is called trend stationary if φ << 1 and
is called difference stationary if φ = 1. It is trivial to prove that difference stationary series can become
stationary by differencing. Thus, the ADF test takes the null hypothesis that yt is trend stationary,
i.e., the series has a unit root. Hence, the null hypothesis is rejected for p ≤ 0.05. More details regarding
AFD test implementation can be found in [38,39]. The ADF test on the sample data illustrated in
Figure 5 returned a p-value of 4.9× 10−5, thus rejecting the null hypothesis. The p-value is even
smaller for the entire time period, closer to 10−6. It is concluded that no first differencing is needed in
this case.

To further evaluate the data trend and seasonal pattern, it is decomposed into three components:
(i) trend trt; (ii) seasonal st; and (iii) residual rt, as follows:

yt = trt + st + rt. (2)

Note that Equation (2) presents an additive model for yt. The three additive components are
basically calculated through moving averages; more details can be found in [41]. Figure 6 illustrates
the three components of the original time series in Figure 5. As seen in Figure 6, there is a daily
seasonal pattern, in the range of 600 kW peak-to-peak. Such a daily seasonality can be treated by 24th
differencing, i.e., subtracting each data point by its 24th prior point.
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Figure 6. Wind turbine hourly output decomposition.

3.3. Feature Selection

The processed datasets are analyzed to identify the predictive features. The presented feature
selection in this case consists of three major steps: (i) forward feature selection (FFS); (ii) autocorrelation
(AC) and partial autocorrelation (PAC) analysis; and (iii) backward feature elimination (BFE). The first
step aims to identify predictive features using only first lag for each feature. The second step analyzes
the predictive lags for each feature. Finally, the third step re-analyzes the included lags in an attempt
to decrease the feature set dimension. Figures 7–9 demonstrate the three steps of the process.
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Figure 7. Forward feature selection sub-process.
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Figure 9. Backward feature elimination sub-process.

For brevity, FFS and BFE processes are not described as they can be properly inferred from
Figures 7 and 9. AC function calculates correlation coefficients of two values of the same time series
at time t and its lagged observation t− k. To calculate the AC coefficients, first, the autocovariance
function at lag k is defined as follows:

γk =
1
T

T

∑
t=k+1

(yt − y) (yt−k − y) , (3)
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where y is the time series mean. Thus, the AC function at lag k is defined as follows:

ACk =
γk
γ0

. (4)

Note that γ0 is the sample variance. PAC function also measures the correlation between yt and
its lagged observations, but removes the influence of the observations in between two data points,
as follows [12]:

PACk = Corr {[yt −P (yt|yt−k+1, ..., yt−1)] , [yt−k −P (yt|yt−k+1, ..., yt−1)]} , (5)

where P (A|B) is the best linear projection of A on B. Although both AC and PAC functions measures
linear correlation, they can still be used for feature selection of nonlinear prediction methods, such
as neural network techniques, as discussed in [42]. Thus, PAC function is used here for feature lag
selection. As an example, Figure 10 depicts the PAC results for one of the Summerside Electric wind
turbines, considering 48 lags equivalent to the past two days. As seen in this figure, the PAC between
yt and its previous three lags onward is negligible, indicating low predictive value of these lags.
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Figure 10. PAC results for wind turbine power output.

3.4. Results

The prediction model used in this case cannot be revealed due to commercial confidentiality.
The predictor engine is tuned using the grid-search method [43]. Note that the main contribution of this
section is to leverage a relatively large island grid’s actual data to reveal the potential of state-of-the-art
RES prediction techniques. In addition, general procedures for enhancing RES prediction accuracy
have been discussed so far using the actual data. Finally, the results discussed in this subsection are
necessary for the data-driven BESS sizing discussed in Section 4. Thus, the results of Summerside
hourly load prediction are also included.

Currently, SEETSS schedules the import power for the next hour 20 min in advance by subtracting
the difference between load and wind predictions. SEETSS current predictions are provided by a
third-party commercial company, whose prediction algorithm is not known. To evaluate the trained
predictors and compare their performance with SEETSS existing ones, a 30-day period in Winter 2018
is used as the test set. Please note that, while there may be slight variations in the wind output profile
depending on the season of the year, i.e., winter or summer, the results presented here are applicable
to any period; the proposed techniques do not depend on the choice of the test set, and the 30-day
period in winter is represented without the loss of generality. In case more than two years of data are
available, this issue can be further investigated and verified.

The error criterion in this case is mean absolute error (MAE), as inaccuracy in scheduled power
directly maps to inaccuracy in absolute errors of wind and load prediction. Table 2 provides MAE
of the load and wind predictions and the scheduled import energy. Note that the BluWave-ai and
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SEETSS predictors are referred to as BluWave and Summerside in the table, respectively. Histograms
of SEETSS and BluWave import schedule residuals are illustrated in Figure 11.

Table 2. Wind, load, and import schedule predictions MAE and comparison.

Wind MAE (kWh) Load MAE (kWh) Import MAE (kWh)

Summerside 1383 800 1872
BluWave 851 332 976

Improvement 62% 58% 48%
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Figure 11. Histogram of Summerside Electric Energy Transmission Scheduling System (SEETSS) and
BluWave import schedule residuals.

The results presented in Table 2 reveal a significant 48% reduction in import power inaccuracy
using BluWave predictors. Figure 12 demonstrates savings as a result of the accuracy improvement
under various energy surplus and deficit penalties, calculated as follows; note that the superscripts
STS and BW stands for SEETSS and BluWave respectively:

Saving ($) =
720

∑
i=1

[αSTS
i × ∆PSTS

i × ρsur − (1− αSTS
i )× ∆PSTS

i × ρdef−

αBW
i × ∆PBW

i × ρsur + (1− αSTS
i )× ∆PBW

i × ρdef],

(6)

where αi is a binary variable indicating surplus of energy, ∆Pi is the import inaccuracy in MWh,
and ρsur and ρdef are energy surplus and deficit penalties in $/MWh accordingly.



Energies 2019, 12, 2228 11 of 23

As seen in Figure 12, a higher portion of savings occurs due to reduction in energy surplus as
compared to energy deficit, indicated by the higher slope of the y-axis. This is expected as the SEETSS
predictor is skewed toward positive residuals as seen in Figure 11. In other words, the BluWave
predictor yields more accurate energy import schedules both by decreasing the mean and standard
deviations of SEETSS import inaccuracy. Thus, the slope of the x-axis is $610 for each c/kWh of the
deficit penalty, and the slope of the y-axis is $5840 for each c/kWh of the surplus penalty. For the case
of Summerside Electric, the exact surplus and deficit penalties cannot be revealed due to contractual
confidentiality between BluWave-ai, Summerside Electric, and NB Power; however, the penalties are
toward the lower end of the spectrum, in the range of ∼12 c/kWh. In the next section, residuals shown
in Figure 11 are used for a data-driven energy storage sizing.

Figure 12. Monetary savings due to higher prediction accuracy for the 30-day period.

4. Data-Driven BESS Sizing

In this section, a data-driven BESS sizing method is proposed to minimize the cost of import
scheduling inaccuracy, taking the BESS investment cost into account. For the proposed technique,
the impact of long-term load growth is neglected, and the interest and inflation rates are assumed zero.

4.1. Battery Characteristics

A lithium-ion battery (LIB) is considered for the purpose of this research. Lithium-ion batteries
have been widely used for large-scale grid applications and can discharge their full energy as fast as
in 20 min [44]. To quantify the charge and discharge capability, C-rate is defined as the ratio of BESS
nominal power to energy capacity. Grid-scale LIB investment cost depends on both its energy capacity
and C-rate. Thus, various investment costs have been reported in the literature. For the case of this
research, three C-rates of 1, 2, and 3 are considered and the BESS investment cost reported in Table 3 is
chosen based on the National Renewable Energy Laboratory (NREL) report on LIB cost in 2018, as well
as experts’ analysis on prospective improvements in LIB costs [45,46].

Table 3. Utility-Scale lithium-ion battery investment cost.

C = 1 C = 2 C = 3

Cost ($/kWh) 450 600 750

Battery aging model has been the subject of research for a few decades, and numerous models
have been proposed in the literature [47–49]. Generally, battery aging can be decomposed into
calendric and cyclic aging effects [44]. These components determine the battery state of health (SOH),
i.e., the degradation in its nominal capacity. For the case of this study, it is assumed that the BESS
has a nominal 10,000 cycles and a calendric age of 15 years, and cannot be used beyond an SOH of
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80% [50]. Thus, the impact of calendric and cyclic aging on BESS SOH is expressed by Equation (7).
Note that more complex aging models can be adopted, as the proposed sizing method is quite flexible
and effective in taking complexities and nonlinearities into account:

SOH = 1− 0.2 ∑ |PB|∆τ

EB × 10,000
− 0.2× ∆τ

15× 365× 24
. (7)

In Equation (7), ∆τ is the time-step length, Pb is the average battery charged or discharged power,
and Eb is the battery nominal energy capacity. The battery should be replaced when SOH reaches 80%.

4.2. Methodology

Table 4 summarizes the notation used in this subsection. The method proposed herein has four
steps and adopts a Monte Carlo simulation technique [51], as follows:

1. Populate a set of import inaccuracies vector, S , based on the results presented in Figure 11.
2. Populate a set of BESS energy capacity, E . For each element in E , populate a set of C-rates, C.
3. For each element in E and its corresponding elements in C, calculate the charged and discharged

energies for each element in S . Calculate the savings by reducing investment cost from energy
savings. Thus, for each simulation scenario b, c, there exist s simulation scenarios b, c, s.

4. Calculate the final savings for each element in E and its corresponding elements in C by averaging
the savings calculated for the elements in S .

Table 4. Proposed method nomenclature.

Symbol Type Description Unit

E Set BESS energy capacities
C Set BESS C-rates
S Set Import error scenarios
T Set time-steps
b Index BESS energy capacity
c Index BESS C-rate
i Index time-step
s Index Import error scenario
αi Parameter Binary parameter indicating energy surplus during time-step i
η Parameter One-way converter efficiency %
|∆ei| Parameter Import inaccuracy at time-step i MWh
∆τ Parameter Time interval length 1 h
Eb Parameter BESS nominal energy capacity for simulation scenario b MWh

Pb,c Parameter BESS nominal Power capacity for simulation scenarios b, c MW

Eb,c
s,i Variable

BESS energy at the end of time-step i
for simulation scenario b, c, s MWh

Echb,c
s,i Variable

BESS charged energy during time-step i
for simulation scenario b, c, s MWh

Edisb,c
s,i Variable

BESS discharged energy during time-step i
for simulation scenario b, c, s MWh

Lb,c
s Variable BESS end of life for simulation scenario b, c, s

SOHb,c
s,i Variable

BESS state of health at the end of time-step i
for simulation scenario b, c, s

For the case of this study, S has 1000 elements. Each element is a vector of 131,400 randomly
generated numbers, corresponding to 15 years of hourly interval time-steps set, T . Random numbers
are drawn from N (0.076, 1.34) based on the results presented in Figure 11. E has 59 elements
corresponding to nominal energy capacity range of 0.5–15 MWh with steps of 0.25 MWh. C has
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three elements, 1, 2, and 3. Thus, a total of 177 simulation scenarios b, c are carried out 1000 times each
iterating over S , making a total of 177,000 simulations.

To calculate the charged and discharged energy during each time-step, first, the equality and
inequality constraints should be modeled to consider for BESS operational limits, energy evolution,
and aging, as follows:

Pb,c = Eb × Cc = Eb × Cc ∀b ∈ E ∧ c ∈ C, (8)

Eb,c
s,i = Eb,c

s,i−1 +

(
Echb,c

s,i η −
Edisb,c

s,i

η

)
∆τ ∀b ∈ E ∧ c ∈ C ∧ s ∈ S ∧ i ∈ T , (9)

SOHb,c
s,i = SOHb,c

s,i−1 − 0.2

(
Echb,c

s,i + Edisb,c
s,i

)
∆τ

Eb × 1000
− 0.2× ∆τ

131,400
∀b ∈ E ∧ c ∈ C ∧ s ∈ S ∧ i ∈ T , (10)

0.1× EB ≤ Eb,c
s,i ≤ 0.9× SOHb,c

s,i × EB ∀b ∈ E ∧ c ∈ C ∧ s ∈ S ∧ i ∈ T . (11)

Equation (8) calculates BESS nominal power based on nominal energy capacity and C-rate.
Equations (9) and (10) model the BESS energy and SOH evolution, respectively. Finally, Equation (11)
constrains the BESS energy between 10% of its nominal capacity and 90% of its nominal capacity
multiplied by SOH.

To calculate the BESS charged and discharged energy during each time-step, one should consider
not only the energy import inaccuracy and BESS state of charge and capacity, but also BESS nominal
power capacity. To account for the latter, researchers often divide the required energy by time-interval
length to arrive at an average required power [29–36]. However, such an approach does not take into
account the power variations within the interval, which may go beyond the nominal power of the
BESS, resulting in a trade-off between accuracy and time-interval resolution. This is demonstrated in
Figure 13, where a 2-h sample of Summerside Electric import is shown in 5-min and hourly resolutions.
To demonstrate the impact of time resolution on charged and discharged energy calculation, assume
that the BESS nominal power capacity is 1 MW. Thus, Figure 14 shows the difference between calculated
charged and discharged energy for the same 2-h sample period but with different time resolutions.
As seen in this figure, low resolution may yield over-estimation of charged and discharged energy,
321 kWh of charged and 357 kWh of discharged energy in this case.

A novel data-driven approach is proposed here to address the negative impact of low resolution
on over-estimation of charged and discharged energy. Thus, four months of 5-min averaged data
pertaining to Summerside Electric actual required import between November 2018 to February 2019 is
utilized to design the proposed solution. The first part of the solution is to estimate the energy content
above and below the averaged required power during each hourly interval, as follows:

1. Calculate the hourly averaged power.
2. Populate a set of power threshholds. In this case, the power threshold ranges from 0–1000 kW

with steps of 50 kW.
3. Calculate the energy above and below the average required power for each power threshold.
4. Calculate the average of calculated energies for each power threshold.
5. Fit the appropriate trendline to the calculated average energy of power thresholds [52]. In this

case, an exponential trendline is chosen based on the observed data. The trendline expression can
be used to estimate the energy above and below the hourly average required power for a certain
power threshold.
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Figure 13. 5-min and hourly resolution of Summerside Electric actual required power import for a
sample 2-h period.
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Figure 14. Charged and discharged energy of a 1 MW BESS for the sample period shown in Figure 13.

Figure 15 demonstrates the result of the above-mentioned procedure. Here is an example to clarify
the results presented in this figure. Suppose the average hourly required power for time-step i is
10 MW, thus the required energy import is 10 MWh. Out of this 10 MWh, around 260 kWh pertains to
intra-interval duration when imported power is higher than 10 MW, and less than 50 kWh pertains to
duration when the intra-interval import power is higher than 11 MW. As expected, the energy content
above and below the hourly average required power is symmetrical; hence, the two exponential
equations presented in Figure 15 are averaged to estimate the energy content both above and below
the averaged hourly required power, as follows:

Estimated Energy (kWh) = e f (P(kW)) = 261.73× e−0.002P. (12)
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Figure 15. Energy above and below the averaged hourly required power vs. power thresholds.

The next step is to use e f (P) to calculate the charged and discharged energy during each time-step,
taking Equations (8)–(11) into consideration. Here is the procedure for time-steps with energy surplus:

1. αi = 1, i.e., there is surplus of energy ∆ei.
2. If Equation (13) is true, i.e., the average surplus power within the time interval does not exceed

the battery power rating, go to step 3, otherwise go to step 6:

∆ei
∆τ
≤ Pb,c. (13)

3. Estimate BESS charged energy using Equation (14):

Echb,c
s,i = ∆ei − e f

(
Pb,c − ∆ei

∆τ

)
. (14)

4. If Equation (15) is true, i.e., the battery energy content at the end of the time interval does not
exceed the maximum acceptable energy capacity, end the process and go to the next time step,
otherwise go to step 5:

Eb,c
s,i−1 + Echb,c

s,i × η ≤ 0.9× SOHb,c
s,i−1 × Eb. (15)

5. Estimate the BESS charged energy using Equation (16); end the process and go to the next
time step:

Echb,c
s,i =

0.9× SOHb,c
s,i−1 × Eb − Eb,c

s,i−1

η
. (16)

6. Estimate BESS charged energy using Equation (17):

Echb,c
s,i = Pb,c × ∆τ − e f

(
∆ei
∆τ
− Pb,c

)
. (17)

7. If Equation (15) is true, end the process and go to the next time step, otherwise go to step 8.
8. Estimate the charged energy using Equation (16); end the process and go to the next time step.
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The procedure for time-steps with deficit of energy is similar to above, as follows:

1. αi = 0, i.e., there is deficit of energy ∆ei.
2. If Equation (13) is true, go to step 3, otherwise go to step 6.
3. Estimate BESS charged energy using Equation (18):

Edisb,c
s,i = ∆ei − e f

(
Pb,c − ∆ei

∆τ

)
. (18)

4. If Equation (19) is true, i.e., the battery energy content at the end of the time interval is not below
the minimum acceptable energy capacity, end the process and go to the next time step, otherwise
go to step 5:

0.1× Eb ≤ Eb,c
s,i−1 −

Edisb,c
s,i

η
. (19)

5. Estimate the BESS charged energy using Equation (20); end the process and go to the next
time step:

Edisb,c
s,i = Edisb,c

s,i−1 − 0.1× Eb × η. (20)

6. Estimate BESS charged energy using Equation (21):

Edisb,c
s,i = Pb,c × ∆τ − e f

(
∆ei
∆τ
− Pb,c

)
. (21)

7. If Equation (19) is true, end the process and go to the next time step, otherwise go to step 8.
8. Estimate the charged energy using Equation (20); end the process and go to the next time step.

The proposed methodology in this subsection is presented in Figure 16. Note that, in this figure,
indices b, c, and s are omitted for the sake brevity. In addition, as ∆τ = 1, it is also omitted. As seen
in Figure 16, the BESS charged and discharged energy is calculated for each time-step until the BESS
reaches an SOH of 80%. Once the charged and discharged energy are calculated for each scenario s,
the overall scenario savings can be calculated as follows:

Saveb,c
s =

131400

∑
i=1

[αi × Echb,c
s,i × ρsur + (1− αi)× Edisb,c

s,i × ρdef]− Investmentb,c, (22)

where Saveb,c
s is the overall scenario cost, Investmentb,c is the BESS investment cost calculated based

on Table 3, and ρsur and ρde f are energy surplus and deficit penalties, respectively. Thus, the levelized
cost of BESS investment can be calculated using Equation (23). Note that a negative savings indicates
that BESS investment is not economically justifiable:

Saveb,c
Levelized =

∑1000
s=1 Saveb,c

s /Lb,c
s

1000
. (23)
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Figure 16. Flowchart of the proposed method in Section 4.2.
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5. Economics of the Wind-BESS System

This section presents the results obtained from conducting the data-driven method presented in
Section 4. The results included here only pertain to the C-rate of 1, omitting the results for C-rates
of 2 and 3 as these were found to be always economically inferior to the C-rate of 1. The results are
obtained over a range of surplus and deficit penalties, from 4 to 36 c/kWh with steps of 4.

5.1. Optimal BESS Capacity

Figure 17 presents the BESS capacity that yields the highest levelized savings for each price range.
The same results are presented numerically in Table 5. As expected, the optimal BESS capacity is
higher for higher surplus and deficit penalties.
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Figure 17. Optimal BESS size (MW/MWh).

Table 5. Optimal BESS size (MW/MWh); penalties are in c/kWh.

ρsur \
ρde f 4 8 12 16 20 24 28 32 36

4 0.5 1 2.75 4 5.25 5.75 6.5 7.5 8
8 1.25 3 4.25 5.25 5.75 6.5 7.5 8.25 9.25
12 3.25 4.5 5.25 5.75 7.25 8 8.25 9.25 9.25
16 4.5 5.5 6.5 7.5 8 8.5 9.25 9.25 10.75
20 5.5 6.5 7.5 8 8.5 9.25 10.5 10.75 11.25
24 6.5 7.5 8 8.5 9.25 10.5 11.25 11.25 11.25
28 7.5 8 8.75 9.25 10.5 11.25 11.25 11.25 12
32 8 9.25 9.25 10.75 11.25 11.25 11.25 12 12.75
36 9.25 9.25 10.75 11.25 11.25 11.25 12 14 14

5.2. Highest Achievable Savings

Figure 18 presents the highest achievable levelized savings for each price range. The same results
are presented numerically in Table 6. As expected, the highest achievable savings increases as the
surplus and deficit penalties increase.
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Figure 18. Highest achievable levelized savings.

Table 6. Maximum achievable levelized savings in million $; penalties are in c/kWh.

ρsur \
ρde f 4 8 12 16 20 24 28 32 36

4 −0.021 0.003 0.076 0.179 0.295 0.419 0.547 0.681 0.817
8 0.008 0.086 0.191 0.308 0.432 0.561 0.695 0.837 0.971

12 0.097 0.203 0.322 0.446 0.575 0.710 0.847 0.987 1.128
16 0.216 0.335 0.460 0.590 0.725 0.862 1.002 1.143 1.288
20 0.348 0.474 0.604 0.739 0.876 1.017 1.159 1.304 1.451
24 0.4875 0.619 0.754 0.891 1.032 1.174 1.320 1.467 1.614
28 0.633 0.769 0.906 1.048 1.190 1.336 1.483 1.630 1.777
32 0.784 0.922 1.063 1.206 1.352 1.499 1.646 1.793 1.943
36 0.937 1.078 1.221 1.368 1.515 1.662 1.809 1.959 2.112

5.3. BESS Lifetime

Figure 19 presents the amount of time it takes to reach an SOH of 80% for various BESS capacities.
As BESS capacity increases, its lifetime also increases because of slower cycling aging.
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Figure 19. BESS lifetime in years.

5.4. Interpretation and Analysis

Results presented in Figures 17–19 and Tables 5 and 6 enable the optimal choice of BESS size
over the 15-year course of the project. Without loss of generality, surplus and deficit penalties of
8 c/kWh and 16 c/kWh are used as an example here; the analysis for the rest of penalty prices is
similar. Referring to Table 5, it can be concluded that a 5.25 MWh BESS yields the highest achievable
levelized savings of $308,000. Referring to Figure 19, such BESS takes approximately 5 years to reach
an SOH of 80%, i.e., it should be replaced after five years. To fulfill the project lifetime of 15 years,
it can be concluded that a 15.75 MWh/5.25 MW BESS would yield the highest achievable levelized



Energies 2019, 12, 2228 20 of 23

cost for the entire 15-year period. Thus, the general procedure to obtain the optimal BESS energy and
power capacity for any project lifetime is as follows:

1. From Table 5, find the optimal power, Popt.
2. From Figure 19, find the BESS lifetime, BL.
3. Set the project lifetime, PL.
4. Using Equation (24), find the optimal energy capacity, Eopt:

Eopt = Popt
PL
BL

. (24)

Using the above-mentioned process, Table 7 provides the optimal BESS energy and power capacity
for the 15-year project. Considering penalties of ∼12 c/kWh, the optimal BESS sizing for the case of
Summerside Electric is 5.25 MW and 15 MWh of BESS power and energy capacity respectively, which
would yield an annual levelized net savings of ∼$322,000.

Table 7. Optimal BESS size energy capacity (MWh) for a 15 year-project lifetime; optimal power
capacity (MW) is the same as Table 5; penalties are in c/kWh.

ρsur \
ρde f 4 8 12 16 20 24 28 32 36

4 2.5 4.5 10 12.75 15 15.75 16.75 18.25 19
8 5.5 10.75 13.25 15 15.75 16.75 18.25 19.25 20.5

12 11.25 13.75 15 15.75 18 19 19.25 20.5 20.5
16 13.75 15.25 16.75 18.25 19 19.5 20.5 20.5 22.25
20 15.25 16.75 18.25 19 19.5 20.5 22 22.25 23
24 16.75 18.25 19 19.5 20.5 22 23 23 23
28 18.25 19 20 20.5 22 23 23 23 23.75
32 19 20.5 20.5 22.25 23 23 23 23.75 24.75
36 20.5 20.5 22.25 23 23 23 23.75 26.25 26.25

Considering the results presented herein, it can be concluded that, for almost all ranges of surplus
and deficit penalties, BESS investment yields significant savings. Note that these savings would be on
top of savings due to more accurate predictors, previously presented in Figure 12.

6. Conclusions

Two years of data from Summerside Electric are leveraged to reveal the potential to mitigate
the negative impact of RES variability on energy scheduling of renewable-penetrated grids. Thus,
the procedure to process data and prepare it for RES prediction is outlined. It is demonstrated that
state-of-the-art time series predictors can bring significant operational savings. The results obtained
from time series prediction is utilized to propose a novel data-driven BESS sizing technique for energy
scheduling applications in renewable-penetrated grids and microgrids. The data-driven approach
mitigates the trade-off between data resolution and accuracy, and provides a robust methodology to
consider for both BESS energy and power nominal rating. It is shown that a properly sized BESS can
bring significant savings for a wide range of energy surplus and deficit penalties, even in the presence
of accurate RES and load predictors. Please note that any of the proposed techniques, including the
data-driven BESS sizing, are applicable to other grids with similar operation paradigm, as long as
the necessary data is provided and processed accordingly. Future work can extend the proposed
data-driven BESS sizing approach to take other grid applications and ancillary services into account.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Autocorrelation
ADF Augmented Dickey–Fuller
AI Artificial Intelligence
ARIMA Autoregressive Integrated Moving Average
BESS Battery Energy Storage Systems
BFE Backward Feature Elimination
ESS Energy Storage Systems
LIB Lithium-Ion Battery
MAE Mean Absolute Error
MOU Memorandum of Understanding
NREL National Renewable Energy Laboratory
NWP Numerical Weather Prediction
PAC Partial Autocorrelation
PEI Prince Edward Island
RES Renewable Energy Resources
SCADA Supervisory Control and Data Acquisition
SEETSS Summerside Electric Energy Transmission Scheduling System
SOH State of Health
SVM Support Vector Machine
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