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Abstract: Constructing microgrids with renewable energy systems could be one feasible solution to
increase the penetration of renewable energy. With proper control of the battery energy storage system
(BESS) and thermostatically controlled loads (TCLs) in such microgrids, the variable and intermittent
energy can be smoothed and utilized without the interference of the main power grid. In this
paper, a decentralized control strategy for a microgrid consisting of a distributed generator (DG),
a battery energy storage system, a solar photovoltaic (PV) system and thermostatically controlled
loads is proposed. The control objective is to maintain the desired temperature in local buildings at a
minimum cost. Decentralized control algorithm involving variable structure controller and dynamic
programming is used to determine suitable control inputs of the distributed generator and the battery
energy storage system. The model predictive control approach is utilized for long-term operation
with predicted data on solar power and outdoor temperature updated at each control step.

Keywords: control of microgrids; control of renewable power systems; optimal control;
decentralized control; battery energy storage systems; variable structure control; solar PV;
thermostatically controlled loads; model predictive control

1. Introduction

The inherent variability and intermittency of renewable power could be the major issue to hinder
its penetration. One feasible solution is to construct more microgrids integrated with battery energy
storage systems (BESSs) and renewable energy systems (RESs), which allows the renewable energy
to be smoothed and used locally without interfering with the utility power grid [1]. With the help of
predicted renewable energy, electricity price, and load demand, proper control of BESS at different
time intervals could minimize the overall energy cost. There has been some research taken under
this scheme. The paper [1] proposed an energy trading strategy for a microgrid. They considered
different electricity prices from six RESs at different dispatching intervals to determine the actions of a
BESS to meet the power demand at a minimum cost. An energy management strategy for a microgrid
community is introduced in [2], which consists of multiple microgrids integrated and regulated with a
community energy management system. The authors utilize day-ahead forecasting data to plan the
desired controls for all units in those microgrids, including output power of distributed generators,
charging/discharging power of BESSs and power exchanged between them. An energy scheduling
model of microgrids with renewable generations and BESSs is proposed in [3], in which the storage
system is considered as the spinning reserve to smooth the power fluctuations due to the intermittent
renewable generators, and the authors utilized chance-constrained programming to solve the stochastic
optimization problem efficiently. A bi-level energy scheduling strategy for microgrids with battery
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swapping stations of electric vehicles is introduced in [4], in which the net costs of the microgrid is
minimized in the upper-level, and the profits of the battery swapping stations are maximized based on
real-time pricing.

Thermostatically controlled loads (TCLs), such as air conditioners, heaters, and ventilation
systems, are some of the most widely used electrical appliances [5]. In microgrids with intermittent
energy, they could provide the required ancillary services for renewable generation balancing, which
could be more flexible than conventional generators that are often constrained by their capabilities [6].
Furthermore, in energy markets with demand response programs, due to the inherent flexibility of
TCLs, they are well-suited for consumers to adjust energy usage in response to electricity prices or
incentive payments [7].

In this paper, we focus on the control of TCLs in the microgrid environment. The primary objective
is to maintain the desired temperature at residential buildings in a cost-effective manner. These TCLs
are powered by a distributed generator (DG) and a solar power system, and a BESS is used to regulate
the actual power dispatched to them. We consider an islanded microgrid environment, and there will
be no power exchanged from the microgrid to the unity grid. As a result, over periods without solar
energy, the TCL units will be supplied only by the generator and the BESS, so there will be a non-zero
minimum output requirement for the generator to avoid start-up or shut-down cost. In addition, as the
residential TCLs are generally constructed in a large quantity with relatively small capacity in practice,
it can be complicated and inefficient for the microgrid operator to control each TCL directly. Therefore,
the aggregation model of distributed TCLs is used in many studies [8–10].

Authors of [8] propose a two-stage optimization model for a group of TCLs to smooth the power
fluctuation resulting from PV systems in distribution networks. In the first stage, the regulation
capability of TCL groups is determined from the aggregation of user inputs including the change in
the temperature set points and maximum allowed temperature, which is then used to calculate the
required regulation power to smooth the net exchange power fluctuation at a minimum cost. In the
second stage, the regulation task is decomposed to each TCL group. A short-term operation model of
the microgrid with high penetration of solar power and TCLs is introduced in [9], which schedules the
distributed generator, BESS and TCLs in the microgrid based on solar power forecasting. The receding
horizon optimization technique is utilized to alleviate the effects of forecasting errors. The use of
aggregated TCLs in the wholesale electricity market is discussed in [10], and an aggregator determines
the volume of electricity exchanged with the market in the next day based on renewable generation
and load forecast. The objective is to maintain the suitable water temperature for prosumers at a
minimum energy cost, and a model predicted control optimization is applied intraday to minimize the
imbalance between the forecast data and the actual measurements.

Most of these studies can be perceived as the multi-objective control problem, with temperature
control from TCLs being one primary target. Others can be the overall optimization in different
environments such as microgrid and deregulated energy market. Since predicted data on renewable
power, electricity price and load demand are used in their algorithms, one of the main challenges in
these studies can be the errors in forecasting. To address this, the receding horizon approach is utilized
in most studies [8–15], as uncertainties can be reduced to a relatively low level with constantly updated
forecasting data. Nevertheless, this approach has a strict requirement for the computation time as the
set of results over a forecasting horizon should be solved before the first control step over the horizon
expires. In practice, delays due to forecasting techniques, data communications, and response time in
power electronics can further degrade the performance of the algorithm.

In this paper, we propose a novel decentralized algorithm for optimal control of microgrids with
high solar power penetrations and TCLs. We aim to solve our problem in one stage optimization. With
the aggregation of TCLs, only the outdoor temperature is required to calculate the power demand,
which reduces the computation time spent on the TCL model. As other units in the microgrid, such
as renewable energy system, BESS, and distributed load, have cost models related to their control
signals and states, the objective function of the optimization problem can be an additive cost over the
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forecasting horizon. Therefore, we formulate the problem in a cost-to-go equation, or the dynamic
programming type equation to solve the sets of controls for both BESS and DG based on forecasting
data over each horizon. As the model predictive control approach is applied, only the first component
of both sets will be used as the actual inputs to the system in the current stage, and the algorithm will
repeat in the next step with updated system states and predicted data. A critical feature of our approach
is that TLCs are controlled in a totally decentralized fashion and only the indoor temperature in the
corresponding area is needed to control each TCL. Moreover, control of the distributed generation unit
and charge/discharge of the BESS does not require any information on the current indoor temperatures.

The remainder of the paper is structured as follows. Section 2 introduces the overall optimization
problem. The control system and the cost model of each unit in the microgrid are described in Section 3.
The proposed decentralized variable structure/dynamic programming control algorithm and the
simulation results are introduced in Sections 4 and 5, respectively. The last section concludes the paper.

2. Problem Statement

We consider a microgrid consists of a distributed generator (DG), a battery energy storage
system (BESS), a solar power generation unit, and a group of thermostatically controlled loads
(TCLs). An islanded microgrid environment is considered, and the TCLs are supplied by the
solar power system, DG and BESS without power exchanged from the microgrid to the unity grid.
The main objective is to minimize the overall cost required to keep the desired building temperature.
The configuration of the microgrid is presented in Figure 1.

Figure 1. Configuration of the microgrid.

A decentralized control scheme is used, in which the central energy management system would
receive predicted data on solar power and outdoor temperature over a forecasting horizon, and the
control inputs for the DG, BESS, and TCLs over the period are then solved based on the predicted
data. The DG and the BESS have cost models related to their output power and charging/discharging
power, which are controlled following the predicted solar power to meet the power demand from
TCLs. In the corresponding areas of TCLs, the indoor temperature is controlled to slide along the
setpoint. In addition, the receding horizon approach is utilized for long-term operation, with predicted
data updated at each control step.
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Since the objective is to minimize the overall energy cost, the additive costs from both DG and
BESS over each forecasting horizon is used as the objective function. Based on predicted solar power
and outdoor temperature, a dynamic programming (DP) algorithm is used to solve two sets of optimal
controls for both DG and BESS, which are the output power of DG and the charging/discharging
power of BESS respectively. As the receding horizon approach is used, only the first component of
both sets will be used as actual inputs to the system at the current stage, and the algorithm will repeat
in the next control step with updated system states and predicted data.

3. System Model

The control system model of the microgrid is introduced in this section.

3.1. Distributed Generator

The cost of the generator used in the microgrid is described by the following function:

CG(PG(t)) = aPG(t)2 + bPG(t) + c (1)

where PG(t) is the power output of DG at time t; a, b, and c are generation cost coefficients of DG. We
consider our system as a discrete-time system with the sampling rate δ > 0, So the function PG(t) is
supposed to be piecewise constant with constant values over periods [kδ, (k + 1)δ). Hence, the cost of
generation over time interval [kδ, (k + 1)δ) is

N−1

∑
k=k0

aPG(kδ)2 + bPG(kδ) + c (2)

In addition, the power output of DG should always satisfy the constraints:

Pmin
G ≤ PG(t) ≤ Pmax

G (3)

with some given constants 0 < Pmin
G ≤ Pmax

G .

3.2. Battery Energy Storage System

We refer to the battery model introduced in [9], and the dynamics of BESS used in this study is
described by the following equation:

x((k + 1)δ) = x(kδ)− PB(kδ)∆t + d|PB(kδ)∆t|, (4)

where x(·) represents the available energy stored in BESS, ∆t is the factor used to convert power to
energy based on the actual time of each control step, PB(·) is the charging/discharging power of the
BESS, d > 0 is the charging/discharging loss factors of the BESS. Based on the model, PB(·) > 0
indicates the discharging action and PB(·) < 0 indicates the charging action of BESS.

Based on the cost model introduced in [16], the operational cost of BESS over the time interval
[kδ, (k + 1)δ) is modelled as:

N−1

∑
k=k0

γ1|PB(kδ)∆t|+ γ2x(kδ), (5)

where γ1 > 0 and γ2 > 0 are some given constants calculated based on the battery life degradation [16].
In addition, the following constraints should be satisfied:

Pmin
B ≤ PB(t) ≤ Pmax

B (6)

xmin ≤ x(t) ≤ xmax, (7)

where 0 < xmin < xmax are the upper and lower limits of the BESS energy state.
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3.3. Solar Power Generation Unit

As the receding horizon approach is applied, it is assumed that prior to every control horizon,
a predictive estimate Ps(t) of the power output from the PV system can be made over periods
[kδ, (k + 1)δ), which is supposed to be piecewise constant with constant values. In addition,
the maximum power that can be supplied from the solar power system is Pmax

s . Since the receding
horizon approach is used, some fast forecasting methods would be required to produce accurate results
over a relatively short period, such as the techniques introduced in [17–19].

3.4. Thermostatically Controlled Loads

The microgrid also contains n thermostatically controlled loads, labelled by i = 1, 2, . . . , n. Based
on previous research [6,8,9], we use the following continuous time equation to describe their dynamics:

˙Tin
i (t) = αi(Tout(t)− Tin

i (t)− βisi(t)Pi) (8)

where Tout(t) is the outside temperature at time t, Tin
i (t) is the indoor temperature of the TCL i at time

t. Pi is the rated power of the TCL i, si(t) is the ON/OFF state of the TCL i at time t (0-OFF, 1-ON),
αi > 0, βi > 0 are given constants based on Equation (8) in [9]. One of the control goals is to keep the
indoor temperature in a comfortable range:

D1 ≤ Tin
i (t) ≤ D2, ∀t, i, (9)

where D1 < D2 are given constants. Moreover, we assume that

Tout(t) ≥ D2, ∀t, (10)

Furthermore, all initial indoor temperatures satisfy

Tin
i (0) ≥ D2, ∀t, (11)

It is also assumed that we have a predictive estimate T̂out(t) of the outside temperature Tout(t),
the function T̂out(t) is piecewise constant with constant values over periods [kδ, (k + 1)δ). Therefore,
the total TCL unit power consumption over the time interval [k0δ, (N − 1)δ) is defined as:

n

∑
i=1

(Pi

∫ (N−1)δ

k0δ
si(t)dt) (12)

4. Optimization Problem

The system control inputs include the DG power output PG(kδ), the charging/discharging power
of the BESS PB(kδ), and the switching functions si(t) of the TCLs. In addition, the additive costs from
both DG and BESS can be considered as the output of the system.

Among these inputs, the switching function si(t) varies based on the measurement of the indoor
temperature Tin

i (t) only. The control variable PG(kδ) and PB(kδ) are selected based on measurements
of x(kδ), predictive estimates T̂out(t) and Ps(kδ) of the outside temperature and the power output from
the PV system respectively. Therefore, the following constraints between generated and consumed
power should hold:

n

∑
i=1

Pisi(t) ≤ PG(t) + Ps(t) + PB(t) ≤ ε
n

∑
i=1

Pisi(t), (13)

where ε > 1 is a constant describing the maximum tolerance level of the overall power on the microgrid.
As stated in Section 3.1, there is a non-zero minimum output requirement for the DG, so there will
be cases where part of the generated solar power is curtailed to satisfy this constraint. In practice,
this excessive power can be balanced with other storage units or local loads in the microgrid, whereas
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we consider it as a part of the cost function to penalize unprofitable charging/discharging decisions in
the optimization problem.

To state the problem, we combine the cost functions (2) and (5) into one cost function:

N−1

∑
k=k0

aPG(kδ)2 + bPG(kδ) + c + γ1|PB(kδ)∆t|+ γ2x(kδ) + Ccur(kδ)Pcur(kδ) (14)

The term Ccur(kδ)Pcur(kδ) represents the cost of the excessive power curtailed to meet the
constraint (13), where Pcur is the amount of power curtailed, and Ccur is the corresponding electricity
price. Based on the system model defined, there are two scenarios in which this cost will be incurred,
mainly due to the storage space and the maximum charging speed, which are:

• The sum of solar power and the minimum power output of DG are higher than the power
demand from TCLs, while the energy stored in the BESS is close to the upper limit, which cannot
accommodate the excessive energy.

• The sum of solar power and the minimum power output of DG are much higher than the power
demand from TCLs, and the actual power on the microgrid is limited by the maximum charging
speed of BESS, which cannot meet the constraint (13).

Let dc
max denote the maximum power that can be charged to the BESS within a control step, Pmin

G
denote the minimum output of DG, and Ptcl(K) denote the power demand from TCLs at control step
K. For the above two conditions occurred at the step K, the amount of power curtailed will be:

Pcur(K) = Pmin
G + Ps(K)− εPtcl(K)

Pcur(K) = Pmin
G + Ps(K)− dc

max
(15)

Furthermore, we assume that the maximum output from DG Pmax
G will always be higher than the

power demand from TCLs.
Problem Statement: Then, the constrained optimal control problem is stated as follows: find

control inputs si(t), PG(kδ) and PB(kδ) such that the constraints (3), (6), (7), (9), (10) and (11) hold and
the minimum of (12) is achieved. Moreover, over all such control inputs, we find the control inputs
such that the minimum of the cost (14) is achieved. This problem can be perceived as the double
optimization control problem, which can be solved as follows:

Introducing the following switching rule for si(t):

si(t) = 0 if Tin
i (t) < D2

si(t) = 1 if Tin
i (t) ≥ D2

(16)

It is clear that for some large enough k0, the controller (17) will keep the variables Tin
i at the level

D2 which is the maximum comfortable temperature. Hence, this controller will deliver the minimum
of the cost (12) for large enough k0. Now to find the control input that delivers the minimum of the
cost (14), for all k = k0, k0 + 1, · · · , N, x ∈ [Pmin

B , Pmax
B ], introduce the Lyapunov-Bellman equation

V(kδ, x) as follows:

V(Nδ, x) := 0 ∀x ∈ [Pmin
B , Pmax

B ] (17)

V(kδ, x) := V((k + 1)δ, x) + min
PG ,PB∈Ωk

(aPG(kδ)2 + bPG(kδ) + c + γ1|PB(kδ)| (18)

+ γ2x(kδ) + Ccur(kδ)Pcur(kδ))

where Ωk is the set of (PG, PB) such that PG ∈ [Pmin
G , Pmax

G ], PB ∈ [Pmin
G , Pmax

G ] and
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PG + PB ≥ − P̂s(kδ) +
n

∑
i=1

(
T̂out(kδ)− D2

βi
) (19)

PG + PB ≤ − P̂s(kδ) + ε
n

∑
i=1

(
T̂out(kδ)− D2

βi
) (20)

Moreover, the optimal value PG(kδ) and PB(kδ) are the values (PG, PB) for which the minimum
in (18) is achieved.

It follows from the Bellman optimality principle (dynamic programming principle), see, e.g., [20],
that the controller defined by (17) and (18) delivers the minimum of the cost (14). Hence, we have
derived the following statement.

Proposition 1: There exists an integer K such that for all K < k0 < N, the control inputs defined
by (16)–(18) is the solution to the double optimization control problem over the time interval [k0, Nδ].

Remark: The controller (16) is a variable structure controller. The optimal control input
corresponding to the sliding mode requires infinitely fast switching. In practice, ON-OFF switching in
TCLs cannot be too fast, which results in some difference between the optimal and actual values of the
control variables. Equations (17) and (18) are standard dynamic programming type equations. Since
x, PG, PB are scalar variables, these equations are computationally easy.

Model Predictive Control (MPC): We apply the model predictive control approach as follows.
Let an integer N0 > 0 be our MPC horizon. For any k0 ≥ 0, N := k0 + N0 and any x0 ∈ [xmin, xmax],
we find the optimal control inputs which deliver the minimum in the double optimization control
problem and use the standard MPC scheme.

It should be pointed out that the proposed controller (16)–(18) is decentralized. In (16),
the controller for each TCL requires only information on the indoor temperature in the corresponding
area (room, building). The controller (17) and (18) does not require any information on indoor
temperatures and TCLs’ controllers. Moreover, the proposed control algorithm is easily scalable.
The dynamic programming part algorithm stays the same as the number of TCL units increases.
The variable structure control part of the algorithm is fully decentralized so as the number of TCL
units increases, the time required by the algorithm stays the same.

5. Simulation

5.1. Set Up

The proposed strategy is tested with computer simulation, and the process of algorithm is
described with the flow chart on Figure 2 with parameters of BESS, DG, and TCLs used in the
simulation summarized in Table 1. To verify its effectiveness, a comparison study is conducted with
the control strategy introduced in [9], which will be discussed in Section 5.4.

Table 1. System parameters.

DG Pmin
G Pmin

G a b c
50 kW 500 kW 0.01 0.1 0

BESS Pmin
B Pmax

B γ1 γ2 Ccur
120 kw 0 0.008 0.008 60/kWh

TCL n D2 βi ε
3200 23 300 1.05
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Figure 2. Flow chart of the proposed algorithm.

5.2. System Parameters and Database

The rated capacity of BESS used in the simulation is 240 kWh. Based on research data in [11],
we choose 0.9 and 0.1 state-of-charge of BESS as the upper and lower bound for the BESS energy state
to avoid overcharging/deep discharging. In addition, it is assumed that the actual time of each control
step is 10 min, so the predictive data on PV power and outdoor temperature are average values based
on 10-min observations, and the factor ∆t to convert power to energy is 1/6. Furthermore, we consider
a control horizon of one hour and there will be six control steps in each horizon.

The solar power data is retrieved from the St. Lucia Concentrating Array located in UQ
Photovoltaic Sites, and the outdoor temperature data used is based on temperature observations
of Sydney in [21]. As these are actual data, we include some errors in the simulation based on the
forecasting technique presented in [17], which produces a normalized mean absolute error that ranges
between 5% and 14%. Furthermore, the 24-h solar power and outdoor temperature data are recorded
from 5 a.m. on the current day to 4.50 a.m. the next day. As the sunset time is around 5 p.m. in the
simulation data, there is no solar power generated afterward. PV and temperature data used in our
simulation are summarized in Figures 3 and 4.
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Figure 3. Actual and forecasted outdoor temperature.

Figure 4. Actual and predicted solar power.

5.3. Simulation Results

The indoor temperature controlled with the variable structure controller is illustrated in Figure 5.
We include a 0.2 per step time delay in the controller, which is 2 min in practice. With a set point
temperature of 23 Celsius, the outdoor temperature and the corresponding indoor temperature over the
first 50 control steps are shown in Figure 6. In addition, with an initial battery energy state of 120 kWh,
the control inputs for the BESS and the DG solved with the proposed strategy are summarized in
Figure 6. Based on the obtained results, one can observe that most of the charging actions are solved
over the initial steps of the simulation where the temperature is relatively lower than other periods. As
a result, the excess solar power would be charged into the BESS. In addition, the outdoor temperature
gradually increases and reaches the peak at step 50, and the majority of the discharging actions of the
BESS can be observed over this period. Once the energy stored in the BESS reaches a relatively lower
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state, the DG becomes the leading supplier to the TCLs afterward. The corresponding operational cost
calculated with the simulation results is around 8606.98.

Figure 5. Ambient and controlled indoor temperature.

Figure 6. Simulation results of battery energy storage system (BESS) action and distributed generator
(DG) output.
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Since the rolling horizon approach is utilized, we record only the first components in the sets of
BESS actions and the corresponding output power of DG. It should be pointed out that the forecasted
PV and temperature data are used to compute these actions; while the system states are updated with
the actual PV and temperature data using Equation (4). Furthermore, as the initial state is on 50% of
the battery state-of-charge, there is no power curtailment during the one-day simulation.

5.4. Comparison Study

To evaluate the effectiveness of our algorithm, we compare it with the control scheme introduced
in [9], in which a differential evolution (DE) algorithm is used. The DE algorithm is a population-based
heuristics optimizer [22], and the choice of parameters in the algorithm, such as the population size,
crossover rate, and mutation factor, could affect the optimization performance [23]. Therefore, this
could increase the difficulty of implementing it in practice with the rolling horizon approach, as the
microgrid operators are required to adjust those parameters for different sets of data. The DE algorithm
can be used to solve the minimization problem minx1,...xn f (x1, x2, · · · , xn), where xi are the variables.
The pseudocode of the DE algorithm [24] is described in Algorithm 1.

Algorithm 1 Differential evolution

1: procedure
2: Step 0. Initialization:
3: Number of variables n
4: Population size NP mutation factor F, crossover rate CR
5: Maximum iteration number, Maxiter
6: Upper and lower bounds for all variables:
7: xmin

i , xmin
i , ∀i.

8: Step 1. Generate random initial population:
9: for i = 1 to NP do

10: for i = 1 to n do
11: x(i, j) = xmin

j + rand[0, 1](xmax
j − xmin

j )
12: end for
13: end for
14: Step 2. Mutation and Crossover process:
15: for I = 1 to Maxiter do
16: for i = 1 to NP do
17: Select random r1, r2, r3 ∈ [1, NP]
18: r1 6= r2 6= r3 6= i
19: jrand = randInt[1 : n]
20: for j = 1 to n do
21: if rand[0, 1] < CR or j == jrand then
22: V I+1

i,j = xI
i,r1 + F(xI

i,r2 − xI
i,r3)

23: else
24: V I+1

i,j = xI
i,j

25: end if
26: end for
27: end for
28: Step 3. Selection:
29: if f (v(I + 1)) ≤ f (xi(I)) then
30: xI+1

i = vI+1
i,j

31: else
32: xI+1

i = xI
i

33: end if
34: end for
35: end procedure
36: End
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In our case, the variables are control inputs for BESS. The mutation factor and crossover rate used
in our simulation are both 0.9, and the maximum number of iteration is 50. Furthermore, we test the
DE algorithm with the same simulation scenario considered in Section 5.2, and the results obtained
with the population size of 60 is presented in Figure 7.

It should be pointed out that the results obtained with the DE algorithm are inconsistent, and
we need to repeat the algorithm multiple times to achieve the best result. This could be undesirable
for real-time scheduling. In our case, the corresponding operational cost over the one-day simulation
is around 9527.65, which is much higher than the result solved with the proposed algorithm in
this paper. Furthermore, we test the DE algorithm under different population sizes, and results are
summarized in Table 2.

Figure 7. Control inputs for BESS and DG solved with DE algorithm.

Table 2. Cost of system units under different conditions.

BESS Operation Cost ($) DG Operation Cost ($) Total

DE NP:60 8541.54 986.11 9527.65
DE NP:120 8389.07 1003.39 9392.46
DE NP:180 8209.49 814.89 9024.39

Proposed scheme 8181.21 425.76 8606.98

It can be perceived that the results can be improved at higher population sizes. By further
increasing the population size, (e.g., up to 100 times of the variables) we could obtain results that are
close to the one solved by the proposed scheme, but it would require multiple runs of the algorithm
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with adjustments on the parameters. In addition, it should be pointed out that the conditions to curtail
the excessive energy are not considered in [9]. As a result, during our simulation, we found that with
some sets of simulation data, such as a relatively low initial BESS state, the DE algorithm can generate
results containing errors because the constraints set in the algorithm code cannot be satisfied. Since the
model predictive control approach is used in our scheme, we believe that the dynamic programming
algorithm will be a more appropriate choice as it does not require any adjustments in the code during
the real-time operation. In addition, the actual level of reduction could be more significant if the
unused energy stored in the BESS at the end of the process is considered.

5.5. Discussion

The proposed method can achieve better results than the one used for comparison.
In consideration of the practical application, the proposed approach could be more reliable since
the adjustment of parameters in the algorithm is unnecessary. Furthermore, the decentralized
control scheme is critical to the real-time energy scheduling in the microgrid. Based on the previous
sections, it can be perceived that the control of TCLs is only based on the indoor temperature in the
corresponding area, and the operation of the generator and batteries are independent of the current
measurements of indoor temperature. In order words, direct controls and communications between
the central energy management system and the distributed TCLs are not required, which significantly
improve the efficiency of the system, and the cost of constructing the whole system can be reduced.

6. Conclusions

A microgrid power scheduling strategy was introduced. The objective was to minimize the
cost required to keep the room temperature under the desired level. A decentralized control
scheme was proposed. The controller for each TCL needs to measure only indoor temperature
in the corresponding area. The control input for the BESS charge/discharge does not need to have
any measurements from TCL units, so the proposed system does not require any significant data
communication subsystem. The conducted computer simulations showed that the proposed control
scheme significantly outperforms other control algorithms. The proposed method is fully decentralized,
computationally efficient and easily scalable. Moreover, the optimality of the proposed algorithm has
been proved in a mathematically rigorous way.

In future studies, we will focus on determining an optimal BESS capacity for different scales
of microgrids. To achieve that, we believe that an economic cost model of the BESS considering
the degradation of batteries from actions under different conditions, such as temperature, depth of
discharge, and rates of charge/discharge should be constructed. In addition, the long-term historical
data on temperature and solar power should be investigated to determine the charge/discharge
patterns over different seasons, and a possible objective function to determine the optimal capacity
can be the minimization of power curtailments, battery lifetime consumption, and the unused BESS
capacity over a period. Another important direction of future research is to test the proposed control
algorithm in experiments with a real microgrid.
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Abbreviations

The following abbreviations are used in this manuscript:

BESS Battery energy storage system
RES Renewable energy system
TCL Thermostatically controlled load
DG Distributed generator
PV Photo voltaic
MPC Model predictive control
DE Differential evolution
a, b, c Cost coefficients of the generator
d Charge\discharge loss factor of the battery energy storage system
PG Output power of the generator
Pmin

G Minimum output power of the generator
Pmax

G Maximum output power of the generator
PB Charge\discharge power the battery energy storage system
Pmin

B Minimum action of the battery energy storage system
Pmax

B Maximum action of the battery energy storage system
γ1, γ2 Cost coefficients of the battery energy storage system
x(·) Energy state of the battery energy storage system
xmin Minimum energy state of the battery
xmax Maximum energy state of the battery
Tin

i Indoor temperature in the region of thermostatically controlled load i
Tout Outdoor temperature
αi, βi Coefficients of thermostatically controlled load i
D1 Minimum temperature in the comfortable range
D2 Maximum temperature in the comfortable range
Pi Power rating of thermostatically controlled load i
si Switching action of thermostatically controlled load i
Ps Power output of the solar power system
Pmax

s Maximum power output of the solar power system
ε Maximum tolerance level of the total power on the microgrid
Pcur Power curtailed in the microgrid
Ccur Cost of power curtailed in the microgrid
δ Sampling rate
∆t Factor to convert power to energy
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