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Abstract: With the spreading and applying of microgrids, the economic and environment friendly
microgrid operations are required eagerly. For the dispatch of practical microgrids, power loss from
energy conversion devices should be considered to improve the efficiency. This paper presents
a two-stage dispatch (TSD) model based on the day-ahead scheduling and the real-time scheduling
to optimize dispatch of microgrids. The power loss cost of conversion devices is considered as one
of the optimization objectives in order to reduce the total cost of microgrid operations and improve
the utility efficiency of renewable energy. A hybrid particle swarm optimization and opposition-based
learning gravitational search algorithm (PSO-OGSA) is proposed to solve the optimization problem
considering various constraints. Some improvements of PSO-OGSA, such as the distribution
optimization of initial populations, the improved inertial mass update rule, and the acceleration
mechanism combining the memory and community of PSO, have been integrated into the proposed
approach to obtain the best solution for the optimization dispatch problem. The simulation results for
several benchmark test functions and an actual test microgrid are employed to show the effectiveness
and validity of the proposed model and algorithm.

Keywords: microgrid optimization dispatch; gravitational search algorithm; multi-objective;
real-time scheduling

1. Introduction

The increasing seriousness of the energy crisis and environment preservation create new
challenges for the energy industry. How to improve the utilization efficiency of energy while
reducing power production costs and solving pollution problems? The emergence of microgrids
has brought new effective technology to solve the problems facing the current energy industry. With
the development of renewable energy (wind, solar, etc.) generation technology, the renewable energy
source is increasingly used as a distributed generation (DG) unit in microgrids. However, the higher
intermittent of renewables would lead to power fluctuation, that means coordinated operation of
microgrids cannot be implemented. Energy management is the premise and basis of the coordinated
operation for microgrids; economic optimization dispatch (EOD) is an attractive issue in terms of goals
pursued (minimum-cost, maximum-profit and/or reliable operation, environment concern) and can
face towards the operator and customer at the same time.
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The economy and the environmental benefits of microgrid operation are the key to solving
the EOD problem. So far, many researchers have developed solutions and strategies to handle
the optimization dispatching under different objective and constraint conditions [1–3]. In general,
the dispatch problem is seen as an optimization problem to minimize the operation costs. The authors
in [2] proposed a novel battery operating cost model to maximize the efficient and the cycle life of
the batteries, without considering additional objective functions of optimal scheduling for microgrid
operation. While the optimization dispatch of microgrid to simplify the objectives into single-objective
optimization dispatch (SOOD) problem may be acceptable in some situations, only considering
the SOOD has lead to either neglecting certain benefits or changing constraint conditions, and different
distributed generation units have different objectives or sets of objectives.

The multi-objective optimization dispatch (MOOD) approaches are developed in articles to obtain
optimal scheduling plans for supplying the load under constraint conditions while taking minimum
levels of cost, emission cost and other goals for microgrid operation [4–8]. In [9], an energy management
model based on day-ahead scheduling is proposed to optimize two objectives, the total operation
cost and the CO2 emission cost. In addition, the authors in [10,11] present an optimization dispatch
approach for microgrid operation in order to reduce the operation cost and improve environmental
friendliness. The MOOD approach lets us weigh among several competing objective functions
and explicitly consider the effect of different objective functions within microgrid operation [12–14].
However, the power loss from a large amount of energy conversion devices installed in the microgrid
system has been ignored when solving the MOOD problem. The major losses of each converter come
from device conduction, switching and inductor [15]. According to the related literature, the maximum
power loss of converters can reach up to 16% of conversion power, the minimum power loss is
also equivalent to 2% conversion power [16,17]. Therefore, the power loss is considered as one of
the optimization objectives to solve the MOOD problem in this paper, and the optimal solution of
the MOOD problem is to improve the profit of the operator and utilize efficiency of distributed energy.

Many optimization methods have been proposed to solve the MOOD problem, which is
a multi-objective, multi-constraint and non-linear optimization problem. According to some
published articles, the optimization techniques are mainly classified into three groups, the traditional
mathematical methods, the intelligent optimization methods and hybrid methods. The traditional
mathematical methods, such as dynamic programming [18], stochastic dynamic programming [19],
linear programming [20] and mixed-integer linear programming [21], are applied to solve optimization
dispatch problems on different microgrids. These methods are used for large-scale optimization
problems, and some methods are computationally fast. However, the traditional mathematical
methods are not suitable for the optimization dispatch of a microgrid that is a non-linear, non-smooth
and non-convex problem. Considering the features of the MOOD problem, many intelligent methods
are used to handle the optimization dispatch of a microgrid. For instance, the genetic algorithm
(GA) [22,23], particle swarm optimization (PSO) [24,25], the strength Pareto evolutionary algorithm
(SPEA) [26] and so on have been increasingly proposed for solving the optimization dispatch problem
because of their non-linear mapping, simplicity and powerful search capability. However, the above
intelligent methods present the following shortcomings: many parameters are required to set before
the optimization and most test cases are parameters sensitive, and a single intelligent optimization
method is usually easy to fall into local optimum.

Hybrid method is a technology of integrating two or more different methods to solve the MOOD
problem for a microgrid, and has become a hotspot in research now. Hybrid methods can utilize
the advantages coming from the different methods, and usually obtains satisfied solutions for
optimization dispatch problems in microgrids more easily. Recently, gravitational search algorithm
(GSA) was proposed in [27]; it is a heuristic optimization algorithm based on Newton’s law
of gravity and has high computational efficiency without sacrificing accuracy. The advantages
and performances of GSA for optimization dispatch problems of microgrids have already been
proven [28], and the convergence of GSA is better than the convergence of particle swarm optimization
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(PSO) and genetic algorithm (GA) [29]. Therefore, the aim of this work is to propose a two-stage
dispatch (TSD) model combining the day-ahead scheduling and the real-time scheduling for
optimization dispatches of microgrids. A hybrid particle swarm optimization and opposition-based
learning gravitational search algorithm (PSO-OGSA) is proposed to solve this complicated constrained
MOOD problem. The major contribution of this paper includes the following:

• A TSD model which consists of the day-ahead scheduling stage and the real-time update stage is
proposed to optimize dispatch for microgrid energy management, as shown in Figure 1. The TSD
model embodies different concepts, the first stage is the day-ahead scheduling based on forecast
information to make dispatch plans for the next run day of a microgrid. The second stage,
according to real-time information, updates the dispatch plan for the next few dispatch periods in
the current running day.

• A novel hybrid PSO and opposition-based GSA (PSO-OGSA) is proposed to solve this
complicated-constraints MOOD problem. Opposition-based learning (OL) is used to optimize
the position distribution of initial populations in order to promote the search efficiency of GSA.
The memory and community of PSO have been introduced to improve the acceleration mechanism
of GSA, and the weight based inertial mass update rule has made the agents always move toward
the best solution.
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Figure 1. The block diagram of two-stage dispatch (TSD) for a microgrid.

The rest of this paper is organized as follows. Section 2 contains the microgrid model
and the optimization problem. Section 3 introduces the mathematical formulation of the proposed
PSO-OGSA method to solve the optimization problem. Section 4 contains the simulation and results
analysis. Finally, conclusions are summarized in Section 5.

2. Microgrid System and Problem Formulation

As shown in Figure 2, this microgrid consists of the wind turbines (WT), photovoltaic panel (PV),
diesel generator (DEG), energy storage system (ESS) device, local load and controller and conversion
devices, which can operate island or in grid-connected modes. The operators use both DGs and draw
conventional energy from the main grid to meet load requirements, the surplus energy from
the microgrid is stored in storage system for future use. In this paper, the operation cost, emission cost
and power loss cost are considered as the multi-objectives to solve the MOOD problem.
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Figure 2. The schematic diagram of microgrid system.

2.1. Problem Formulation

The MOOD is a non-linear optimization problem that is subject to prevailing operation constraints
and market decisions, and minimizes an objective function under constraints. The objective function
can be formulated as follows:

min ( f1(xt), f2(xt), ..., fn(xt)) (1)

s.t. g(xt) = 0

h(xt) ≤ 0
(2)

where fn(xt) is the vector of n optimization objectives, t ∈ H = {∆t, 2∆t, ..., T} is the different dispatch
period, g(xt) and h(xt) are the equality constraints and the inequality constraints, respectively, and xt

is the set of decision variables, which includes the active/reactive power of all DGs, charge/discharge
power of ESS and power loss of power conversion, and the local load. Therefore, x can be presented as:

xt =
{

Pu,t, Qu,t, Pg,t, Pm,t, Pc
ess,t, Pd

ess,t, Ploss,t, Pload,t

}
(3)

where Pu,t = (Pwt, Ppv, Pdeg) and Qu,t = (Qwt, Qpv, Qdef ) are the active power and reactive power of
WT, PV and DEG output in the microgrid, respectively, Pg,t is the drawing active power from main
grid, Pm,t is the surplus energy of the microgrid selling to the main grid, Pc

ess,t and Pd
ess,t are the charge

and discharge power of ESS, Ploss,t is the loss power of energy transmission and conversion and Pload,t
is the load demand.

2.2. Objective Function

The MOOD adjusts the output power setpoints of DGs to meet the load demand; the operating
cost, the emission cost of pollutants and the power loss cost of conversion devices are minimized
simultaneously while satisfying constraints. The mathematical model of objective functions can be
formulated as follows.

2.2.1. Operation Cost Function

During the running of the microgrid, the operation cost is equal to the sum of the electricity
purchased from the main grid and the generation cost of WT, PV and DEG; the cost of ESS subtracts
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the profit of selling surplus energy to the main grid. Therefore, the operation cost function can be
expressed by:

f1(xt) =
H

∑
t=∆t

[CbPg,tUg,t − CsPm,tUm,t + Cwt

Nw

∑
n=1

Pn
wt,t + Cpv

Np

∑
n=1

Pn
pv,t+

Cdeg

Nd

∑
n=1

Pn
deg,t + Cess(Pc

ess,tU
c
bat,t + Pd

ess,tU
d
bat,t)]

(4)

where Cb is the price of purchasing electricity from the main grid, Cs is the price of selling surplus
energy to the main grid, Ug,t and Um,t are the state vector denoting the purchase or selling of electricity
from the microgrid to the main grid, respectively, Cwt, Cpv and Cdeg are the unit generation cost of
WT, PV and DEG, respectively, Cess is the cost coefficient of ESS and Nw, Np and Nd are the generator
numbers of WT, PV and DEG.

2.2.2. Emission Cost Function

The environment concerns from pollutant gases are considered as the second optimization
objective. The emission cost function involves four of the most pollutant gases: CO2, SO2, NO and CO.
The objective function can be express by:

f2(xt) =
H

∑
t=∆t

4

∑
k=1

Cenv,kmk(xt)

=
H

∑
t=∆t

4

∑
k=1

Cenv,k uk(
Nd

∑
n=1

Pn
deg,t + Pg,t)

(5)

where mk(xt) is the mass of the emission pollutant gas k, k = (1, 2, 3, 4) represent four pollutant gases:
CO2, SO2, NO and CO, Cenv,k is the cost coefficient of the pollutant gas k. The emissions of pollutants
gas are calculated by the load efficiency and rate power of generator [9]; the emissions of pollutants
gas can be formulated as follows:

mk(xt) = uk αn Prate,k τk (6)

where uk is the emissions per unit kWh of pollutant gas k in g/kWh, αn is the load ratio of the generator
n, Prate and τ are the rate power and the operation time of the generator n.

2.2.3. Power Loss Cost Function

The output power of DGs is not a standard product to supply the consumption terminal, and it
is required to power conversion by the converter devices. The power electronic converter interface
plays an important role in the sustainable energy production and use of microgrid. However, each
conversion of converter has brought a litter power loss for DGs generation power. With the installed
capacity of renewable sources increasing, in order to reduce the running cost of microgrid and improve
the utilized efficiency of renewables, the power loss from a large amount of converts is an objective
which must be taken into consideration for the MOOD problem.

The sum of transformer loss, conducting loss and switching loss of converters is considered as
the power loss. The peak efficiency of a converter around 98% is found according to the loss analysis
and efficiency measurement of the converter in [17]. To simplify the calculation of power loss, the 2%
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of conversion power is defined as the power loss of converter in this microgrid. The mathematical
formulation of the power loss cost function can be described as follows:

f3(xt) =
H

∑
t=∆t

Closs Ploss,t(xt)

=
H

∑
t=∆t

Closs σloss(
Np

∑
n=1

Pn
pv,t +

Nw

∑
n=1

Pn
wt,t +

Nd

∑
n=1

Pn
deg,t + Pc

ess,t + Pd
ess,t + Pg,tUg,t + Pm,tUm,t)

(7)

where Closs is the spot price of demand side in CNY/kWh, σloss = 0.02 is the power loss coefficient of
converters, Ploss,t(xt) is the power loss of all converters in the microgrid.

With the aforementioned objective functions, the goal of the MOOD problem can be expressed by:

min { f1(xt), f2(xt), f3(xt)} (8)

The solution of Equation (8) achieves the minimization of the goal and finds the best optimal
dispatch plan for microgrid running.

2.3. Constraints

Constraints indicate the restricted condition and the operation status of the microgrid when
solving the MOOD problem. Constraint conditions are described as follows:

• Power balance:

Ug,tPg,t + Pu,t + Pdeg,t + Ud
bat,tP

d
ess,t = Um,tPm,t + Pload,t + Ploss,t + Uc

bat,tP
c
ess,t (9)

Ug,t + Um,t ≤ 1,
{

Ug,t, Um,t
}
∈ {0, 1} (10)

Uc
bat,t + Ud

bat,t ≤ 1,
{

Uc
bat,t, Ud

bat,t

}
∈ {0, 1} (11)

• Purchase electricity and sell power:

Pmin
g,t ≤ Pg,t ≤ Pmax

g,t

Pmin
m,t ≤ Pm,t ≤ Pmax

m,t
(12)

• Generator power:

0 ≤ Pwt ≤ Pmax
wt

0 ≤ Ppv ≤ Pmax
pv

0 ≤ Pdeg ≤ Pmax
deg

(13)

• Battery limits:

0 ≤ Pc
bat ≤ Pc,max

bat

0 ≤ Pd
bat ≤ Pd,max

bat

(14)

• Battery state of charge (SOC):

SOCt+∆t = SOCt + (Pbat,t)∆t/Cbat (15)

SOCmin ≤ SOCt ≤ SOCmax (16)

where Equation (9) presents the power balance constraint, Equation (10) ensures that the electricity
is not allowed to be purchased and sold at the same moment, the charge and discharge of a battery
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are not allowed at same time according to Equation (11). Pmin
g,t , Pmax

g,t and Pmin
m,t , Pmax

m,t are the lower

and upper boundaries of purchasing electricity from the main grid and surplus energy of the microgrid
selling to the main grid, respectively, as indicated by Equation (12). Pmax

wt , Pmax
pv and Pmax

deg are maximum

output power of wind turbine, photovoltaic and diesel generator, respectively. Pc,max
bat and Pd,max

bat are

the maximum charge and discharge power by constraints in Equation (14). The SOCt is the state of

charge at time interval t, Pbat,t is the charging (or discharging) power at the time interval t, and Cbat is

the nominal capacity of the battery, as indicated by Equation (15). SOCmin and S0Cmax are the minimum
and maximum state of charge (SOC) of the battery by constraints in Equation (16).

3. Proposed Two-Stage Dispatch Model and Optimization Method

The day-ahead scheduling layer is based on forecast information (forecast generation power,
electricity price, forecast load) to formulate a dispatch plan for power setpoints of generator units
on the next day. Due to the forecast error, the real-time update stage is based on the real-time data
(real-time output power, real-time load, electricity price) to update the dispatch plan for the next few
dispatch periods. The objective functions of both stages are solved by the proposed PSO-OGSA under
the constraints of the microgrid.

3.1. Two-Stage Dispatch Model

As shown in Figure 1, this model consists of two stages, the day-ahead scheduling stage
and the real-time update stage. The dispatch time-step of the day-ahead scheduling stage
and the real-time update stage are defined as 1 h and 15 min, respectively. A brief flow chart of
the proposed TSD model to solve the MOOD problem is illustrated in Figure 3.

At the day-ahead scheduling stage, the dispatch plan is divided into 24 dispatch periods of 1 h
and power setpoint is configured for generation units at each period. This stage is based on the forecast
information from the forecast machine to formulate the dispatch plan. The day-ahead scheduling
stage uses the proposed PSO-OGSA to optimize the operation cost function, emission cost function
and power loss cost function according to the predicted power and load demand. The input data of
the forecast machine mainly include weather information, electricity price and history load. Based
on this information, the predicted power of generator units and load demand are obtained from
the forecast machine for day-ahead scheduling at each period. Considering the forecast error,
the predicted power and load demand fluctuate during the running of the microgrid. The fluctuation
may leads to a mismatch between the actual load demand and the generation power in the dispatch
periods. Therefore, the dispatch plan of the day-scheduling stage must update according to
the real-time monitoring information.

The real-time update stage is described in 96 dispatch periods of 15 minutes, and recognizes
the action signal of the trigger to formulate the dispatch plan for the next few dispatch periods. Based
on the action signal of the trigger, the real-time update stage uses the proposed PSO-OGSA optimization
objective functions to formulate and update the dispatch plan for the next few periods during
the microgrid operation. The input data of the trigger are the real-time weather information, real-time
generation power of generator units and real-time load demand from the microgrid. The action signal
of the trigger is activated so that the error range is beyond the critical value, and the error is between
the monitoring data and the forecast information. The trigger will export the new predicted power of
generation units and load demand after sending the action signal. The real-time weather information
mainly includes solar radiation, temperature, air pressure, wind speed, wind direction and humidity,
which are obtained from the local meteorological department website. The critical value of the error
range of generation power and load demand is set to 10%, and the critical value of the error range of
meteorological information is set to 20%.
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Figure 3. Simple flow chart of the proposed TSD model for a MOOD problem.

3.2. Proposed PSO-OGSA

3.2.1. Gravitational Search Algorithm

GSA is a heuristic optimization algorithm based on Newton’s law of gravity [27]. The solution
of the optimization problem is considered as the agent of GSA consisting of different particles in
the search space, and each agent attracts other agents through its own gravity force. The motion of
agents obeys Newton’s law of motion to make the agent move toward the agent of the heaviest mass.
The position of the heaviest mass corresponds to the optimum solution position of the optimization
problem in the search space. The agent is specified by four parameters: Position, inertial mass,
passive mass and gravity force.

Assume that a system with N agents, the position of the ith agent is described by:

Xi = (x1
i , ..., xd

i , ..., xD
i ) i = 1, 2, ..., N (17)

where xd
i is the position of the ith agent in the dth dimension, D is the dimension of search space and

N is the number of agents in the search space.
In the specific time t, the force acting on the agent i from the agent j is defined by:

Fd
ij(t) = G(t)

Mpi(t)xMaj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (18)
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where Mpi is the passive gravitational mass related to agent i, and Maj is the active gravitational
mass related to agent j. G(t) is the gravitational constant at time t and ε is a small constant. Rij(t) is
the Euclidean distance between the agent i and agent j by the following:

Rij(t) = ||Xi(t)− Xj(t)||2 (19)

The mass of the agents are calculated as follows:

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(20)

Mi(t) =
mi(t)

N
∑

j=1
mi(t)

(21)

where f iti(t) is the fitness value of agent i at time t and Mi(t) is the mass of agents. For a minimization
problem, best(t) and worst(t) are the best and worst fitness value of all agents at time t.

best(t) = min
j∈{1,2,...,N}

f itj(t) (22)

worst(t) = max
j∈{1,2,...,N}

f itj(t) (23)

To give a stochastic characteristic to the algorithm, suppose that the total force that acts on
agent i in a dimension d be a randomly weighted sun of dth components of the forces exerted from
other agents.

Fd
i (t) = ∑

j∈Kbest,j 6≡i
randjFd

ij(t) (24)

where randj is a random number between interval [0, 1]. Kbest is a function of time, with the initial
value k0 at the beginning and decreasing with time. The acceleration of the agent i at time t is
defined by:

ad
i (t) =

Fd
i (t)

Mii(t)
(25)

where Mii(t) is the inertial mass of the agent i.
Calculating the gravitational constant G(t) at time t uses the following:

G(t) = G0e−α t
tmax (26)

where G0 is set to 100, α is set to 20 and t and tmax are the current and the number of iterations,
respectively.

The velocity and position of the agent i at next time (t + 1) could be calculated by employing
the following:

vd
i (t + 1) = randivd

i (t) + ad
i (t) (27)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (28)

where randi is the random variable between interval [0, 1] and vd
i (t) and xd

i (t) are the velocity
and the position of an agent in the d dimension at time t, respectively.

Repeating the above steps, the position of the heaviest mass is found out; the position corresponds
to the position of the optimum solution of the optimization problem. The local search ability of GSA is
weaker than the global search ability, and GSA is prone to optimal value oscillation.
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3.2.2. Opposition-Based GSA

The initial solution of the GSA depends on the position of initial agents that randomly guess,
and the distance between the initial solutions will effect the computation time of GSA. Moreover,
the initial agent of random guesses may lead to the instability of the GSA searching efficiency. Therefore,
on the initial stage of GSA, we change the relative position of the initial agents, and make agents
closer to the optimal solution. The advantages of opposition-based learning are revolutionary jumps
during the early learning stage, and the advantages are weakened gradually as learning continues [30].
Apparently, sudden switching to opposite values should only be utilized at the start to save time,
and should not be maintained as the estimate is already in the vicinity of an existing solution.

Let x ∈ [a, b] be a real number, the opposite number x̃ can be defined as:

x̃ = a + b− x. (29)

Assume S = (x1, ..., xi, ..., xN) is an original solution in d-dimension space with x1, ..., xN ∈ R
and xi ∈ [ai, bi](i = 1, 2, ..., N). Then, the related opposition point is defined as (x̃1, ..., x̃i, ..., x̃N) where:

x̃i = ai + bi − xi (30)

Supposing a temporary space[(x1, x̃1), ..., (xi, x̃i)..., (xN , x̃N)] consists of the initial agent (solution)
opposition value, and calculates the fitness of all agents. All agents (xi, x̃i) from smallest to largest are
sorted according to the fitness value of the agent. The N agents with the best fitness value are selected
from the temporary space to form an initial population P0.

In the initial population P0, the elite strategy is used to generate new agents for 20% of the N
solutions with the best fitness value, and add the new agents to the initial population Po. The fitness
value of 120% of the N solutions is calculated and sorted from smallest to largest, removing 20% of
the N solutions with the worst fitness value. Finally, we can obtain the optimal initial population P.
Among them, the new agents can be expressed as follows:

Q = Rij(t)×
rand(−0.5, 0.5)

N
(31)

xinew(t) = xi(t)×Q (32)

where Q is the transform factor of the new agent, Rij(t) represents the Euclidean distance between
the solution and the adjoining solution and N is the number of the initial population.

3.2.3. Particle Swarm Optimization Based OGSA

GSA must use the exploration to avoid trapping a local optimum at the beginning for the
optimization problem [27]. As similar with the PSO, the solutions of GSA are obtained by the agents
moving toward the global optimal solution in the search space. In the GSA, the motion direction of
agents is attracted by the total force from other agents. However, when the position of the agents is
updated, only considering the current position of the agent, the memory information of the agent is
not yet taken into account.

Compared with the GSA, the position of the PSO particles is determined by both the current
position information and the community information of particles. Therefore, the performance of
the memory and community exchanges of PSO are introduced to improve the search ability of
GSA. The motion direction of agents is decided by the new path on GSA, and the new path obeys
both Newton’s law of motion and additional performance of the memory and community of PSO.
The velocity and position of agents in the PSO-OGSA can be formulated as follows:

vd
i (t + 1) = c3(randivd

i (t) + ad
i )+

(1− c3)[c1rand1(pd
best − xd

i (t)) + c2rand2(gd
best − xd

i (t))]
(33)
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xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (34)

where c1 and c2 are two constants between the interval [0, 1], randi, rand1, and rand2 are the random
variables between the interval [0, 1], c3 is a variable within [0, 1] to determine stochastic impacts of
GSA acceleration and PSO velocity on PSO-OGSA, pd

best is the historical optimal value of the agent i
and gd

best is the global optimal value of all agents.
The process of the proposed PSO-OGSA can be summarized as in Table 1; the global optimal

solution has been observed by each agent and moves toward it so that the movement process always
obeys the law of motion. The total force of the heaviest agent is greater than the force of other agents;
in other words, the solution represented by the heaviest agent is better than the solution represented
by the light agent. In order to make the gravity force of the heavier agent stronger and the gravity
force of light agent weaker, the heavier agent can move quickly toward the global optimal solution
in the search space. A weight proposed is used to update the mass of all agents at the iteration time,
and it not only speeds up the agent movement to the global optimal solution, but also improves the
convergence of PSO-OGSA. The weight H is calculated according to the mass of the agent at each
iteration, and weight H can be defined by the following:

Hi(t) =
Cmin Mmin − Cmax Mmax

Mmin −Mmax
−Mi(t) (35)

Minew = Hi(t)×Mi(t) (36)

where Hi(t) represents the weight of the agent i, Cmin = 1 and Cmax = 5 are the minimum and maximum
of the weight, respectively, and Mmax and Mmin are the maximum and minimum of the mass agent in
the search space, respectively.

Table 1. Flowchart of PSO-OGSA.

Step 1: Opposition-based for initial population.
Generate uniformly distributed initial population P0i,j

Opposition population OP0i,j = aj + bj − P0i,j

i ≤ N: population size. j ≤ D: problem dimension
Step 2: Select the N fittest agents from set of {P0, OP0} as initial population P0
Step 3: Select 20% of the N fittest agents to generate new agents according to Equation(31) and Equation(32)

add 20% of theN new agents into the P0i,j and calculate fitness
remove 20% of the N worst fitness agents
End of opposition-based learning

Step 4: Fitness evaluation of agents according to Equation(22) and Equation(23)
Step 5: Calculate G(t), Mi(t)
Step 6: Update the mass Minew of agents according to Equation(35) and Equation(36)
Step 7: Total force Fd

i (t), acceleration ad
i (t)

Step 8: Update the velocity vd
i (t) and position xd

i (t) according to Equation(33) and Equation(34)
Step 9: PSO based generation jumping

calculate the fitness of all agents f itj(t)
calculate pd

best, gd
best

Step 10: Repeat steps 4–10 until the stopping criteria is met.

4. Results and Discussion

In this section, an actual microgrid system is used to verify the effects and validations of
the two-stage dispatch model and the proposed PSO-OGSA method. Five canonical benchmark
test functions are used to validate the performance of the proposed PSO-OGSA. All the simulations
are implemented in Matlab 2014b on a PC with 3.2 GHz CPU and 4G RAM.
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4.1. Validate the PSO-OGSA Method

In order to analyze the performance of the PSO-OGSA, we have used five canonical benchmark
test functions to evaluate the PSO-OGSA with other algorithms. The five canonical benchmark test
functions are minimum problems as shown in Table 2; n is the dimension of test functions [31].
The Rosenbrock test function is a simple unimodal function, and it has a single local optimum
and global optimum. The other test functions are multimodal functions with many local optima,
and the complexity of test functions and the amount of local optima have increased with increasing
dimension. Therefore, these test functions with different features are used to testify to the effectiveness
of the PSO-OGSA method.

In the validation experiment, the benchmark test functions have 30 trails for each algorithm,
and the stop criteria of each run is to reach the maximum iteration. The maximum iteration is set
to 1000. For the parameter settings of algorithms, we have configured as recommended according to
the related literature [27,32]. For instance, the initial value of k0 of GSA is set to the total number of
agents and its final value decreases linearly to 2% of its initial value. G0 is set to 100, and α is fixed
at 20.

Table 2. Benchmark test functions for validation [27].

Function Name Function Expression Domain Trait

fRos, Rosenbrock f1(x) =
n−1
∑

i=1
(100(xi+1 − x2

i )
2 + (xi − 1)2) [−30,30] Unimodal

fSch, Schwefel f2(x) =
n
∑

i=1
−xisin(

√
|xi|) [−500,500] Multimodal

fRas, Rastrigin f3(x) =
n
∑

i=1
(x2

i − 10cos(2πxi) + 10) [−5.12,5.12] Multimodal

fGri, Griewank f4(x) =
n
∑

i=1

x2
i

4000 −∏n
i=1(cos( xi√

i
)) + 1 [−600,600] Multimodal

fAck, Ackley f5(x) = −20exp(−0.2
√

1
n

n
∑

i=1
x2

i )− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e [−30,30] Mulyimodal

Two different dimension sizes D = 10 and D = 30 are tested for the canonical benchmark
test functions by the proposed PSO-OGSA method. According to the discussion in the Section 3,
the parameter settings of PSO-OGSA are set for this simulation experiment: N = 50, c1 = 0.5 and
c2 = 1.5. For the parameters of PSO, we use these settings: Population sizes N = 50, c1 = 2.0, c2 = 2.0
and wight ω is deceased linearly from 0.9 to 0.2. Comparing the proposed PSO-GSA with the PSO
and GSA approaches, the mean best fitness Ave and the best fitness Best of these methods for each test
function is recorded in Table 3. The results are average over 30 runs and the best results are indicated
in bold type. From the results, it can be seen that the performance of the proposed PSO-OGSA is
better than the other two methods. The optimization performance of the proposed PSO-OGSA is more
powerful with the dimension of test function increasing.

To verify the convergence rate of the proposed PSO-OGSA, compare the PSO with GSA to show
the performance of PSO-OGSA. The dimension of these functions is set to 30, and the results are the
averaged best-so-far solution as shown in Figure 4. For the Rosenbrock function, the convergence
rate of the search approach is more important than the final results, as the Rosenbrock function is
a unidoal function. As shown in Figure 4a, the convergence rate of the PSO-OGSA is better than
the other two approaches: PSO and GSA. For the multimodal functions, they are very difficult to
optimize due to them having many local optimums. So, obtaining the best final results is important. As
shown in Figure 4b–d, the proposed PSO-OGSA compared with the other two approaches has the best
final optimum, and reflects the performance of PSO-OGSA escape from the localization trap quickly.
According to Figure 4, we can conclude that the amount of the local optimum increases exponentially
as the dimension of the function increases.
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Table 3. The mean best fitness of different methods for five benchmark test functions.

Function Dimension (D)
PSO GSA PSO-OGSA

Ave Best Ave Best Ave Best

fRos 10 2.01E+02 15.59E+00 4.30E+00 3.82E+00 2.98E−03 2.06E−03
30 3.71E+01 1.97E+01 2.83E+01 2.50E+01 4.20E−03 3.89E−05

fSch 10 −1.14E+01 −1.20E+01 −3.05E+01 −1.55E+03 −2.94E+03 −3.47E+03
30 −3.54E+01 −3.54E+01 −4.91E+00 −3.16E+03 −7.97E+03 −9.54E+03

fRas 10 1.99E+01 4.97E+00 2.95E+00 2.98E+00 1.17E−06 1.31E−07
30 1.18E+02 5.17E+01 1.43E+01 1.49E+01 4.25E−06 5.57E−05

fGri 10 2.94E−08 1.87E−09 2.74E+02 9.04E+02 2.98E−10 3.79E−11
30 3.18E−07 2.41E−08 8.77E+02 6.04E+02 7.80E−11 3.65E−12

fAck 10 4.20E−03 9.38E−04 5.73E−04 1.08E−04 4.81E−10 2.66E−11
30 3.30E−03 9.46E−04 2.60E−04 1.73E−04 1.30E−09 8.13E−10

Ave: Indicates average of best function values in 30 runs. Best: Indicates the best result in 30 runs.

The convergence rate of benchmark test functions are verified by the PSO-OGSA, PSO and GSA
in these figures, and shows that the proposed PSO-OGSA performs better than the standard PSO
and GSA in terms of convergence rate.
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Figure 4. Comparative convergence behaviors of the PSO-OGSA, PSO and GSA for some benchmark
test functions, (a) the Rosenbrock function, (b) the Schwefel function, (c) the Griewank function, and
(d) the Ackley function.

4.2. A Microgrid Test System

In this section, the microgrid structure consisting of wind-photovoltaic-battery-diesel generator
is shown in Figure 5. The renewable generation units, storage system, diesel generator and load are
connected with DC bus; each generation unit is connected with the bidirectional converter, and this
microgrid system is connected with the power grid. The conversion efficiency of photovoltaic array
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is considered as 18.5%. The cut-in speed 3 m/s, cut-out speed 35 m/s and cut-rate speed 10 m/s are
for each wind turbine. The self discharge efficiency of battery is 10%. In the following simulations,
the wind turbines and photovoltaic arrays generation cost are set to 0.6 CNY/kWh and 1.2 CNY/kWh,
respectively. According to the above discussion, the parameters set for the PSO-OGSA are set for this
simulation: N = 50, c1 = 0.5, c2 = 1.5, G0 = 100, α = 20, and maximum iteration number is set to 1000.

The parameters of each generator unit in this microgrid are shown in Table 4, and the emission
cost and emission coefficient [33] of different pollutants are shown in Table 5. The WT predicted
power, PV predicted power and DEG predicted power are shown in Figure 6a, and the actual load
fluctuation of the microgrid operation is shown in Figure 6b. Due to the fluctuation of output power
from the renewable sources, the DEG is configured to follow the microgrid operation, and prioritize
utilizing the output power of DEG.

WT

WT

WT

DEG

PV

PV

BAT

Load

Load

Load

Grid

10/0.4 kV

:Control box

80 kW

80 kW

200 kW120 kW

250 kW

Figure 5. The transmission network of the test microgrid system.

Table 4. Numerical data of distributed generations in the microgrid system.

Unit Max Power (kW) Min Power (kW)

Wind turbine 80 0
Photovoltaic cell 80 0

Battery 200 −100
Diesel generator 120 30

In order to verify the effectiveness of the proposed TSD model in the actual microgrid operation,
evaluating the performance of the real-time scheduling randomly adjusts the load demand of the
microgrid at a certain period on the current running day, as shown in Figure 6b. The operation cost,
emission cost and power loss cost are considered as the optimization objectives for the proposed
PSO-OGSA. As shown in Figure 7a, the operation cost of the microgrid is the minimum; the difference
of load demand is shared by the storage batteries and the diesel generator. The storage batteries charge
at the low electricity price period and discharge at the high electricity price period; the other period is
determined by the operation cost of the storage batteries and the diesel generator. When the emission
cost is minimum, as shown in Figure 7b, the difference of load demand is supplied by the storage
batteries, the output power of DEG is in the minimum generated power.
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Table 5. Emission cost and emission coefficient of different pollutants.

Type Externality Cost (CNY/kg) Emission Factors for DEG (g/kWh)

NOx 26.52 0.6188
SO2 6.33 0.4641
CO2 0.089 232.0373
CO 0.1406 2.320

(a) (b)

Figure 6. The predicted power of the distributed system and load demand in the microgrid. (a) Prediction power.
(b) Load demand.

Performance of the proposed PSO-OGSA has been validated on the five benchmark functions,
and the convergence rate of the PSO-OGSA is superior to the other two methods.To evaluate the
performance of the proposed PSO-OGSA for finding the optimal solution of the MOOD problem.
The PSO-OGSA, PSO and basic GSA are used to solve the MOOD problem for this microgrid. The
algorithm parameter settings, computer configurations and programming software in this section
are the same as those of Section 4.1. For all simulation experiments, the population size is set to 50,
and the maximum iteration number is set to 1000.
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Figure 7. Output power of the storage batteries and the diesel generator in the microgrid;
(a) the operation cost minimum, (b) the emission cost minimum.

The comparative convergence of the best solutions of three different methods for the operation
cost, emission cost, power loss cost and total cost are shown in Figure 8. From these figures, it is shown
clearly that the proposed PSO-OGSA converges smoothly to the optimum value in the optimization
process. The proposed PSO-OGSA algorithm outperforms the PSO and GSA methods as a whole;
it has the advantage of reducing emission cost and loss cost. The target values of multi-objective
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optimization of different methods are compared in Table 6, and it appears that the proposed algorithm
has the best performance when comparing other population-based optimization algorithm.

Table 6. Comparison of the detail data for the test microgrid.

Methods Operation Cost (CNY) Emission Cost (CNY) Power Loss Cost (CNY) Total Cost (CNY) Simulation Time (s)

PSO 319.17 42.51 20.18 384.63 38.1
GSA 321.94 41.93 21.07 382.17 44.7

PSO-OGSA 304.91 36.27 19.25 360.43 43.9
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Figure 8. Comparative convergence for the GSA, PSO and PSO-OGSA for test microgrid. (a) Operation
cost. (b) Emission cost. (c) Loss cost. (d) Total cost.

5. Conclusions

A TSD dispatch model combined the day-ahead scheduling and the real-time scheduling was
proposed to apply optimization dispatch in order to minimize the total cost of microgrid operation.
In this paper, we considered the power loss of the converters, and combined the operation cost with
the emission cost to formulate the multi-objective optimization model. We proposed a hybrid particle
swarm optimization and opposition-based learning gravity search algorithm to find the best solution
of the dispatch plan for MOOD problem in the test microgrid. Based on the production forecast of
WT and PV and load demand, the SOC of the storage batteries and the generation power of the diesel
generator, the TSD model is used to search the optimal path by all possible system states in the 24-h
dispatch planning. If the difference between day-ahead forecast and 15 min forecast of the current
running is greater than the 10% power reserve, the dispatch plans are updated to recalculate the power
setpoint for each generation unit. This PSO-OGSA algorithm enables us to find the optimization
dispatch values while satisfying the constraint conditions.
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For the PSO-OGSA, opposition-based learning is used to optimize the initial population
agents for GSA and strengthen the capacity of escaping from the localization trap quickly.
The memory and community of PSO are introduced to improve the acceleration mechanism of
GSA, and add a weight-based inertial mass update rule to make the agents speed up toward the best
solution. The PSO-OGSA has been tested on five benchmark functions to validate the effectiveness,
and the TSD model has been implemented into an actual microgrid system to simulate in real-time
dispatch. The optimal results of PSO-OGSA are compared with the results from other algorithms,
and demonstrate that the proposed approach is effective to solve the MOOD problem for a microgrid.
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Abbreviations

T Total dispatching periods
Nw Total number of wind generators
Np Total number of photovoltaic generators
Nd Total number of diesel
Cb Price of purchasing electricity from grid
Cs Price of selling energy to grid
Cwt Generating cost of wind
Cpv Generating cost of solar
Cdeg Generating cost of diesel generator
Cess Cost coefficient of battery
Cenv Cost coefficient of pollutants gas
Closs Cost coefficient of power loss
mk Mass of the pollutant gas k
uk Emissions per unit kWh of pollutants gas k
αn Load ratio of generator n
Pmin

g,t , Pmax
g,t Purchasing power lower and upper bounds at time t

Pmin
s,t , Pmax

s,t Selling power lower and upper bounds at time t
Pmax

wt , Pmax
pv , Pmax

deg Out power lower and upper of wind, solar and diesel generator

SOCmin, SOCmax Minimum and maximum state of charge of the battery
ηc, ηd Charging and discharging efficiency of the battery
Ug,t, Um,t State vector of purchasing and selling at the time t
Uc

bat,t, Ud
bat,t State of charging and discharging of the battery at time t

Pg,t Actual purchasing power from grid at time t
Pm,t Actual selling power to grid at time t
Pn

wt,t Actual power of the nth wind generator at time t
Pn

pv,t Actual power of the nth solar generator at time t
Pn

deg,t Actual power of the nth diesel generator at time t
Pc

ess,t, Pd
ess,t Charging and discharging power of energy storage system at time t

Ploss,t Loss power of converter at time t
Q Transform factor of new agent
Hi(t) Weight of the agent i at time t



Energies 2019, 12, 2160 18 of 19

PSO Particle swarm optimization
OL Opposition based learning
GSA Gravitational search algorithm
PSO-OGSA Particle swarm optimization and opposition based learning gravitational search algorithm
EOD Economic optimization dispatch
SOOD Single objective optimization dispatch
MOOS Multi objective optimization dispatch
GA Genetic algorithm
SPEA Strength Pareto evolutionary algorithm
TSD Two stage dispatch
DG Distributed generation
WT Wind turbine
PV Photovoltaic
DEG Diesel generator
SOC State of charge
ESS Energy storage system
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