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Abstract: Although an analytical design approach-based digital controller—which is essentially
a deadbeat controller—shows zero steady-state error and no intersampling oscillations, it takes a
finite number of sampling periods to settle down to a steady-state value. This paper describes
the application of a derivative-free Nelder–Mead (N–M) simplex method to the digital controller
for retuning of its coefficients intelligently to ensure improved settling and rise times without
disturbing the deadbeat controller characteristics (i.e., no ripples between the sampling periods
and no steady-state error). A switching-mode buck regulator working at 1 MHz in continuous
conduction mode (CCM) is considered as a plant. Numerical simulation results depict that the N–M
algorithm-based optimized digital controller not only shows improved steady-state and transient
performance but also guarantees rigorous robustness against model uncertainty and disturbance as
compared to its traditional counterpart, as well as the other optimized digital controller fine-tuned
through other derivative-free metaheuristic optimization techniques, such as the genetic algorithm
(GA). A system generator-based hardware software co-simulation is also performed to validate the
simulation results.

Keywords: Nelder–Mead simplex method; analytical design approach based digital controller;
engineering optimization; switching regulator

1. Introduction

Tightly regulated DC-to-DC switching regulators are a requirement of modern low-power
high-frequency (for enhancing the integration of devices and passive components) digital devices.
Perturbations in input voltage or load current may keep the output voltage unregulated, thus reducing
the devices life. There is a need to introduce a controller into the loop to keep the output voltage
regulated, regardless of the changes in load current and input voltage. A direct discrete-time controller
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designed on the basis of an analytical design approach (synthesis rather than analysis approach)
offers somewhat nominal performance. This paper proposes that better transient response and
steady-state error characteristics can be achieved by retuning the digital controller coefficients using
the Nelder–Mead local search algorithm.

Both emulation and direct digital design approaches are extensively used for constructing digital
controllers for a wide variety of engineering applications. Reference [1] suggested a new discrete-time
PID controller with a filter, combining the pole-zero cancellation (PZC) and inversion formulae-based
analytical design control methodologies, for the buck regulator to ensure sufficiently large stability
margins and superior performance. The method, however, involves heavy computations. Abbas et al.
in Reference [2] successfully designed the phase lead-lag control theory-based digital controllers for the
buck regulator, with consideration of all the control loop parameters. Reference [3] suggested a digital
gain scheduling controller designed on the basis of lead-lag control theory for the modeled DC-DC
series resonant converter for DC wind turbines, operating in continuous conduction mode (CCM).
In Reference [4], for the sake of surmounting the difficulties in estimating discrete buck converter
power stage parameters from noise, a new self-tuned Kalman filter (KF)-based parametric system
identification technique was proposed. A direct digital design technique based PID controller was then
applied to the identified buck converter to improve the tracking performance. The paper, however,
lacks the detail of designing the PID controller. A unified nonlinear robust current observer for
robust sensorless controllers of switching regulators was proposed in Reference [5]. Although the
observer speeds up the tuning process, it requires a memory cheaper code. In Reference [6], based on
the switched Lyapunov theory, a novel sampled-data control approach (essentially a digital control
strategy) was developed for the buck converter working in CCM and DCM modes with variable
switching frequency operation to ensure set-point tracking and stability. However, to realize the
controller, a sampled data switched model for the converter has to be developed. In Reference [7],
a sampled data controller was designed for a buck converter to realize the concept of sensorless control,
with the help of direct digital control theory; it was targeted to minimize the output voltage fluctuations
because of load variations.

Deadbeat control theory is also employed for the design of digital controllers for various
engineering applications. In Reference [8], a discrete gain variable controller was designed on the
basis of classical deadbeat control methodology, while the gain of nonlinear coupled equations was
determined by using evolutionary techniques, such as the genetic algorithm along with the Newton
Raphson method. The simple optimized deadbeat-controlled system shows comparable results with
that of the finite control step method. In Reference [9] a single-input, single-output sampled data system
was considered as a plant. Deadbeat control methodology was applied to minimize the cumulative
time-weighted functions of tracking error in the frequency domain. The application of deadbeat control
quickly reduces the error sequence. Two examples of sample data system were presented to show
the performance of deadbeat control techniques. In Reference [10] polynomial-based control was
applied for a double-boost converter. The controller was tested against the changes in source voltage
and load resistance. It was found that, although the deadbeat controller had a great ability to track
the error signal, it was more sensitive to parametric changes. Similarly, deadbeat control theory was
employed to design a digital controller for an inverter of distributed generators. The current controlled
deadbeat controller was designed in such a way to position the closed loop poles at the origin with
a minimum disturbance input gain [11]. In all the above-mentioned references, the digital control
laws are tuned using the traditional control theory for ensuring a nominal performance, which can be
further improved using optimization techniques.

Numerous examples in the literature are reported where the digital control laws are optimized using
the various advanced calculus-based or metaheuristic-based optimization techniques. For example,
in Reference [12], the Levenberg–Marquardt (LM) algorithm-based nonlinear least squares optimization
method was applied to PZC-based digital controllers for the buck regulator. The numerical results
show tremendous improvement for the optimized controllers. Reference [13] suggested the dynamic
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PSO (dPSO)-based optimization of digital fractional order PID (FO-PID) controller applied to the buck
converter fed DC motor for optimal speed control. Similarly, optimization techniques such as PSO
was employed for optimizing the parameters of the fuzzy controller applied to the Quasi-Z Source
converter [14] and for fine-tuning digital PID controller parameters [15]; the magnitude optimum
criterion for developing explicit analytical tuning rules for digital PID controllers [16]; the genetic
optimization scheme for improving a single-input fuzzy PID controller for the buck regulator [17];
the election campaign optimization algorithm for tuning digital PID controllers for the discrete-time
system [18]; the gradient descent method for refining the digital control law for ac-to-dc converters
to achieve unity power factor [19]. Similarly, in Reference [20], different swarm intelligence-based
optimization techniques (i.e., an artificial bee colony, cuckoo search, etc.) were employed to get the
enhanced speed and efficient maximum power point tracking algorithm for a photovoltaic system.
Even promising derivative-free metaheuristic techniques are also subjected to limitations: The PSO
suffers from the premature convergence problem like other stochastic algorithms; the GA requires
coding the data to be in categorical form.

Well-recognized traditional control theory-based digital controllers, if optimized in an efficient
way even with local search optimization methods, may offer excellent transient response and
steady-state error characteristics. Motivated by this concept, this paper proposes the analytical
design approach-based optimized digital controller. In this research, it was observed that the digital
controller was optimized more efficiently with substantially fewer objective function evaluations by a
simpler and derivative-free N–M method, as compared to other the derivative-free GA metaheuristic
method. There are various factors responsible for the success of the N–M method over the other
methods. It is simple in structure and performs deterministic transformations. The algorithm employs
operations, namely, reflection, expansion, contraction and shrinkage while finding new lower points in
the search space easily without using the information of derivatives. Ridges in the objective surface are
easily traversed by the algorithm, while exploring the new lower points. This characteristic prevents the
algorithm from converging too early. This justifies the applicability of the N–M method for optimizing
the discrete-time controllers for switching converters. In addition, according to the best knowledge of
the authors, the analytical design method has not been optimized by the N–M method.

The paper commences with the modeling of the buck switching converter to be controlled in
Section 2. The complete design procedure of the analytical design approach-based digital controller
is highlighted in Section 3. The suggested Nelder–Mead algorithm for optimizing digital controller
is treated in Section 4. Comprehensive numerical simulation results with discussion are presented
in Section 5. A cycle-accurate hardware-software co-simulation for fast prototyping is performed in
Section 6. The findings of the paper are concluded in Section 7.

2. Buck Converter Modeling

A highly unregulated DC input voltage Vin got converted into a lowly regulated output voltage
Vout using a buck converter, whose circuit diagram is shown in Figure 1. The circuit includes the
unavoidable parasitic elements, like inductor DCR and capacitor ESR. DCR is the direct current
resistance of inductor while ESR is the equivalent series resistance of the capacitor, denoted by RL
and RC (in our case), respectively. An additional zero is introduced in the buck converter’s transfer
function because of the ESR of the capacitor [21]. For the lossless buck converter, the input voltage
Vin, the output voltage Vout and the switch duty ratio D are interrelated, over a period of steady-state
operation, as:

PL,in = 1
T

DT∫
0

(Vin −Vout)ILdt = 1
T

T∫
DT

VoutILdt = PL,out

⇒
1
T (Vin −Vout)ILDT = 1

T VoutIL(T −DT)⇒ Vout = D ·Vin

(1)

The specifications of the buck converter to be considered throughout the paper are as the following:
Vin = 3.6 V, Vout = 2.0 V, L = 6.8 µH, C = 6.8 µF, rL = 505 mΩ, rC = 50 mΩ, f s = 1 MHz, and Ts = 1/f s =
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1 µs. The detailed block diagram (also including the buck converter circuit diagram) of the closed-loop
digital control system is shown in Figure 1.
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Figure 1. Closed-loop digital control system block diagram (also including the circuit diagram).

As can be observed from Figure 1, the output voltage variation v̂out(s) is a linear combination
of the input voltage variation v̂in(s), the load current variation îout(s) and the small-signal duty cycle
perturbation d̂(s), propagated through the transfer functions, namely the line-to-output transfer function
Gvg(s), the converter output impedance of the loaded power converter Zo(s) and the control-to-output
transfer function Gvd(s), respectively. That is to say:

v̂out(s) = Gvd(s) · d̂(s) + Gvg(s) · v̂in(s) −Zo(s) · îout(s) (2)

The three transfer functions Gvd(s), Gvg(s), and Zo(s), derived using the state-space averaging
technique [22,23], are expressed by:

Gvd(s) =
v̂out(s)

d̂(s)

∣∣∣∣∣ v̂in(s) = 0
îout(s) = 0

= Vin(s)


(

R
R+RL

)
(RCCs+1)

LC
(

R+RC
R+RL

)
s2+

(
L

R+RL
+C(R‖RL)+RCC

)
s+1


= Vin

(
R

R+RL

) s
ωZERO

+1

s2
ω0

2 +
s

Qω0
+1


(3)

Gvg(s) =
v̂out(s)
v̂in(s)

∣∣∣∣∣∣ d̂(s) = 0
îout(s) = 0

= D


(

R
R+RL

)
(RCCs + 1)

LC
(R+RC

R+RL

)
s2 +

(
L

R+RL
+ C(R ‖ RL) + RCC

)
s + 1


= D

( R
R + RL

)
s

ωZERO
+ 1

s2

ω02 +
s

Qω0
+ 1


(4)
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Zo(s) = −
v̂out(s)

îout(s)

∣∣∣∣∣∣ d̂(s) = 0
v̂in(s) = 0

= RL


(

R
R+RL

)
(1 + Ls/RL)(RCCs + 1)

LC
(R+RC

R+RL

)
s2 +

(
L

R+RL
+ C(R ‖ RL) + RCC

)
s + 1


= RL

( R
R + RL

) ( s
RL/L + 1

)(
s

ωZERO
+ 1

)
(

s2

ω02 +
s

Qω0
+ 1

)
(5)

With:
ω0 = 2π f0 =

1√
LC R+RC

R+RL

≈
1
√

LC
i f RC << R, RL << R; (6)

ωZERO = 2π fZERO =
1

RCC
(7)

Q =
1

2ζ
=

1

ω0
(

L
R+RL

+ RRLC
R+RL

+ RCC
) ≈ 1

ω0
(

L
R + RLC + RCC

) (8)

By the introduction of a feedback loop, the effect of v̂in(s) and îout(s) on v̂out(s) can be diminished.
The v̂out(s), with the feedback loop, takes the following form:

v̂out(s) = v̂re f (s) ·
1

H(s)
·

T
1 + T

+ v̂in(s) ·
Gvg(s)
1 + T

− îout(s) ·
Zo(s)
1 + T

(9)

where the product of all the gains in the loop designated as loop gain T is given by:

T = Gh0(s)·Gvd(s)·Gc(z)·H(s)·GADC (10)

Here, GADC and the sensor gain H(s) are considered in unity for the sake of simplicity. For a
sufficiently large magnitude in loop gain T, the last two terms of Equation (2) can be ignored, as they
are reduced by a factor of 1/(1 + T). However, the first term suggests that, for the known DC reference
Vre f and DC sensor gain H(0), v̂out(s) may precisely track Vre f (s) provided that v̂re f = 0 and ‖T(0)‖ � 1.
The first term, therefore, is responsible for the output voltage regulation and stability of the converter.
Correspondingly, the control-to-output transfer function Gvd(s) is considered as a plant for the digital
controller design.

In order to design the direct digital design approach-based digital controller, the second-order
analog buck converter Gp(s) needs to be discretized. The Gvd(s) (which is actually Gp(s)) preceded by
the zero-order-hold (ZOH), for the component values mentioned above with a sampling period of 1 µs,
can be discretized as:

Gp(z)= Z
{

1− e−sTs

s
·Gp(s)

}
=

(
1− z−1

)
·Z

{
Gp(s)

s

}

=
0.061653z−1

(
1 + 0.1781z−1

)
(1− 1.87z−1 + 0.8924z−2)

(11)

3. Analytical Design Approach-Based Digital Controller

The analytically designed discrete deadbeat controller enforces the error sequence of a closed-loop
control system to become zero on the application of the specific time-domain input signal. The output
response of the feedback system exhibits minimum settling time, no inter-sampling ripples and
zero steady-state error. The controller achieves the reference voltage in a quick and efficient
manner. The analytical design approach-based digital controller algorithm [8,10,24] is explained
by the following steps:
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1. The analog transfer function of plant Gp(s) is firstly discretized by using one of the transformation
techniques like ZOH (in our case), with the sampling period Ts, as follows:

Gp(z) = Z
{

1− e−Ts

s
Gp(s)

}
=

(
1− z−1

)
Z
(

Gp(s)
s

)
=

0.061653z−1
(
1 + 0.1718z−1

)
(1− 1.87z−1 + 0.8924z−2)

(12)

2. In order to have minimum settling time with zero steady-state error, the closed-loop transfer
function described by Equation (13):

T(z) =
Y(z)
R(z)

=
Gc(z)Gp(z)

1 + Gc(z)Gp(z)
(13)

should have finite impulse response as:

T(z) =
N∑

q=1

aq.z−q = a0 + a1z−1 + a2z−2 + · · ·+ aNz−N (14)

where N is the order of the overall system and is equal to or greater than the order of plant n,
and a1 to aN are the coefficients of the impulse response of the closed-loop control system. From
Equation (14), two deadbeat control criteria can be explored as follows:

• The sum of the coefficients of polynomial
N∑

q=1
aq should be equal to 1, i.e.,

N∑
q=1

aq = 1. This is

actually the DC gain of the system.
• For the controller to exhibit the deadbeat response, all closed-loop poles should be forced at

origin. This can be mathematically written as T(z) = z−q where q ≥ 1 is termed as the control
system delay and is the integral multiple of Ts with the minimum values of 1. It should
be clear that T(z) should not contain any value with a positive term of z; otherwise the
system responds before the input is applied, which is against the physical realization of
the controller.

As the transfer function of the buck converter is of second order (n = 2) and the series expansion
of Gp(z) starts with z−1, the closed-loop pulse transfer function should be of the following form:

T(z) = a1z−1 + a2z−2 (15)

3. The controller pulse transfer function can be derived by rearranging Equation (13) as:

Gc(z) =
T(z)

Gp(z)·[1− T(z)]
(16)

4. In order to achieve the steady-state value with the limited number of sampling periods, the error
sequence is described as the difference of the reference signal and the output signal:

E(z) = R(z) −Y(z) = R(z)[1− T(z)] (17)

should be minimized in a quicker way. By substituting the discrete-time step input signal,
Equation (17) can be written as:

E(z) =
(1− T(z))
(1− z−1)

(18)
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In order to achieve the steady-state value with a finite number of sampling periods, 1− T(z) must
be of the following form:

1− T(z) =
(
1− z−1

)
·N(z) (19)

where N(z) is a polynomial with finite terms in negative power of z. By rearranging Equation (19),
N(z) can be written as:

N(z) =
1− T(z)
1− z−1

=
1− a1z−1

− a2z−2

1− z−1
(20)

The solution of Equation (20) gives the quotient NQ(z) and the remainder NR(z) as:

NQ(z) = 1 + (1− a1)z−1 (21)

NR(z) = (1− a1 − a2)z−2 (22)

5. In order to avoid the inter-sampling oscillations after the steady-state is reached, D(z) must be of
the following form:

D(z) = b0 + b1z−1 (23)

From Figure 1, D(z) can be written as:

D(z) = T(z)·
R(z)
Gp(z)

(24)

By substituting the unit step input and digitized plant in Equation (24), and for D(z) to be similar
as in Equation (23), T(z) must be of the following form:

T(z) =
(
0.61653 + 0.010981z−1

)
T1

⇒ T1 = a1z−1+a2z−2

0.61653+0.010981z−1

(25)

The solution of Equation (25) gives quotient T1Q and remainder T1R equations as:

T1Q = 1.622a1z−1 (26)

T1R = (a2 − 0.17811a1)z−2 (27)

6. As the controller forces the error sequence to zero with minimum sampling period and no
inter-sampling oscillations as the steady-state is reached, both the remainder terms defined in
Equations (22) and (27) must be equal to zero. And by solving simultaneously both the equations,
the coefficient of T(z) can be calculated.

7. Thus, by substituting the coefficients of T(z), the discrete time controller comes out to be:

Gc(z) =
13.77z2

− 25.75z + 12.29
z2 − 0.8488z− 0.1512

(28)

This completes the design procedure of the controller.

4. Derivative-Free Nelder–Mead Simplex Algorithm

One of the direct search methods (DRMs), named the Nelder–Mead (N–M) simplex method is
employed for fine-tuning of the digital compensator, designed on the basis of an analytical design
approach. The method optimizes the compensator by minimizing the voltage error signal in a quicker
way without considering the information of derivatives. The objective function, in a multidimensional
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space, considered for minimizing the cost (error signal) is the integral of the squared error (ISE) and is
given by:

ISE : J =

∞∫
0

e2(t)dt, e(t) = Vout(t) −Vre f (t), (29)

The N–M algorithm adopted here is proposed by Lagarias et al. [25] and does not use numerical
or analytic gradients. Since no bounds (lower and upper) on decision variables are imposed,
the optimization problem is essentially the unconstrained one. There is no guarantee of convergence of
the algorithm to a local optimum.

The n + 1 points of n-dimensional simplex actually represent the solutions of the problem.
Regarding the construction of a simplex around initial guess x0, each component x0(i) of x0 adds 5%.
In addition to x0, n vectors constitute the elements of n-dimensional simplex. The algorithm employs
four operations, namely, reflection, expansion, contraction and shrinkage during each of the iterations.
At each iteration of the algorithm, the simplex modifies itself repeatedly according to the following
way:

1. Vertices Representation: First of all, all n + 1 points (vertices) in the current simplex are denoted
by xi, i = 1, . . . , n + 1.

2. Order: The vertices in the simplex are ordered such that f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1).
This implies that, f (x1) refers to the best point whereas f (xn+1) represents the worst point.
At each step in the iteration, the current worst point xn+1 is discarded and replaced by another
point, which becomes part of the simplex.

3. Reflection: The reflection point xr is generated by:

xr = 2xm − xn+1

where xm represents the centroid of the n best vertices except xn+1 and is calculated by:

xm =
n∑

i=1

xi/n

Correspondingly, f (xr) is then calculated. If f (x1) ≤ f (xr) < f (xn), xr gets accepted and replaces
xn+1 and the iteration is terminated.

4. Expansion: If f (xr) ≤ f (x1), the expansion point xe is evaluated by:

xe = xm + 2(xm − xn+1)

Eventually, f (xe) is then calculated. If f (xe) < f (xr), xe is accepted and the iteration is terminated.
Otherwise (if f (xe) ≥ f (xr)), xr is accepted and the iteration is terminated.

5. Contraction: If f (xr) ≥ f (xn), a contraction between xm and the better of xn+1 and xr, is carried
out.

a. Outside: If f (xn) ≤ f (xr) < f (xn+1), an outside contraction is performed. xoc is calculated
by:

xoc = xm + (xr − xm)/2

Correspondingly, f (xoc) is calculated. If f (xoc) ≤ f (xr), xoc is accepted and the iteration is
terminated. Otherwise, a shrinkage is performed (step 6)).
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b. Inside: If f (xr) ≥ f (xn+1), an inside contraction is performed. xic is calculated by:

xic = xm + (xn+1 − xm)/2

Correspondingly, f (xic) is calculated. If f (xic) ≤ f (xn+1), xic is accepted and the iteration is
terminated. Otherwise, a shrinkage is performed (step 6)).

6. Shrinkage: The n (new) points are generated by:

vi = x1 + (xi − x1)/2 , i = 2, . . . , n + 1, (30)

f (vi) is calculated. Thus, at the next iteration, x1, v2, . . . , vn+1 constitute the vertices of the simplex.

The points that the algorithm might calculate in the procedure, along with each new possible form
of simplex, are depicted in Figure 2. A bold outline represents the original simplex. The algorithm
stops as the stopping criteria meet.
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The application of the N–M optimization method to the conventional deadbeat controller results
in an optimized controller. By taking the initial point as a real vector or real array of the coefficients of
the digital controller computed through analytical design approach, the algorithm starts minimizing
the cost function (the integral of the squared error (ISE)) at each iteration and ultimately comes up
with the updated coefficients of the digital controller. The first few iterations, in the same run, as they
display during the progression of the algorithm, are highlighted in Figure 3. Inspection of the results
of the optimization reveals a reduction of the cost function monotonically with each iteration, thus
ensuring better set-point tracking. Unoptimized and optimized digital controllers are described in
Table 1.
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Figure 3. First few iterations performed by the algorithm.

Table 1. Unoptimized and optimized digital controllers transfer functions.

Unoptimized Digital Controller Optimized Digital Controller

13.77z2
−25.75z+12.29

z2−0.8488z−0.1512
13.7941z2

−25.7944z+12.3097
0.8504z2−0.7046z−0.1459 = 16.2207z2

−30.3321z+14.4752
z2−0.8286z−0.1716

It should be noted that with the increase of problem dimension, the performance of the N–M
method, however, deteriorates. This is because it has to count the objective function to be minimized a
lot of the time, thus taking longer computational time.

5. Simulation Results and Discussion

In order to investigate the performance of the Nelder–Mead simplex algorithm-based optimized
digital compensators and to show its supremacy over its unoptimized counterpart and the one
optimized by other derivative-free metaheuristic techniques, such as the GA, numerical simulation
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results computed through MATLAB/Simulink environment are presented. A fixed-type solver is used
for simulation purposes.

5.1. Nominal Performance

The optimized digital controller offered a much-improved output voltage response with a reduced
rise, peak and settling times and overshoot than that of the conventional digital controller (see Figure 4).
There is always a trade-off between the transient response characteristics and steady-state error
characteristics. Improving one type of characteristics deteriorates the other type of characteristics.
The Nelder–Mead algorithm, however, intelligently retuned the compensator coefficients without
disturbing the deadbeat characteristics associated with Vout. The performance parameters offered by
the optimized and unoptimized controllers are tabulated in Table 2.
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Table 2. Comparison of performance parameters.

Case No. Digital Controller
Performance Parameters

Rise Time (s) Peak Time (s) Settling Time (s)

1
Unoptimized 1.2203 × 10−6 1.1000 × 10−5 1.8701 × 10−6

Optimized 7.9977 × 10−7 2.0000 × 10−6 9.7972 × 10−7

In Figure 5, the control signal to the plant is also presented for the unoptimized and optimized
compensated systems. As can be observed, a little bit more control effort was required, for the
optimized case, to decrease the regulation times.

Just for the sake of comparison and to investigate how other derivative-free metaheuristic
techniques behave while fine-tuning the controller coefficients, another derivative-free metaheuristic
technique, the GA, was employed to retune the controller coefficients. It is traditionally a well-known
algorithm and becomes most effective (by evolving population) especially when very little information
is available about the search. One can easily understand the concept of bio-inspired operators such
as selection, crossover and mutation used by it. Further, it comes with the advantages of parallel
search and random excursions. This is the reason for the selection of this algorithm for the comparison
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purpose. Of course, other metaheuristic algorithms could also be selected. The GA parameters used
for the simulation purposes are tabulated in Table 3.
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Table 3. The genetic algorithm (GA) parameter values.

GA Parameters Value

Maximum Number of Generations/Iterations (Termination Criteria) 50
Initial Population Size/Number of Chromosomes (Genomes) 200

Number of Genes in Each Chromosome 6
Selection Strategy Stochastic Uniform

Crossover Rate or Probability 0.65
Mutation Function Adaptive Feasible

Fitness Function (to be Minimized) Type ISE
Function Tolerance 1 × 10−6

From Figure 6, it can be inferred that the GA could not perform better than the N–M method.
It offered a relatively longer rise time and peak time of 1.1395 × 10−6 s and 4 × 10−6 s, respectively,
with a larger overshoot of 23.8728%. In addition, as the deadbeat characteristics lost their nature,
the controller optimized by the GA was no longer a deadbeat controller.

The findings depict that the N–M method minimizes the unconstrained multivariable objective
function (ISE in our case) more rigorously, compared to the GA metaheuristic approach. The successful
optimized control solution suggests that the scorned DSMs deserve more attention from the
optimization community.
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5.2. Load Transient Response

The optimized controller (tuned by the N–M method) not only exhibited better nominal
characteristics but also an excellent load transient response. For a change in load resistance from 4.5 Ω
(iout = 444.44 mA) to 9.0 Ω (iout = 222.22 mA) and then from 9.0 Ω to 4.5 Ω, the optimized controller
recovered more rapidly to its steady-state value with a peak to peak voltage spike of 63 mV, compared
to the unoptimized controller, which offered 68 mV for the peak to peak voltage spike (see Figure 7).
The optimized controller, therefore, showed more robustness against the variations in load current to
maintain the output voltage at the desired level.
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5.3. Disturbance Rejection

The variations in converter power stage parameters can be modeled by disturbance. For a step
disturbance occurring at the plant input, the optimized controller rejected the disturbance quickly,
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without an increase of the overshoot, as compared to the unoptimized controller (see Figure 8).
The optimized controller thus exhibited a good disturbance rejection capability.
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5.4. Set-Point Tracking

The closed-loop set-point tracking demands that e(t) = Vre f (t) −Vout(t)→ 0 as t→∞ . As can
be observed from Figure 9, variations in the reference voltage from 2 V to 3 V and then from 3 V
to 2 V was rapidly followed by the optimized digital compensator, with regard to its unoptimized
counterpart, thus validating its significance.
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6. Hardware-Software Co-Simulation

The proposed optimized controller was also validated through hardware/software co-simulation
using the Xilinx Artix-7 FPGA board (XC7A35T-1CPG236C) from Xilinx, Inc. (an American technology
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company), which was connected to a PC using a JTAG interface. To this end, a controller implementable
model was developed using the Xilinx System Generator (XSG) toolset [26] in the MATLAB/Simulink
environment. To test the XSG hardware controller, the error signal generated by the difference of
reference signal and output signal, after digitization through ADC, in the Simulink environment, was
made available to the controller using the “Gateway In” block. Similarly, the “Gateway Out” block
was used to connect the controller output to the plant. These blocks performed the necessary data type
conversions. This implies that some information may be lost during these conversions. However, the
resolution of controller coefficients was of high significance, which may degrade the performance of
the controller. Therefore, the controller coefficients were coded using single-precision floating-point
data type, having a word length of 32 bits. With the successful model development, the executable
bitstream was generated by the compiler, which was then downloaded into the FPGA board through
the JTAG interface. Note that no VHDL code was required to be developed for testing the controller.
Thus, the XSG-based hardware implementation shortens the development time drastically.

The steps in performing hardware/software co-simulation are as follows:

1. The optimized controller (described in Table 1) is re-written in the following form:

Gc(z) =
D(z)
E(z)

= 16.2207z2
−30.3321z+14.4752

z2−0.8286z−0.1716

= 16.2207−30.3321z−1+14.4752z−2

1−0.8286z−1−0.1716z−2

(31)

2. The above re-organized controller is converted into a difference equation as:

d(k) = 16.2207e(k) − 30.3321e(k− 1) + 14.4752e(k− 2) + 0.8286d(k− 1)

+0.1716d(k− 2)
(32)

3. The controller described in Equation (30) or (31) is realized using adders/subtractors, multipliers,
and delay elements from the XSG library as shown in Figure 10.
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Figure 10. Digital controller realization using the Xilinx System Generator (XSG) library elements.

For realization of controller, standard programming was adopted, which uses n delay elements
as compared to direct programming, which uses n + m, where n (n = 2) and m (m = 2 in our case)
represent the number of poles and zeros respectively, such that n ≥ m [27].

4. The controller was inserted inside the control loop of the buck converter and the resulting model
is shown in Figure 11.
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5. The overall model was compiled and the corresponding bitstream generated after the synthesis of
VHDL code was downloaded into the FPGA. The situation of programming the FPGA is depicted
in Figure 12.

6. Now, the output regulation of the controlled buck converter in a hardware/software co-simulation
setting was analyzed. The regulation performance is depicted in Figure 13. It can be seen that
the XSG-based controller exhibited a performance comparable to what was obtained during
the simulations.
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7. Conclusions

The paper suggests the application of the derivative-free Nelder–Mead simplex algorithm to
the deadbeat control theory-based digital controller to ameliorate the performance. The nominally
computed digital controller parameters were readjusted through the N–M algorithm. The optimized
digital controller offered a superior load transient response, disturbance rejection, setpoint tracking
and so on, compared to its unoptimized counterpart. While optimizing the controller, the deadbeat
characteristics remained the same, but presented improved time-domain characteristics. Usually, an
improvement in response times introduces overshoots, but this was not the case here. Like the GA,
the N–M method does not involve operators like selection, crossover and mutation and thus was
found to exhibit rigorous convergence characteristics. MATLAB/Simulink-based numerical results
showed the superiority of the N–M method over the other derivative-free algorithms, like the GA.
A system generator-based hardware into the loop implementation was performed to validate the
simulation results. Variants of N–M method can be introduced, in the future, for further improvement
in performance.
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