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Abstract: Building Energy Models (BEMs) are a key element of the Energy Performance of Buildings
Directive (EPBD), and they are at the basis of Energy Performance Certificates (EPCs). The main
goal of BEMs is to provide information for building stakeholders; they can be a powerful market
tool to increase demand for energy efficiency solutions in buildings without affecting the comfort of
users, as well as providing other benefits. The next generation of BEMs should value buildings in a
holistic and cost-effective manner across several complementary dimensions: envelope performances,
system performances, and controlling the ability of buildings to offer flexible services to the grid by
optimizing energy consumption, distributed generation, and storage. SABINA is a European project
that aims to look for flexibility to the grid, targeting the most economic source possible: existing
thermal inertia in buildings. In doing so, SABINA works with a new generation of BEMs that tend
to mimic the thermal behavior of real buildings and therefore requires an accurate methodology to
choose the model that complies with the requirements of the system. This paper details our novel
extensive research on which statistical indices should be chosen in order to identify the best model
offered by the calibration process developed by Fernandez et al. in a previous paper and therefore is
a continuation of that work.

Keywords: uncertainty index; validation of calibrated energy models; energy simulation; Zero
Energy Calibration (ZEC); Building Energy Models (BEMs); law-data-driven BEMs

1. Introduction and Motivation for the Work

BEMs are key elements of the Energy Performance of Buildings Directive, and they are at the basis
of Energy Performance Certificates (EPCs) and assessment. Assessment and certification processes
should be user-friendly, cost-effective, and more reliable in order to instill trust in investors in the energy
efficiency sector [1]. Therefore, the next generation of EPCs will need to fulfill these requirements,
as well as the next generation of BEMs. Until now, EPCs have been based on two concepts [2]: standard
energy rating and measured energy rating. In the former, the energy consumed by a building is
calculated through an energy model (law-driven models, Option D of the International Performance
Measurement and Verification Protocol (IPMVP)) [3], and in the latter, the energy is measured through
meters and sensors installed in the building (data-driven models, Option C of the IPMVP).

In a previous paper written by some of the authors [4], it was explained in detail how this new
generation of BEMs should be produced and that the new technique is able to merge the law-driven
models [5] and the data-driven models [6–9], resulting in “law-data-driven models”. In summary,
the concept uses well-known software such as EnergyPlus [10] to combine the model based on as-built
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parameters with the model based on parameters estimated using measurements of the system and,
through a calibration process, producing the new technique. This technique has produced very good
results and is based on the use of measured temperature from the real building as part of the energy
balance of the BEM, following the idea that Sonderegger postulated in 1977: “Instead of telling the
computer how the building is built and asking it for the indoor temperature, one tells the computer the measured
indoor temperature and asks it for the building parameters” [11].

SABINA is a project that is looking for services on the grid based on the “demand response”
concept [12] and the idea of increasing the amount of renewable energy consumed locally by buildings.
To reach the EU’s long-term objectives for reducing greenhouse gas emissions, this share should reach
more than 30% in 2030, and almost 50% in some scenarios in 2050 [13]; new management systems are
thus required. What is most needed is additional flexibility in the system. SABINA targets the most
economic source possible: existing thermal inertia in buildings [14]. This goal requires models that
capture the thermal dynamics of the building, and the Zero Energy Calibration (ZEC) methodology has
been chosen to select those kinds of models [4]. The usefulness of a model depends on the accuracy and
reliability of its output, but all models are imperfect abstractions of reality, because there is imprecision
and uncertainty associated with any model.

Currently, there is the protocol IPMVP [3], and two guidelines: FEMP [15] and ASHRAE [16],
which offer a set of error indices (CV(RMSE), NMBE, and R2) to evaluate the quality of the calibrated
models considering the monthly and hourly energy consumption (simulated vs. real). Other
methodologies use indoor air temperature (simulated vs. real) to calibrate the building models
with the same indices [4,17–20]. When doing so, it is not clear if these indices, which were selected
for energy evaluation, will have a good performance for temperature. In this paper, a large number
of error indices have been analyzed with the aim of selecting the best ones to choose the model that
represents the real building indoor air temperature. This new evaluation methodology has been tested
and verified in different building models: the “Amigos” [4], “Humanities” [21], and “The School of
Architecture” [22] at the Pamplona Campus of the University of Navarre. In this paper, the office
building of the School of Architecture has been used, as it is explained in the following sections.

Summary of the ZEC Methodology

The Zero Energy Calibration (ZEC) is a methodology for building envelope calibration. The ZEC
principle is based on the idea that when introducing the free oscillation temperature of a building
in the model, as a dynamic set-point, the energy consumed by the HVAC equipment in that period
should be zero. If this is not the case, the reason should be the wrong configuration of the building
parameters, and the algorithm (genetic algorithm) will look for a new vector of envelope parameters
that will produce a lower energy consumption (heating plus cooling). The process finishes when the
energy (the objective function) cannot be reduced further and the model envelope is calibrated.

In most automatic calibration techniques [23,24], the simulation data are used at the end of the
process to be compared with the measured data, and the goal is to minimize an error value in what is
known as uncertainty analysis. In such cases, the statistical indices (CV(RMSE), NMBE, and R2) are
the objective functions that will guide the algorithm in the search for the calibrated model [25–27].

The main ways of calibration do not allow entering into the calibration process as many measured
data as necessary, and thus, the thermal characterization of the model will not be improved. In this
methodology (ZEC), there is no restriction in the creation of thermal zones. The major simplification
that ZEC offers is that there is no implementation of uncertainty analysis in coordination with
the automatic calibration algorithm and the simulation program, which makes it simpler and
therefore more accessible to all kinds of professionals with energy simulation skills, but without
programing capabilities.

For this reason, the ZEC methodology is simple in execution. The algorithm used to perform the
thermal zone energy balance in EnergyPlus is the Conduction Transfer Function (CTF), which offers a
very fast and elegant solution to solve the Fourier differential equation and to find the temperature
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of the thermal zone. However, as explained in the EnergyPlus Engineering Reference, “conduction
transfer function series become progressively more unstable as the time step decreases. This became a problem as
investigations into short time step computational methods for the zone/system interactions progressed because,
eventually, this instability caused the entire simulation to diverge” [28]. This divergence is translated into
extra energy consumption that affects the objective function used by ZEC, a problem that has been
well documented and evaluated by Wetter et al. [29]. The result of this extra energy consumption
is that some models with slightly higher energy consumption have better uncertainty temperature
results than the best models selected by the energy of the objective function. From a practical point
of view, this means that the best model cannot be chosen directly from the results offered by the
algorithm unless an uncertainty temperature analysis is subsequently performed, in the same way as
other similar works [26,27,30,31].

Taking into account the indices’ combination proposed by ASHRAE (CV(RMSE), NMBE,
and R2) [16], the authors worked with a new statistical index that was called the ZEC_Index [4],
which was the arithmetic sum of errors CV(RMSE), NMBE, and (1 − R2). The model with the
lowest ZEC_index was the one considered to have the best performance. As the indices’ combination
proposed by ASHRAE (CV(RMSE), NMBE, and R2) is based on energy uncertainty analysis and the
new proposal is based on temperature uncertainty analysis, this paper intends to confirm if there is
any other statistical index or combination of indices that can improve the selection of the best model.

The uncertainty analysis should classify the best models according to the capacity to reduce
the error between real temperature inside the building and simulated temperature produced by
the building model. From a practical point of view, a good correlation should be found between
temperature and energy with respect to the selected temperature error (uncertainty index).

In order to check if a different index can choose a better model, a list of a number of error
metrics that been studied in Section 2, classified into seven groups (bias error indices, uncertainty
indices based on absolute deviations, uncertainty indices based on square deviations, goodness-of-fit
metrics, efficiency criteria, indices for model discrimination, and proximity measures), according to
the application or structure and the statistical methodology description used to select the metrics
that identify the best-adjusted calibrated energy model. Section 3 outlines the cases of study and the
description of the building used to check the methodology. Section 4 presents the performance of the
metrics described in Section 2 over two case studies: a synthetic energy model and a real building
model, each under the same conditions. The conclusions that we have reached in this paper and future
research considerations are presented in Section 5.

2. List of a Number of Error Metrics

Having a “reasonable” idea of the quality of adjustment between real and simulated models is
not hard [32], but evaluating the accuracy of a BEM or quantifying the quality of the adjustment is,
actually, quite difficult, particularly when this quantification is used to identify the best adjusted model
to the real building.

Different indices are used in diverse research branches to define an evaluation criterion for the
accuracy of the energy model. For example, efficiency measures are used in hydrology [33,34]. In order
to evaluate the performance of the model for energy saving in the Measurement and Verification
process (M&V), Goodness-of-fit metrics are generally used [35]. Another measure, known as the
uncertainty index, is used in an energy modeling context for the same purpose [36].

Each metric provides a different insight into the model’s performance, and therefore, there is no
an ideal metric to identify the best-adjusted model. In fact, researchers suggest “to use the numerical
comparison as well as graphical comparison when one decides the base model adequacy” [37]. In practice,
several metrics are jointly evaluated and complemented by a graphical analysis (e.g., [38–41]).
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2.1. Bias Error Indices

The range for all of these is the whole real line, and the optimal value must be zero (Table 1).
The M&V methodology for energy calibrated models considers p = 1 for NMBE.

Table 1. Bias error measures.

Index Equation

Bias Error BE =
n

∑
i=1

(yi − ŷi) (1)

Mean Bias Error MBE =
1
n

n

∑
i=1

(yi − ŷi) (2)

Relative Error RE =
n

∑
i=1

(yi − ŷi)

yi
(3)

Normalized Mean Bias Error NMBE =
1

ȳ (n− p)

n

∑
i=1

(yi − ŷi) (4)

PBIAS PBIAS =

n
∑

i=1
(yi − ŷi)

n
∑

i=1
yi

× 100 (5)

2.2. Uncertainty Indices Based on Absolute Deviations

These indices consider only the distance between values, omitting the direction of the differences
and overcoming cancellation errors. They can take any positive value, and their optimal value is
minimum (Table 2).

Table 2. Absolute error measures.

Index Equation

Absolute Error AE =
n

∑
i=1
|yi − ŷi| (6)

Mean Absolute Error MAE =
1
n

n

∑
i=1
|yi − ŷi| (7)

Relative Absolute Error RAE =
n

∑
i=1

|yi − ŷi|
yi

(8)

Mean Absolute Percent Error MAPE =
1
ȳ

n

∑
i=1

|yi − ŷi|
yi

× 100% (9)

Emax
Emax = max

1≤i≤n
|yi − ŷi| (10)

2.3. Uncertainty Indices Based on Square Deviations

In square deviation measures (Table 3), the M&V methodology for energy calibrated models
considers p = 1 for CV(RMSE).
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Table 3. Square deviations measures.

Index Equation Range Optimal value

Mean Squared Error MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (11) [0, ∞) 0

Root Mean Squared Error RMSE =

[
1
n

n

∑
i=1

(yi − ŷi)
2

] 1
2

(12) [0, ∞) 0

RMSE-observation Standard Deviationratio RSR =

[
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

] 1
2

(13) [0, ∞) 0

Coefficient of Variation of RMSE CV(RMSE) =
1
ȳ

[
∑n

i=1 (yi − ŷi)
2

n− p

] 1
2

(14) [0, ∞) 0

RMSE/MAE RMSE
MAE

=

[
n

n
∑

i=1
(yi − ŷi)

2
] 1

2

n
∑

i=1
|yi − ŷi|

(15) [1,
√

n] 1

2.4. Goodness-of-Fit Metrics

The uncertainty in energy calibrated models is directly related to their goodness-of-fit [42] and
is the reason why they are the most popular measures to establish the fitness of a simulated model
(Table 4). They measure the quality of the linear relationship between the simulated and observed
data. This relationship may be quite strong, but with a substantial bias. Thus, these measures may be
completed with the bias measures. It may be said that uncertainty can be assessed with a couple of
measures, one of the goodness-of-fit and one of bias.

Table 4. Goodness-of-fit measures.

Index Equation Range Optimal Value

Pearson Correlation Coefficient r =

n
∑

i=1
(yi − ȳ) (ŷi − ¯̂y)√(

n
∑

i=1
(yi − ȳ)2

)(
n
∑

i=1
(ŷi − ¯̂y)2

) (16) [−1, 1] |r| = 1

Spearman Correlation Coefficient ρ =

n
∑

i=1

(
rg(yi)− rg(y)

) (
rg(ŷi)− rg(y)

)
√(

n
∑

i=1

(
rg(yi)− rg(y)

)2
)(

n
∑

i=1

(
rg(ŷi)− rg(y)

)2
) (17) [−1, 1] |ρ| = 1

Coefficient of Determination R2 = r2 (18) [0, 1] 1

bR2 bR2 =

{
|b| R2 if |b| ≤ 1

R2/ |b| if |b| > 1
(19) [0, ∞) 1

GoF* GOF =

[
1
2

(
CV(RMSE)2 + NMBE2

)]1/2
(20) [0, 1] 0

Index ZEC |NMBE|+ CV(RMSE) + (1− R2) (21) [0, ∞) 0

Ratio of Standard Deviations rSD =

(
∑n

i=1 (yi − ȳ)2

∑n
i=1 (ŷi − ¯̂y)2

) 1
2

(22) [0, ∞) 1

2.5. Efficiency Criteria

This indices are measures of how well a model simulation fits the real observations [43], and they
are widely used, for instance, to evaluate the performance of hydrological models [33,34]. Most of
the efficiency criteria include notions of distance and variance between real and simulated values in
order to analyze the adjustment, both in terms of location and variability. Table 5 shows the indices
considered here.



Energies 2019, 12, 2096 6 of 18

Table 5. Efficiency criteria.

Index Equation Range Optimal Value

Nash–Sutcliffe
efficiency

NSE = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

(23) (−∞, 1] 1

Modified NSE mNSE = 1−

n
∑

i=1
|yi − ŷi|j

n
∑

i=1
|yi − ȳ|j

(24) (−∞, 1] 1

Relative NSE rNSE = 1−

n
∑

i=1

(
yi−ŷi

yi

)2

n
∑

i=1

(
yi−ȳ

ȳ

)2 (25) (−∞, 1] 1

Logarithmic NSE log NSE = 1−

n
∑

i=1
(log yi − log ŷi)

2

n
∑

i=1
(log yi − log ȳ)2

(26) (−∞, 1] 1

Index of
Agreement

d = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(|ŷi − ȳ|+ |yi − ȳ|)2

(27) [0, 1] 1

Modified Index of
agreement

md = 1−

n
∑

i=1
|yi − ŷi|j

n
∑

i=1
(|ŷi − ȳ|+ |yi − ȳ|)j

(28) [0, 1] 1

Relative Index of
Agreement

rd = 1−

n
∑

i=1

(
yi−ŷi

yi

)2

n
∑

i=1

(
|ŷi−ȳ|+|yi−ȳ|

ȳ

)2 (29) (−∞, 1] 1

Coefficient of
Persistence

cp = 1− ∑n
i=2 (yi − ŷi)

2

∑n−1
i=1 (yi+1 − yi)

2 (30) (−∞, 1] 1

Volumetric
Efficiency

VE = 1− ∑n
i=1 |yi − ŷi|

∑n
i=1 yi

(31) [0, 1] 0

2.6. Indices for Model Discrimination

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used for
choosing among different models, as Table 6 indicates.

Table 6. Comparison model measures. In the equations, d represents the number of parameters of the
model.

Index Equation Range Optimal Value

Akaike Information Criterion AIC = n log(MSE) + 2d (32) R lower value

Bayesian Information Criterion BIC = n log(MSE) + d log(n) (33) R lower value

2.7. Proximity Measures

p− f actor (34) is the proportion of simulated values that are within a given band of the observed
values and, therefore, takes values in [0, 1].

p− f actor =
A
n

A = {ŷi ∈ [yi − λ, yi + λ], i = 1, . . . , n}
(34)
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If the simulated model represents exactly the behavior of the real model, p − f actor = 1 for
small λ-wide uncertainty bounds, which is equivalent to obtaining 100% of observations within the
uncertainty band [44]. Therefore, the model error could be referenced by (1, p− f actor). A perfect
adjustment of models has a p− f actor equal to one.

This measure tries to catch the graphical behavior of the adjustment. In the equation, A is the
uncertainty λ-wide band, with width equal to 2λ. The choice of λ is not an easy task in general and
depends on the data. In this work, λ corresponds to degrees Celsius, which will be chosen in such a
way that it correlates well with both uncertainty and energy. We initially propose λ = 0.5 as a quality
criterion, which can collect random and measured errors. In practice, p− f actor is widely used by
researchers to validate model adjustment [45].

3. Cases Studies, Building Description, and Models’ Preparation

In order to carry out this methodology, the calibration process was checked under two
assumptions. In Section 4, two cases were developed. In the first case, the real data were produced
synthetically from a BEM, as recommended by the ASHRAE Fundamentals Handbook [35], with the
idea of avoiding the inaccuracy of the temperature meters. In this case, the quality of the parameters
resembled quite faithfully the parameters of the model that originated the data. In the second case,
the model was calibrated with real data from meters inside the building. On this occasion, the gap
between real and simulated data was clearer, as will be seen in the results.

The building selected for generating both case studies explored in this paper was the Architecture
School administrative building of the University of Navarra (Figure 1).

Figure 1. The Architecture School administrative building of the University of Navarra.

The Architecture School was designed by the architects Rafael Echaide, Carlos Sobrini, and
Eugenio Aguinaga and was built between 1974 and 1978. It won the “National Award for Architecture
in Brick” in 1980. The building is organized along an interior garden with four zones at different levels
that accommodate the needs of the school.

Through a transparent gallery, connected to the main building, people can access the office area,
which is the building object of this paper. It is mainly used as an administration building and by
postgraduate students of the different master’s programs of the School of Architecture, and it mainly
keeps business hours.

It is a freestanding single-story building of almost 760 square meters. It is a porticoed structure of
concrete, and the interior and exterior walls were made of red clinker brick fabric, while the building
frames were made in situ of aluminum with an air chamber and a light gold color.

The space allocation consists of a succession of offices for personnel that face southeast and
northwest, an administration zone facing northwest, an open working space and master classrooms
facing southeast, and a corridor in the middle connecting the spaces.
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The building energy model has been divided into 25 thermal zones, one for each room (Figure 2).
The HVAC system has been introduced through the option of ideal loads offered by EnergyPlus.

Figure 2. Energy model and zoning map of the Office building, School of Architecture (University
of Navarra).

The calibration methodology was carried out by ZEC, described in the previous paragraphs, the
process of which is defined in Figure 3.

BES MODEL

BUILDING

SITE

REAL

VIRTUAL

DATA SENSORS

GEOMETRY
CONSTRUCTION
HVAC & PLANTS
SURROUNDINGS

WEATHER

PARAMETRIZATION

SENSITIVITY ANALYSIS

DEFINE OBJECTIVE FUNCTION

RANKING OF THE
VALIDATED SIMULATIONS

CALIBRATING
BES

VERIFICATION
OF THE

SIMULATIONS

20 BEST
CALIBRATED
BES MODELS

Figure 3. ZEC calibration methodology and model evaluation.

The last step in the ZEC methodology after calibration is to obtain the 20 best models of the
calibration process for each period.

4. Methodology to Evaluate Energy Models: Analysis of Case Studies

For evaluation of the models, a global checking period is defined to validate the best models of
each calibration period. In the ZEC methodology, the evaluation involves performing an uncertainty
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analysis that compares the simulated temperature during the free oscillation times of the checking
period with the measured temperature from the real building. This allows the analysis of all the models
on equal terms to generate a ranking of simulations in order to choose the best solution (Figure 4).

PERIOD 1 PERIOD 2 PERIOD n

...

CALIBRATION

20 BEST
MODELS

CALIBRATION

20 BEST
MODELS

CALIBRATION

20 BEST
MODELS

BEST MODEL

CALIBRATION PROCESS

EVALUATION PROCESS

Tables 9 and 11. Synthetic models
Tables 10 and 12. Real models

CALIBRATED 
MODELS

CORRELATION OF UNCERTAINTY 
INDICES WITH: TEMPERATURE AND 

ENERGY

SELECTION OF THE 
BEST INDICES

Tables 7 and 8

Figure 4. Calibration and evaluation process by ZEC for the different calibration periods.

To carry out this research, the model has been calibrated, using the ZEC methodology, in 16
different calibrated periods choosing the 20 best models, with the lower energy of each period,
generating a total of 320 models. The models have been identified by Pk_Mj, where Pk is the calibration
period (from 1–16) and Mj is the model with respect to its position in the energy ranking (from 1–20).
These models are evaluated in a common checking period, obtaining the results of their indices of
uncertainty and the energy consumed. This study was conducted for both a model with synthetic data
and a model with real data.

In the following section, a methodology will be developed to choose the best model among these
320. The methodology proposed a correlation analysis and was performed between the uncertainty
indices described in Section 2 and the energy consumption and measured temperature. The energy
consumption was calculated from 320 simulations checked over the same period, corresponding to the
BEM described in Section 3. The uncertainty indices were calculated using the measured temperatures
from a synthetic and a real model in 25 thermal zones.

The correlation was calculated over the mean temperature of these 25 zones, and the real and
simulated temperatures were weighted for the relative volume of every zone. Thus, the real (Yp) and
simulated (Ŷp) mean weighted temperature vectors were defined as:
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Yp :=
25

∑
j=1

yi,j
Vj

∑j Vj
, Ŷp :=

25

∑
j=1

ŷi,j
Vj

∑j Vj
(35)

where yi,j and ŷi,j are the real and simulated temperatures of the thermal zone j at time i and Vj is the
j-thermal zone volume in cubic meters (35).

For a given model, the best uncertainty indices must have the higher p− f actor for small values
of λ; therefore, the correlation between error indices and p− f actor(λ) could help to identify them.
The highest values of these correlations are reached for narrow λ-wide bands, shown in Table 7 for a
synthetic model and in Table 8 for a real model.

Another relevant point to determine which indices are appropriate for the best-performing model
is the correlation between them and energy consumption. The right column of Tables 7 and 8 shows
the calculated values.

Table 7. (Synthetic case) Group index segmentation by the λ value where the uncertainty indices
calculated on weighted mean temperatures and p − f actor(λ) reach the maximum correlation,
in absolute value. The calculated p-values for these correlations are above 0.97 in most cases.
The considered λ values are taken within the interval [0.05, 2].

Uncertainty Index (UI) Maximum Correlation between UI and p-Factor(λ) Reached at λ Correlation between UI and Consumed Energy

GROUP 1

VE 0.9907 0.25 0.9055
MAE 0.9907 0.25 0.9055
mNSE 0.9906 0.25 0.9055
md 0.9895 0.25 0.9089
MAPE 0.9886 0.25 0.9115

GROUP 2

CV(RMSE) 0.9923 0.30 0.9001
NSE 0.9923 0.30 0.9001
cp 0.9923 0.30 0.9001
RSR 0.9923 0.30 0.9001
d 0.9918 0.30 0.9015
rNSE 0.9897 0.30 0.9056
logNSE 0.9896 0.30 0.9061
ZEC_index 0.9898 0.30 0.8933
bR2 0.9779 0.30 0.8633
GoF 0.9906 0.30 0.8818
r.Spearman 0.9206 0.30 0.9274
rSD 0.7720 0.30 0.6035

GROUP 3

rd 0.9896 0.40 0.9081
Emax 0.9660 0.40 0.9276
R2 0.9177 0.40 0.9611
AIC 0.9923 0.30 0.9001
RMSE/MAE 0.6999 0.05 0.5411
PBIAS% 0.5802 1.35 0.1628
NMBE 0.5802 1.35 0.1628
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Table 8. (Real case) Group index segmentation by the λ value where the uncertainty indices calculated
on weighted mean temperatures and p− f actor(λ) reach the maximum correlation, in absolute value.
The calculated p-values for these correlations are above 0.95 in most case. The considered λ values
were taken within interval [0.05, 2].

Uncertainty Index (UI) Maximum Correlation between UI and p-Factor(λ) Reached at λ Correlation between UI and Consumed Energy

GROUP 1

VE 0.9811 1.50 0.8006
MAE 0.9811 1.50 0.8007

mNSE 0.9811 1.50 0.8007
md 0.9831 1.50 0.8056

MAPE 0.9834 1.45 0.8220

GROUP 2

CV(RMSE) 0.9905 1.45 0.8275
NSE 0.9905 1.45 0.8275
cp 0.9905 1.45 0.8275

RSR 0.9905 1.45 0.8275
d 0.9907 1.45 0.8259

rNSE 0.9947 1.30 0.8712
logNSE 0.9968 1.20 0.9137

ZEC_index 0.9716 1.50 0.7999
bR2 0.9456 1.60 0.7575
GoF 0.9897 1.40 0.8291

r.Spearman 0.9653 0.45 0.5900
rSD 0.8189 1.00 0.8556

GROUP 3

rd 0.9941 1.35 0.8575
Emax 0.9877 1.75 0.7260

R2 0.9484 0.45 0.6663
AIC 0.9904 1.45 0.8275

RMSE/MAE 0.9155 0.30 0.4085
PBIAS% 0.9635 0.60 0.5335
NMBE 0.9635 0.60 0.5335

In both cases, there are groups of indices differentiated by the λ-value where they reach the
maximum correlation:

• In the first group, the indices whose maximum correlation is reached at λ = 0.25 for a synthetic
model and λ = 1.45 for a real model are measures calculated by the absolute value of the
distances.

• The second group reaches the maximum at λ = 0.3 and λ = 0.45 for a synthetic model and real
model, respectively, and they are calculated with squared distances.

• In the third group, the value of λ varies from λ = 0.05 to λ = 1.35 for a synthetic model and from
λ = 0.3 to λ = 1.75 for a real model. They are not related to a specific distance measure.

The indices BE, MBE, and RE are omitted in the results tables since their method of calculation
was subjected to cancellation errors and their performance was poor. Another group of indices, AE,
RAE, MSE, RMSE, BIC, and the Pearson Correlation Coefficient (r), were omitted because they had
redundant information; that is, they were a direct part of the calculation of other measures with equal
or better performance, and their correlations were equal to one in the temperature datasets analyzed
here. MSE and RMSE had a similar performance to CV(RMSE), and the same happens between the
indices pairs: AE and MAE, RAE and MAPE, BIC with respect to AIC, and the Pearson correlation
coefficient with respect to the Spearman correlation coefficient.

With the results obtained in the previous Tables 7 and 8, we can make the selection of the indices
for the evaluation of the models. These indices must meet two objectives: good correlation of the
indices with temperature and with energy. logNSE is one of the indices that fulfills these two premises
for a synthetic model and a real model.

Once the indices with which to evaluate the models have been chosen, we proceed to compare
them with the old methodology (ZEC_index) for the proposed cases: synthetic and real.

In Table 9 (synthetic case) and Table 10 (real case), we have the twenty best models ranked by
ZEC_index (old methodology). In the first one (synthetic case), thirteen out of twenty of these models
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are among the best of the energy ranking. The best model of Table 9 (P13_M10) was the twenty fifth in
the energy ranking.

Table 9. (Synthetic case) On the left of the table, ranking ascending by ZEC_Index and with reference
to its energy position. On the right, ranking ascending by energy. The shaded text corresponds to the
20 best energy models.

Model ZEC_Index Energy Ranking Model Energy Ranking

P13_M10 1 25 P5_M7 1
P13_M20 2 35 P5_M1 2
P5_M4 3 10 P5_M2 3
P5_M3 4 5 P5_M9 4
P13_M15 5 27 P5_M3 5
P5_M8 6 8 P13_M1 6
P5_M6 12 12 P5_M5 7
P13_M4 8 14 P5_M8 8
P5_M9 9 4 P5_M10 9
P5_M5 10 7 P5_M4 10
P5_M17 11 16 P5_M13 11
P13_M1 12 6 P5_M6 12
P13_M6 13 22 P5_M14 13
P5_M10 14 9 P13_M4 14
P5_M2 15 3 P5_M15 15
P5_M14 16 13 P5_M17 16
P5_M16 17 20 P5_M11 17
P13_M9 18 32 P5_M12 18
P13_M13 19 29 P5_M19 19
P13_M8 20 30 P5_M16 20

In the second one (real case), three out of twenty of these models were among the best of the
energy ranking. The best model of Table 10 (P10_M2) was the twenty ninth in the energy ranking.

Table 10. (Real case) On the left of the table, ranking ascending by ZEC_Index and with reference to its
energy position. On the right, ranking ascending by energy. The shaded text corresponds to the 20 best
energy models.

Model ZEC_Index Energy Ranking Model Energy Ranking

P10_M2 1 29 P5_M6 1
P13_M10 2 19 P9_M8 2
P13_M5 3 30 P5_M1 3
P13_M12 4 39 P16_M3 4
P13_M3 5 45 P16_M5 5
P13_M4 6 46 P5_M7 6
P13_M18 7 31 P5_M12 7
P10_M3 8 84 P5_M3 8
P16_M4 9 10 P5_M19 9
P13_M9 10 47 P16_M4 10
P9_M8 11 2 P5_M10 11
P13_M1 12 62 P9_M14 12
P10_M6 13 89 P9_M6 13
P13_M2 14 56 P9_M5 14
P14_M4 15 52 P6_M17 15
P14_M1 16 63 P5_M8 16
P13_M11 17 81 P9_M1 17
P13_M14 18 75 P9_M3 18
P9_M1 19 23 P13_M10 19
P9_M2 20 70 P6_M10 20

With the new methodology, the results obtained for the synthetic and real case can be evaluated in
Tables 11 and 12. In these tables, the twenty best models are ordered by index logNSE. For a synthetic
case, Table 11, we can see how seventeen out of twenty of these models were among the best for the
energy ranking. The best model of Table 11 (P5_M4) was the tenth in the energy ranking and the
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number one in the rest of the indices. For the real case, Table 12, ten out of twenty of these models
were among the best of the energy ranking. The best model of Table 10 (P9_M8) was the second in the
energy ranking and the number one in the rest of the indices.

Table 11. (Synthetic case) Ranking ascending by logNSE. The text in bold corresponds to the models
with the lowest energy consumption. The row shaded in gray corresponds to the best model selected
by the old methodology.

Model Energy MAPE rNSE logNSE rd p-Factor (0.20)

P5_M4 10 1 1 1 1 100.0%
P5_M3 5 2 2 2 2 100.0%
P5_M8 8 3 3 3 3 100.0%
P5_M6 12 4 4 4 4 100.0%
P5_M5 7 6 5 5 5 100.0%
P5_M9 4 5 6 6 6 100.0%
P5_M17 16 7 7 7 7 100.0%
P5_M2 3 9 8 8 8 100.0%
P5_M14 13 10 9 9 9 99.8%
P5_M16 20 12 10 10 10 99.9%
P5_M10 9 8 11 11 11 100.0%
P13_M15 27 13 12 12 12 99.9%
P5_M7 1 11 13 13 13 100.0%
P5_M11 17 17 14 14 14 99.9%
P13_M10 25 18 15 15 15 99.7%
P5_M18 21 19 16 16 18 100.0%
P13_M4 14 15 17 17 16 99.5%
P13_M1 6 14 18 18 17 99.3%
P5_M19 19 22 19 19 19 99.8%
P5_M12 18 23 20 20 20 99.9%

Table 12. (Real case) Ranking ascending by logNSE. The text in bold corresponds to the models
with lowest energy consumption. The row shaded in gray corresponds to the best model selected
by ZEC_index.

Model Energy MAPE rNSE logNSE rd p-Factor (1.00)

P9_M8 2 1 1 1 1 90.1%
P9_M14 12 5 2 2 3 87.5%
P16_M5 5 24 6 3 7 88.9%
P16_M4 10 3 3 4 2 87.0%
P9_M6 13 12 5 5 5 86.9%
P9_M5 14 11 4 6 6 86.9%
P9_M3 4 66 12 7 8 88.5%
P16_M7 37 29 11 8 13 87.8%
P10_M2 29 2 7 9 4 84.7%
P9_M4 17 16 9 10 10 84.5%
P9_M3 18 15 10 11 11 84.5%
P13_M18 31 4 8 12 9 83.3%
P9_M12 22 21 13 13 14 83.1%
P9_M9 24 19 15 14 15 82.5%
P13_M10 19 17 14 15 12 82.1%
P16_M20 38 25 18 16 16 82.7%
P16_M18 48 51 20 17 25 84.1%
P9_M11 27 23 17 18 17 82.8%
P9_M13 32 20 16 19 23 82.5%
P16_M17 68 40 28 20 30 82.8%

Depending on the methodology used to choose the best model, the results obtained are different.
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For the case of synthetic models, if we rely on the old methodology, the best selected model is
P13_M10 and would be ranked twenty fifth in the energy ranking. With the new methodology, the
best model was P5_M4 and it had the tenth position in the energy ranking. Analyzing both models, we
can see that the model ranked by logNSE (new methodology) had a better performance with respect
to the temperature curves, as shown by its p− f actor, 100% with a λ = 0.2; while the model chosen
with ZEC_index (old methodology) had a p− f actor for a λ = 0.2 of 99.7 %.

The same situation would occur if we analyze the real case. The best model selected with
ZEC_index (old methodology) was P10_M2 with a position of 29 in the energy ranking, and if we
ranked by logNSE (new methodology), the best model would P9_M8, being the Number 2 model in
the energy ranking. By carefully examining both models, we can conclude that the model classified
with the new methodology was better than the one chosen by ZEC_index, as shown by its p− f actor.
The model P9_M8 had a p− f actor for a λ = 1 of 90.1 %, while for the model P10_M2, it was 84.7 %.

Choosing the best model from a list of calibrated models is crucial in many applications like
model predictive control (MPC), where the optimization is based on an hour by hour control of the
energy demand of the model in order to reach the goals of the objective function that are related to an
increase/decrease of energy consumption during specific time periods. Therefore, having a reliable
methodology that gives us this result is paramount. The variation of energy that the two selected
models have for the real case, using the old and the new methodology, is significant, as can be seen in
Figures 5 and 6, where the accumulated energy at hourly time steps has been represented for heating
and cooling demand.
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Figure 5. Comparison of heating demand in Wh/m2 per day in the months of April and May of 2017
of the models evaluated with the old methodology: ZEC_index (P10_M2) and with logNSE (P9_M8).

0

1

2

3

4 

P10_M2, hourly cooling demand (Wh/m² per day) P9_M8, hourly cooling demand (Wh/m² per day)

Residual demand

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

W
h/

m
²

hours
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the models evaluated with the old methodology: ZEC_index (P10_M2) and with logNSE (P9_M8).
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5. Conclusions and Future Research

After obtaining the results of the cases described in the previous sections, it is clear that a single
index is not enough in order to select the best model. logNSE, rNSE, rd, MAPE, CV(RMSE), cp, and
p− f actor seem to be the best group of indices to find the best model in both case studies: the synthetic
model and the real model. An agreement between all the indices would be desirable in order to choose
the best model, as has been demonstrated in this study. In the case of the p− f actor, this index not
only helps to rank the models, but also can be used as a measure to quantify the quality of the model.
This value (p− f actor) demonstrates the actual gap between the calibration process carried out with
synthetic data or with real data.

The results that were presented within Section 4 show that the chosen indices based on MSE
(logNSE, rNSE, rd, CV(RMSE), cp) worked well for time series of temperature data. We estimate
that they would still work well in more general scenarios, but some other indices given in this
paper could appear to be more appropriate for particular situations. The index logNSE had the best
correlation between energy and temperature with respect to uncertainty indices in the real case and
good performance in the synthetic case. This index was computed after a log-transformation of the
data; then it was one minus the ratio between the MSE and the difference between the log of the mean
and the mean of the log of the observed temperatures. The rNSE index was again based on a ratio of
the MSE and, now, the square of the coefficient of variation of the observed temperatures. Index rd
was the ratio between the relative MSE and a kind of MSE comparing the observed and simulated
temperatures to the mean of the observed temperatures. The CV(RMSE) index was based again on
the square of the cover the mean. The cp index was also based on the MSE, now controlled by the
consecutive jumps of temperatures. This is especially interesting since it was the only index that took
into account the possible correlation between near measures in time. The MAPE index was a relative
absolute error index. It can be seen that most of these indices were based on an appropriate ratio of
the MSE. Finally, the p− f actor was rather intuitive, measuring the observations in a suitable band
around the simulated values.

The past results obtained with the ZEC_Index have been improved with this procedure, as well
as the concept of ZEC; calibration by energy was strengthened with this methodology because more
models with low energy consumption were among the best models, and there was no uncertainty
about the selection of the model in the evaluation process because there was a general agreement
between different indices about which one was the best.

A big difference between the synthetic model and real model has been observed, and the new
methodology performed better under the real case scenario. This premise has proven to be true, since
the methodology presented in this paper is being applied to different buildings and in different
calibration periods, showing similar results to those obtained in the previous sections. It is a
promising area of research where more calibrated buildings in different environments could be studied.
The SABINA project will offer this opportunity.

While in this study, we have used the values of the index to rank the best model offered by the
calibration process, in future research, specific values of these indices, in a similar way to that provided
by ASHRAE Guideline 14 [16], could be obtained in order to give an idea of the quality of the model.
The next generation of BEMs should be classified as complying with the level of quality fed by these
indices, depending on the types of applications that are required.
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Abbreviations

The following abbreviations are used in this manuscript:

Arg Argument
AE Absolute Error
AIC Akaike Information Criterion
BES Building Energy Simulation
BE Bias Error
BIC Bayesian Information Criterion
bR2 Multiplied by the coefficient of the regression line (b )
CV(RMSE) Coefficient of Variation of RMSE
d Index of agreement
GoF Goodness-of-fit index
M&V Measurement and Verification process
MAE Mean Absolute Error
MAPE Mean Absolute Percent Error
MBE Mean Bias Error
md Modified index of agreement
mNSE Modified Nash–Sutcliffe efficiency
MSE Mean Squared Error
NMBE Normalized Mean Bias Error
NSE Nash–Sutcliffe Efficiency
PBIAS Percent Bias
R2 Coefficient of determination
rd Relative index of agreement
RMSE Root Mean Squared Error
rNSE Relative Nash–Sutcliffe Efficiency
rSD Ratio of Standard Deviations
UI Uncertainty Index
ZEC Zero Energy for Calibration
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