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Abstract: Solar-driven water desalination technologies are rapidly developing with various links to
other renewable sources. However, the efficiency of such systems severely depends on the design
parameters. The present study focused on using graphene oxide (GO) with the Φ = 0.2, 0.4 and 0.6
wt.% dispersed in paraffin, as phase-change materials (PCMs), to improve the productivity of a solar
still for desalination applications. The outcomes showed that by adding more graphene oxide to
paraffin, the melting temperature got reduced. Solar still with GO/paraffin showed 25% productivity
improvement in comparison with the solar still with only PCM. The obtained Nusselt number during
the melting time also represented that free convection heat transfer into the melted region of the solar
still has been enhanced by adding dispersed GO to the PCM, compared to the base paraffin. Also,
increasing the hot wall temperature augments the Nusselt number. Finally, an empirical equation was
derived to correlate the average Nusselt number as a function of Rayleigh number (Ra), the Stefan
number (Ste), the subcooling factor (Sb), and the Fourier number (Fo). The obtained correlation
depicted that Nusselt number enhancement has a reverse relation with Fourier number.

Keywords: solar still; phase-change material; experimental study; graphene oxide

1. Introduction

Over the latest decades, phase-change materials (PCMs) have been employed in the heat transfer
systems like solar stills [1–3]. As is clear from Figure 1, phase-change materials are categorized as
Eutectic, inorganic, and organic [4].

Among the variety of proposed PCMs, paraffin, as an organic material, is evaluated as one of the
most futuristic PCMs, due to its desired specifications, like remarkable latent heat [5–7]. As an example,
Kumar et al. [8] enhanced the productivity of a traditional solar still by employing paraffin and attaching
some fins. Their results revealed that the daily and night-time exergy efficiency of the modified solar
still is augmented by 20% and 74%, respectively. In a similar work, Kabeel and Abdelgaied [9] utilized
the paraffin in a solar still in Egypt. Their outcomes demonstrated that paraffin is a decisive factor
in water productivity of the solar still, as it can increase it up to 67.18%. However, low thermal
conductivity of paraffin causes lower heat transfer rates within melting process [10]. For improving
the heat transfer rate of PCMs, different solutions have been proposed in the literature. In recent years,
the concept of nanofluids was considered among researchers to improve the thermal conductivity of
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the phase-change materials, by dispersing the nanomaterials into the base PCMs [11,12]. Considering
these facts, paraffin is a good candidate for using in solar stills. However, its low conductivity problem
can be reduced by adding nanoparticles [13,14].

Table 1 shows the synopsis of the investigations about different nano-paraffin composites. As can
be seen from the table, graphene-based nanomaterials have a promising potential to enhance the
thermal conductivity of paraffin.
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Figure 1. Classification of phase-change materials (PCMs) [4]. Figure is reprinted with permission
from publisher.

Table 1. Synopsis of the investigations about different nano-paraffin composites.

Author Used Nanomaterials Results

Rufuss et al. [15] Copper (II) oxide 35% improvement in the productivity.

Sahan et al. [16] Iron (II,III) oxide Thermal conductivity of paraffin raised by 48% and 60%,
by employing 10% and 20% wt.% of Fe3O4 nanoparticles.

Jiang et al. [17] Aluminum oxide 15% latent heat decrement and 27% thermal
conductivity increment.

Yang et al. [18] Silicon Nitride Thermal conductivity rising by 35%, utilizing
10% nanoparticles.

Park et al. [19] Iron (II,III) oxide
45% latent heat decrement and 45% thermal conductivity

enhancement by dispersing 6.6% nanoparticles in the
base PCM.

Fan et al. [20] Graphene 164% thermal conductivity increment, by dispersing 5%
nanomaterials in the paraffin.

Jesumatty et al. [21] Copper (II) oxide 6%, 6.7%, and 7.8% thermal conductivity augmentation, by
dispersing 2%, 5%, and 10% nanoparticles in the base PCM.

Shi et al. [22] Graphite nanoplatelets Augmenting the thermal conductivity of PCM from 0.25 to 2.7,
by dispersing 10% of nanomaterial in the base PCM.

Nourani et al. [23] Aluminum oxide Adding 10% nanoparticles to the base paraffin afford a
0.09 W/m ◦C thermal conductivity improvement.

Li [24] Graphite Adding 10% graphite nanomaterial to the base PCM, cause a
640.43% thermal conductivity enhancement.

Warzoha et al. [25] Graphite nanofibers
180% thermal conductivity increase and 10% latent heat

decrease by adding 11.4% graphite nanofibers to the
base paraffin.
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Although many researches have focused on thermal enhancement of nanofluids by adding more
nanomaterials to the base fluid [26,27], present study has concentrated on using paraffin with dispersed
graphene oxide with the Φ =0.2, 0.4, and 0.6% to improve the productivity of a solar still. The outcome
of this investigation may find applications to develop highly efficient solar stills to secure more
drinkable water in warm, dry lands [28–32].

2. Experimental

2.1. Thermophysical Properties

Paraffin wax (industrial grade) purchased from Merck company (Gernsheim, Germany), with
melting temperature of 44 ◦C was employed as the PCM. Also, graphene oxide nanomaterial was
purchased from US Research Nanomaterials, Inc. to be used as an additive to PCM to improve its
thermal performance. Thermal properties of PCM and graphene oxide have been shown in Table 2.

Table 2. Thermal properties of PCM and graphene oxide.

Thermophysical Property Paraffin Graphene Oxide

Density (kg/m3) 802 3600
Specific heat (J/kg K) 2320 (liquid) 765

Thermal conductivity (W/m K) 0.23 (liquid) 3000
Dynamic viscosity (kg/m s) 1.3 × 10−3 -

Thermal expansion coefficient (1/K) 9.1 × 10−4 1.25 × 10−5

Latent heat (kJ/kg) 226 -
Melting temperature (◦C) 44 -

The thermophysical properties of the nano-PCM can be calculated using below equations [33,34]:

ρnpcm = ∅ρnp + (1−∅)ρcm (1)

cp,npcm =
∅

(
ρcp

)
np

+ (1−∅)
(
ρcp

)
pcm

ρnpcm
(2)

h f g npcm =
(1−∅)

(
ρh f g

)
pcm

ρnpcm
(3)

The dynamic viscosity of the nano-PCM can be obtained by [35,36]:

µnpcm = 0.983e12.959∅µ pcm (4)

The thermal conductivity of the nano-PCM, subject to Brownian motion, is defined as [35]:

knpcm =
knp + 2kpcm − 2

(
kpcm − knp

)
∅

knp + 2kpcm + 2
(
kpcm − knp

)
∅

kpcm + 5× 104βkζφρpcmcp,pcm

√
BT

ρnpdnp
f (T,φ) (5)

where β is the Boltzmann constant, 1.381 × 10–23 J/K and

βk = 8.4407(100φ)−1.07304

β = 0 i f T < Tsolidus
β = 1 i f T < Tliquidus

(6)



Energies 2019, 12, 2002 4 of 13

ζ is the correction factor and is defined as [37]:

ζ =
T − Tsolid

Tliquid − Tsolid
i f Tsolidus < Tliquidus (7)

f is a function, which can be defined as [36]:

f (T,∅) =
(
2.8217× 10−2∅+ 3.917× 10−3

) T
Tre f

+
(
−3.0669× 10−2∅− 3.91123× 10−3

)
(8)

Paraffin and graphene oxide used in the present study can be seen in Figure 2.
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Figure 2. Materials used in the present study—(a) paraffin and (b) graphene oxide.

2.2. Preparation of the Nanocomposite

Figure 3 demonstrates the nanocomposite preparation. The black plate receives heat by radiation
during the day time. As a result, this heat will be transferred to the paraffin/graphene oxide. The present
study focused on using graphene oxide (GO) with the Φ = 0.2, 0.4, and 0.6 wt.% dispersed into melted
paraffin at the temperature of 45 ◦C, as phase-change materials (PCMs), to improve the productivity of
a solar still. Mixing was applied for 2 h with 95% power intermittently to prevent overheating of the
nanofluid. During the day time, especially after 2 p.m., paraffin starts to melt, and its temperature
remains constant until the melting is complete. After 7 p.m., paraffin starts to cool, but the temperature
remains constant until all the paraffin becomes solid; then cools back to the surrounding temperature.
During the day time, when no paraffin exists, the water temperature is high, but after 7 p.m., Tw

with PCM is higher. A thin layer of paraffin/graphene oxide has been integrated beneath the basin
(as shown in Figure 3) to increase the efficiency of solar still during the night time.Energies 2019, 12, x FOR PEER REVIEW 5 of 14 
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Figure 4 also provides sedimentation level pictures of the prepared suspension. As is clear
from the figure, the graphene oxide can disperse in the organic solvents easily, without any
noticeable sedimentation.
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2.3. Experimental Apparatus

Figure 5 demonstrates the picture as well as schematic of the studied solar still. The experimental
setup includes two parts, a solar still and an effluent settling tank. The solar still is the main part of the
experiments and the effluent settling tank is used to eliminate any possible bacteria.

This settling tank is made from galvanized iron sheets with a diameter of 50 cm and a height of
60 cm. For enhancing the surface contact area, three rectangular fins (40 × 80 × 1 mm) are welded at
the bottom of the tank basin. The settled effluent from the storage tank is traversed to the solar still.

The test unit comprised of a stepped-type solar absorber plate was installed on a metal base.
The absorber plate was manufactured from galvanized iron sheet of 1 mm thick and 1300 mm length
and 1000 mm width, which was coated with black color paint. The gap between the stepped absorber
plate and the box was covered with polyurethane foam (PUF) to prevent heat loss from the sides and
bottom of the unit. The cover is made of 4 mm thick glass. Raw water was used for the tests, flowing
from the tank, down the steps of an absorber. This water is warmed by solar radiation and therefore,
it evaporated. The vapor was condensed at the inner glass surface and the droplets were slid along the
glass. Gathered water dripped to the distilled water container at the bottom, and collected in a beaker.
This was done by a pipe that was installed on the side of the unit. The makeup water was refilled
every 30 min, by opening a valve to keep a constant concentration for the water. Excess saline water
flowed through the absorber into the tank.

It is noteworthy that one of the factors influencing the production rate is the slope of the roof,
which is a function of latitude, the angle of the solar radiation, and the seasons of the year [38]. As a
rule of thumb, the angle is considered equal to the latitude [39]. For the studied city, the latitude is
36.31◦ [40]. The most proper direction for the installation of solar panels that are deployed on a fixed
basis is geographic east–west direction [41]. In the northern hemisphere, the unit must be headed
toward the south; so that solar energy could be best exploited. Experiments are performed from 8 a.m.
to 6 p.m., during July 2018–August 2018.

Three different thermocouples were installed to measure the temperature of the absorbent plate
(Tb), the temperature of the inner surface of the glass (Tgi) and temperature of water desalination unit
(Tw). For monitoring evaporator and condenser surface temperature, a set of K-type thermocouples
were used, which were connected to a portable data logger. The uncertainty in the measurement of
temperature was equal to ±1 K, according to the temperature monitoring system. The environment,
basin plate, solution and glass temperatures as well as solar radiation and distilled water productivity
were measured every 1 h.
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Table 3 presents a summary of design specifications of the solar stills.

Table 3. Design parameters for the studied solar still.

Parameters Dimensions

Length of tank 600 mm
Width of tank 400 mm
Height of tank 2800 mm

Inclination angles 32.5◦

Length of the glass covers 1300 mm
Width of the glass covers 1000 mm

Thickness of the glass covers 4 mm



Energies 2019, 12, 2002 7 of 13

Uncertainties

Errors of the measuring instruments are displayed in Table 4. These errors have been indicated,
based on the manufacturer’s instructions.

Table 4. The accuracies of various measurement instruments [42]. Table is reprinted with permission
from publisher.

No. Instrument Range Accuracy % Error

1 Solarimeter 0–900 W/m2
±4 W/m2 5

2 Thermocouple 0–300 ◦C ±1 ◦C 4
3 Thermometer 0–95 ◦C ±0.1 ◦C 0.4
4 Anemometer 0–12 m/s ±0.1 m/s 10
5 Measuring jar 0–1000 mL ±9 mL 9

3. Results and Discussion

Experimental investigation was performed to study the thermal performance of GO/PCM in solar still.
During the day time, solar energy can be divided between the water, which we wanted to distill, and the
PCM/ graphene oxide. As is clear from Figure 6, water temperature without PCM is the highest between
9 a.m. and 12 p.m., as during this time, a part of solar energy is stored in PCM. After that and for no-PCM
case, the temperature got reduced sharply but temperature for solar still with paraffin diminished gradually.
This is because the stored energy in PCM is released, when the sun sets. Adding more nanomaterials to the
base PCM caused higher temperature for the time duration from 2 p.m. to 7 p.m.Energies 2019, 12, x FOR PEER REVIEW 8 of 14 
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The distillation amount is the primary factor in determining the performance of a solar desalination
system. The volume of the existing water varies due to different utilized nanocomposites in solar still
system. Figure 7 illustrated the produced fresh water per day time. The figure shows that adding more
GO to paraffin causes more fresh water production which indicates solar still efficiency enhancement.
The reason of this phenomenon is related to the ability of nano-PCM to make the basin water warmer,
which means more water can be distilled. Also, with nano-PCM energy released during the sunset,
the distilled water production still continued. All of these reasons caused the maximum production at
the end of the day to have about 100% enhancement.
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Figure 8 shows the alteration of the average Nusselt number at the hot wall, while the cold bottom
surface is at 23 ◦C. As is evident, the Nusselt number follows the same trend of previous investigations
like [43]. Adding more GO to the base paraffin enhances the average Nusselt number. This is owing to
the thermal conductivity increment of PCMs, by dispersing nanomaterials in them. Also, increasing
the Fourier number reduces the average Nusselt number.

The mean Nusselt number based on a recent obtained correlation [43,44] can be written as below:

Nu = 0.18
( Pr

0.2 + Pr
Ra

)0.29
(9)

Also, the mean heat transfer coefficient can be given as:

h =
Nukm

H
(10)

The Rayleigh and the Stefan numbers can be defined based on the temperature difference in the
melted zone and the characteristic length of the solar still [45]:

Ra f =
gρ2

f cρ. fβ f (Th − Tc)H3

k fµ f
(11)

Ram =
gρ2

f cρ. fβ f (Th − Tc)H3

kmµm
(12)

and

Ste f =
cρ. f (Th − Tc)

hls. f
(13)

Stem =
cρ.m(Th − Tc)

hls.m
(14)
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Figure 8. Efficacy of hot wall temperature on the average Nusselt number.

In the final step, an empirical correlation according to the experimental outcomes has been
developed to correlate the average Nusselt number in relation to the Rayleigh number (Ra), the Stefan
number (Ste), the subcooling factor (Sb) and the Fourier number (Fo) by using the below formula:

Nu = aRab
m

[
StemFom

(1 + Sb)

]c

(15)

This formula is similar to that reported by Ho and Gao [43] for Al2O3/paraffin nano-PCM. To obtain
the constant variables of the equation, a dataset was used to compute the variables by using Microsoft
Excel. Least square regression method was employed to acquire the correlation values based on the
dataset points. The values of variables in Equation (15) for studied dispersed amounts of nanoparticle
into the PCM are shown in Table 5.

Table 5. Coefficient, exponents and ranges of parameters for Equation (15).

Φ a b c Average
Deviation (%) Parameter Ranges

0% 0.6 0.3 −0.2 4.23

Fom = 0.25–2.5;
Ram = 1.32× 106–2.38× 106

Sb = 0.075–0.85;
Stem = 0.05–0.2;

0.2% 0.65 0.35 −0.23 7

Fom = 0.25–2.5;
Ram = 2.59× 106–4.85× 106

Sb = 0.075–0.85;
Stem = 0.05–0.2;

0.4% 0.7 0.4 −0.3 9

Fom = 0.25–2.5;
Ram = 5.13× 106–5.49× 106

Sb = 0.075–0.85;
Stem = 0.05–0.2;

0.6% 0.8 0.5 −0.4 10.5

Fom = 0.25–2.5;
Ram = 3.76× 106–7.21× 106

Sb = 0.075–0.85;
Stem = 0.05–0.2.
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4. Conclusions

In this research, graphene oxide nanomaterials with Φ = 0.2, 0.4, and 0.6 wt.% are dispersed in
paraffin (GO/PCM) and utilized in a solar still for desalination applications. Based on the outcomes,
following points were summarized:

1. Solar still efficiency with GO/paraffin showed an average of 25% improvement compared to the
solar still with only PCM.

2. The daily productivity of solar still with PCM was 2 kg/0.4 m2 whilst the solar still with
Φ = 0.6 wt.% GO/ PCM yielded 2.5 kg/0.4 m2.

3. Adding more GO to PCM caused higher Nusselt number and consequently higher heat transfer
coefficient, which means high potential to obtain remarkable reduction in heating times. However, the
samples containing 0.2 wt.% nanomaterial showed least performance levels in feasible energy storage
during phase change.

4. Dispersed graphene-based nanomaterials in paraffin exhibits better potential, compared to the
use of raw PCMs in solar applications.

5. An empirical equation has been derived to correlate the average Nusselt number as a function
of Rayleigh number, the Stefan number, the Fourier number, and the subcooling factor.
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Nomenclature

A heat transfer area, m2

B Boltzmann constant, (1.3807 × 10−23 J/K)
Cp specific heat, J/(kg K)
Fof Fourier number, α f t/H2

g gravitational acceleration, m/s2

hls latent heat of fusion, kJ/kg
h heat transfer coefficient in paraffin + nanomaterial (W/m2.K)
H height, m
k thermal conductivity, W/m k
L depth, m
Nu Nusselt number
qh heat transfer rate at the hot wall, W
Raf Rayleigh Number, gβ f (Th − Tc)H3/

(
α f v f

)
Sb subcooling parameter, (Th − Tc)/(TM − Tc)

Stef Stefan number, c ρ, f (Th − Tc)/hls, f
T temperature, ◦C
W width, m
GO graphene oxide
PCM phase-change material
Greek symbols
α thermal diffusivity, m2/s
β thermal expansion coefficient, 1/K
µ dynamic viscosity Ns/m2

ρ density, kg/m3

Φ Percent of nanomaterial
ζ correction factor (-)
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Subscripts
air air
C cold wall
f base fluid
h hot surface
m quantities for dispersed nanomaterial in the paraffin emulsion
M average temperature of PCM

References

1. Asbik, M.; Ansari, O.; Bah, A.; Zari, N.; Mimet, A.; El-Ghetany, H. Exergy analysis of solar desalination
still combined with heat storage system using phase change material (PCM). Desalination 2016, 381, 26–37.
[CrossRef]

2. Faegh, M.; Shafii, M.B. Experimental investigation of a solar still equipped with an external heat storage
system using phase change materials and heat pipes. Desalination 2017, 409, 128–135. [CrossRef]

3. Pandey, A.; Hossain, M.; Tyagi, V.; Rahim, N.A.; Jeyraj, A.; Selvaraj, L.; Sari, A. Novel approaches and recent
developments on potential applications of phase change materials in solar energy. Renew. Sustain. Energy Rev.
2018, 82, 281–323.

4. Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change
materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [CrossRef]

5. Safari, A.; Saidur, R.; Sulaiman, F.; Xu, Y.; Dong, J. A review on supercooling of Phase Change Materials in
thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 905–919. [CrossRef]

6. Zhou, Q.; Liu, P.-F.; Tzeng, C.-T.; Lai, C.-M. Thermal Performance of Microencapsulated Phase Change
Material (mPCM) in Roof Modules during Daily Operation. Energies 2018, 11, 679. [CrossRef]

7. Li, S.; Chen, Y.; Sun, Z. Numerical simulation and optimization of the melting process of phase change
material inside horizontal annulus. Energies 2017, 10, 1249.

8. Kumar, T.S.; Jegadheeswaran, S.; Chandramohan, P. Performance investigation on fin type solar still with
paraffin wax as energy storage media. J. Therm. Anal. Calorim. 2019, 136, 101–112. [CrossRef]

9. Kabeel, A.E.; Abdelgaied, M. Improving the performance of solar still by using PCM as a thermal storage
medium under Egyptian conditions. Desalination 2016, 383, 22–28. [CrossRef]

10. Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.; Sahin, A.
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