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Abstract: Detecting and determining which systems or subsystems of a wind turbine have more
failures is essential to improve their design, which will reduce the costs of generating wind power.
Two of the most critical failures, the generator and gearbox, are analyzed and characterized with
four metrics. This failure analysis usually begins with the identification of the turbine’s condition,
a process normally performed by an expert examining the wind turbine’s service history. This is a
time-consuming task, as a human expert has to examine each service entry. To automate this process,
a new methodology is presented here, which is based on a set of steps to preprocess and decompose
the service history to find relevant words and sentences that discriminate an unhealthy wind turbine
period from a healthy one. This is achieved by means of two classifiers fed with the matrix of terms
from the decomposed document of the training wind turbines. The classifiers can extract essential
words and determine the conditions of new turbines of unknown status using the text from the service
history, emulating what a human expert manually does when labelling the training set. Experimental
results are promising, with accuracy and F-score above 90% in some cases. Condition monitoring
system can be improved and automated using this system, which helps the expert in the tedious
task of identifying the relevant words from the turbine service history. In addition, the system can
be retrained when new knowledge becomes available and may therefore always be as accurate as a
human expert. With this new tool, the expert can focus on identifying which systems or subsystems
can be redesigned to increase the efficiency of wind turbines.

Keywords: wind turbine; service history; classification; fault diagnosis; renewable energy; text mining

1. Introduction

Nowadays, the fastest growing renewable source of energy in the world is wind energy [1].
This technology makes an important contribution to meeting the ambitious climate and energy
objectives for 2020 established by the European Commission [2]. One of the requirements is to ensure
that at least 20% of electricity production is from renewable energy sources [3]. Although nowadays
wind energy technology is already contributing to solving serious environmental problems such as
climate change, it is anticipated that this role will be accentuated in the following years. It is calculated
that the operation and maintenance costs of wind farms represent a range between 10-35% of total
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generation costs [4]; therefore this is one of the major issues concerning wind energy performance and
exploitation. Being able to reduce these costs would have a direct impact in the increment of wind
farm competitiveness, accelerating the transition from fossil fuels to other type of sources, cleaner and
more sustainable [5]. The wind sector has an annual profit shortfall due to the malfunctioning of wind
turbines. The amount of lost profits is estimated at less than one billion euros in Europe, and more
than double for the rest of the world. In addition, if operating costs are added to the calculation, the
loss can increased by a factor of three. Therefore, operation and maintenance (O&M) improvement
tasks are crucial for all the actors involved, taking into account the current economic situation of the
sector, without generation bonuses and also with the sales price policy of generation restricted by the
new regulations (see [6,7]).

A major task of the operation and maintenance process is to ascertain the possible causes of
a failure leading to the stopping of production of the wind turbine. This is a key step in reducing
inactivity of wind turbines or in identifying critical failures as soon as they appear. Therefore, the set of
methodologies and tools that assist this procedures can be very beneficial for wind farm proprietors, not
only for the sake of increasing energy production and availability, but also in terms of reducing costs.

The first operation and maintenance processes were corrective, which means that after the turbines
failed and faults were detected, maintenance was undertaken. This is a costly approach due to lack of
planification. Conversely, preventive maintenance attempts to repair or replace components before
they break down, but this is costly because maintenance tasks are performed more often. A good
trade-off between the two strategies mentioned above is what we call condition-based maintenance
(CBM), which relies on ongoing surveillance and detection of emerging faults and determining the
necessary maintenance tasks before a fault occurs [8]. This is accomplished using condition monitoring
systems (CMS), which entail the acquisition of data from sensors, its preprocessing, the posterior
evaluation and finally the interpretation of the result. This is performed by means of ‘the supervisory
control and data acquisition data” (SCADA) systems. In order to obtain reliable information on possible
breakdownes, it is necessary to continuously monitor and diagnose the state of health of the wind
turbines. At the same time, it is necessary to develop preventive maintenance procedures to avoid
unexpected problems in the wind turbines For this reason, many efforts are being made to improve
the performance of the wind farms through the use of SCADA data which, in modern wind turbines,
collects hundreds of signals (temperatures in several points, pressures, gearbox lubrication system
data, currents, voltages, etc.). The complete SCADA data sets will frequently include the average
values of 10 minutes or even 5 min windows, and also some statistics (min, max, std).

A fundamental way to better understand the failures that occur in the wind turbine components
as a previous step to improve designs, is the study of the resonant coupling of energy that occurs
between coherent turbulent fields (phenomena that often occurs during at nighttime), and the natural
vibrational modes of a turbine rotor blade, and how this resonance induces a flow or flux of turbulent
kinetic energy into the blade structure which is propagated into the remainder of the turbine. That
amount of energy must be dissipated by the turbine structure causing a decreasing of component
lifetimes and reliability [9]. To better understand this phenomena, computationally intense numerical
simulations were performed in [9-11], providing relevant insights about different component fatigue
failures, as for instance those occurring in the drivetrain bearing.

The presented approach differs from the general approach, and is inspired by the fact that today,
expert knowledge still plays a fundamental role in this field. For example, when a wind farm that
(mainly) contains a large number of turbines begins to be monitored, an important task is to identify
a reduced set of turbines that are representative of the entire wind farm, for detailed inspection of
these rather than having to spend time on all the turbines. To do this, we initially need to be able to
group the turbines according to their condition. That task, assigned to an human expert, consist on
analyzing the O&M historic data (written annotations made by maintenance personnel during their
interventions on wind turbines). However, exhaustive and manual exploration of turbine variables
becomes an unfeasible task, mainly because each manufacturer reports events in their own way, and
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the large number of manufacturers and potential events is too large. This means that, for example, the
names of the variables and the physical location of the sensors may differ from one manufacturer to
another. Failure events are also different for each manufacturer. For example, there is no standard code
that refers to a particular kind of malfunction, such as a gearbox malfunction Human experts can only
focus on a few turbines, as the amount of data to be processed and the significant number of working
conditions would make it impossible to follow all of them comprehensively. When reviewing the repair
and maintenance actions of a turbine, this expert may discover, for example, that a machine shortens
oil change cycles and, as a consequence, may infer a possible failure of a subsystem related to that
observation. In this paper, guided by the way experts proceed in their work, the underlying hypothesis
is that automatic text mining can be used as an emerging and complementary tool to predict possible
failures in the automatic processing of O&M information and could be extended to all machines.

To test this hypothesis, the wind turbines on which a component replacement has been performed
are selected. Particularly, two kinds of components have been investigated: (i) the generator subsystem
(with brushes included) and (ii) the gearbox (gearbox bearing also included). This selection is in
the interest of anticipating the detection of failures of this type, given their economic impact on the
operation of the wind farm’s performance. So, in the first step, all the O&M records of machines that
have undergone one of these replacements are divided into two parts, one containing the data from
the O&M records before the action (replacement) and the other after it. On the other hand, 10-min
measurements of wind speed and energy generated, retrieved from the SCADA system, are also
used to verify that the power curve (power vs. wind speed) before and after component substitution
actually manifests an observable variation in performance. From these power curves, which indicate
the relationship between wind energy and the electrical energy generated, four metrics are extracted
that will allow comparing the performance of the turbine before and after the change of components.
This study attempts to automate the exploration of O&M documents and to quantify the frequency
of the words that appear before and after the event (substitution/repair), in order to construct an
ontology that links the presence of a set of words with the appearance of failure.

The proposed method applies text pre-processing to select the word roots, when possible. This
procedure applies to all datasets that will be used for the training of a decision tree (DT) and a Random
Forest (RF) based classifier, where classes are tagged with ‘before’” and “after” labels, corresponding to the
information obtained pre- and post-event, respectively. Although text mining and ontology development
has been used in various industrial applications such as in post-project reviews [12], knowledge discovery
from the diagnosis data in the automotive sector [13] or the analysis of sustainability trends in the process
industries [14], there is very little work done in the wind energy field [15] and as far as we know, the
most significant works in this context is the semi-automatic construction of an ontology from Wikipedia
articles [16], the accident analysis carried out in [17] and, the dictionary learning approach used to
monitoring the train bearings of wind turbines in [18]. Other significant contributions in semantic
networks and text mining in the industrial context can be found in [19,20].

The structure of the paper is the following: Section 2 provides a description of the data, pre-processing,
text-mining, performance metrics and model creation strategies. In Section 3 the experimental work is
presented, together with the discussion within the context of the presented research in a real wind farm.
Finally, Section 4 is devoted to the conclusions of the proposed methodology and outlines future work in
this area.

2. Materials and Methods

Two main aspects are discussed here: firstly, how to test and demonstrate that there is a change in
the performance of the turbine after a maintenance intervention (performance metrics) and secondly,
how to analyze the words used by the maintenance personnel, in order to discover which words are
the important ones (text mining).
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2.1. Performance Metrics

Power curves are a well-known method to determine the wind turbine health status [21]. In the
present work, a logistic regression method was used as it generated low mean squared error (MSE) and
mean absolute error (MAE) results compared to other methods [22]. The logistic regression was fitted
to the data points with the tuning of three parameters that later on were used as metrics to compare
the turbine behaviour before and after the failure. The performance metrics was carried out in the
following way:

e Download the wind and power features, separately for each turbine. Then, a discretization was
applied to the wind values with a precision of 0.1 m/s.

e  Find the logistic function that better fits the cloud of points (wind speed, power). Two R functions
were used (SSlogis and NLS) to derive the three parameters of the curve in a MSE framework.
These three parameters were the horizontal asymptote (Asym), the inflection point (Xmid) and
the step of the curve.

2.2. Data

The data used in this work was the maintenance service history completed by the maintenance
personnel. The maintenance service history is referred as work order (WO). Because there was no
specific procedure on how to report all maintenance work, the available text was in a free format and
can contain many errors (spelling, punctuation, etc.). An important pre-processing step needed to be
carried out. The process was as follows:

2.2.1. Work Order Download

All the work orders were downloaded from the maintenance database. These orders have the
following characteristics:

e  The hour and date were instantaneous.

e The WO id identified each intervention. There can be several lines for each WO id because each
one was duplicated for each material used and for each comment entered in the system.

o The “wo_class” tag identified a class of intervention categorized in one of the major failures.

e The important files were: work_description (indicates in a extended way the work done),
material_code (indicates the material used), problem_found (indicates what happened),
problem_source (indicates the origin of the problem), problem_solution (indicates the adopted
solution ).

To build the input dataset, sentences with the same work order ID were added to a common
paragraph (register entry/table row) separated by a punctuation mark. This was repeated for each
work order id.

2.2.2. Common Errors

A dictionary type file (“common_errors.csv”) was loaded, where misspelled words or words
with different endings were mapped to a common or correct word, for example: aaverias — averiar,
acaba/acababado — acabar, amarilloblanco — amarillo blanco, anntirobo — anti robo, etc. This file
was used later in the text mining process.

2.2.3. Removing Words

Different word files were loaded, containing words to be deleted, such as personal names, places
names or words with no effect on the model such as bar, comer (eat), etc.
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2.3. Building the Training and Testing Dataset

The training dataset was built by taking 60% of turbines with WO. The remaining 40% of turbines
with WO and the remaining without WO were assigned to the testing dataset.
For each turbine, and having all the N registers sorted by date, the process was as follows:

e  The register in which the repair intervention started is labelled as “F” register.

o  The register in which the repair intervention ended is labelled as “FF” register.

o  Theregisters 1 to F-1 are labelled as “1”, indicating ‘before failure repair’ events.

o  The The registers FF+1 to N are labelled as “0”, indicating “after failure repair’ events.

2.4. Text Mining

Text mining can be applied using different methods and procedures [23]. An interesting procedure
to process general text was described in [24], while [25] presented another strategy for social and
economics text processing. These two methods were used in the present work, after adapting them to
the wind turbines scenario. With the training and testing datasets built, a corpus was created using all
the documents (WO inputs). The following steps were applied to it:

The dots and commas were eliminated: removePunctuation

The numbers were deleted: removeNumbers

The empty spaces at the begining and at the end were eliminated: stripWhitespace

All text was converted to lowercase: tolower

All the brackets such as ’()’, ”” or '[]" were deleted : bracketX

All the words loaded in the step Section 2.2.3, together with the STOP words were eliminated:
removeWords stopwords (for the Spanish language, 'ES’)

AN

N

Common errors loaded in the step Section 2.2.2 were repaired.

8. All the accents were cleared, changing the vowel with accent for the equivalent without accent.
9.  All the text was stemmed using the function STEMDOCUMENT of the package TM, using the
parameters for the Spanish language ('ES’)

2.4.1. Document Term Matrix

Finally, the document term matrix was created independently for the training and testing datasets.
This matrix contains only “1” or “0”, where each column was a word and each row was a sentence. If
the sentence i contained the word of column j, the cell (i, j) was set to “1”, otherwise it was set to “0”.

2.4.2. Word Clouds

A word cloud [26] is a useful tool to analyze and find out the most common words in a document
which are summarized in a simplified figure. Gan et al. [26] considered the word clouds as the most
versatile methods over many document visualization tools. The generated figures used the size and
the color to indicate clusters of words with almost the same frequencies. The larger a word was, the
more frequently it was found in the document. The colors were used to identify the clusters. Word
clouds were also helpful to compare between datasets or conditioned datasets with specific labeling
that separated the document entries in different groups. In this case, we have selected Ian Fellows’
word cloud package [27], available through the CRAN project.

2.5. Modelling

Two family models have been used: DT and RF. For both of them, different models have been
derived from different frequency ranges. For each model, different optimization parameters, described
in each section, have been applied. In all the cases, the parameter to be optimized is the ROC curve.

These ranges established the minimum and maximum number of occurrences that a word must
have throughout the training text to be taken in the model. Different experiments have been done
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with different ranges from the least common words to the most common words. For each of those
ranges, four metrics have been calculated to characterize the models: the accuracy (classification rate),
the F-score, the kappa and the area under the curve (AUC). These models have a 2D matrix as input,
and a binary vector as output, indicating to which class the input belongs to. The 2D input matrix
contains the maintenance interventions/service logs, organized as follows: the different words roots
are in columns and the sentences in rows. The binary output vector contains a “0” or a “1” for the
maintenance interventions after (“0”) or before (“1”) the turbine system is repaired.

2.5.1. Decision Trees

DT-based models have been optimized by grid searching for “CP” complexity from 0 to 0.05 in
0.005 increments. A 10-fold cross validation was applied 10 times to each model. The models were
tuned using the CARET library tuning tools through a grid search and with the ROC curve as a metric.
Data was normalized by applying z-score before feeding the model.

The tree was drawn in order to determine which words have had more importance in the
different decisions.

2.5.2. Random Forest

For the RF-based models, a five-fold cross-validation has been used, with a maximum number of
50 trees. Additionally, the model was tuned using grid search on the variable mtry, which controlled
the number of random variables used for each tree. The importance given by the RF model to each
word was extracted and used to obtain the relevant words. Because a stemming process was first
applied, the original word has been retrieved when plotting it.

3. Results and Discussion

3.1. Performance Metrics

Panel (a) of Figure 1 shows the scatter-plot of the wind speed versus power of the generator
before (red points) and after (blue points) failure for turbine 153. The horizontal axis corresponds to
the wind speed (m/s) and the vertical axis corresponds to the power (Kw). Over the scatter- plot,
logistic functions (sigmoids) that best fit the data points before (red) and after (blue) the maintenance
intervention were superimposed. The numerical values of the parameters of the logistic functions,
before the intervention, were: (i) Asym = 1498 Kw, Xmid = 8.7 and steep = 1/0.63. After the
intervention, all the parameters changed to: (i) Asym = 1531 Kw, Xmid = 8.8 and steep = 1/0.61. The
area under the curve (AUC) was 8.9 before the intervention and 9.642 after the intervention, indicating
that the performance of the turbine increased after the failure was repaired. Panel (b) of Figure 1,
corresponds to the zoomed part, and shows that the blue line is mostly above the red line, indicating
that after repair the performance of the turbine increases.
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(a) (b)
Figure 1. Scatter-plot of the wind speed versus power of the generator before and after failure for
turbine 153. Logistic functions (sigmoids) that best fit the data points before (red) and after (blue) the
maintenance intervention are superimposed. Panel (a) shows the entire power curve, while panel (b)
shows the critical part where maximum power is expected.

Figure 2 shows the differences of the power generated in KW, obtained as the subtraction between
the power after the maintenance operation and the power before the maintenance. It is observed that
in the range where the turbine operated at maximum efficiency (which corresponds to the zoomed
part of Figure 1, between 13 and 25 m/s of wind speed), the turbine had higher energy production
after repair (positive values of the subtraction curves), whatever the means (panel (a)) or the medians
(panel (b)) are subtracted.

20

200
10

KW

=
¥ 100

15 20 25 15 20 25
m/s m/s
@) (b)
Figure 2. Curve of the difference of the generated power after maintenance minus before maintenance.
Horizontal axis is the wind speed in m/s, vertical axis is the energy production in KW. Panel (a) is
calculated by subtracting the mean values, while panel (b) is calculated by subtracting he median values.

3.2. Word Clouds

These are the results of applying the word cloud algorithm to the dataset that contains all the
turbines sentences before and after the generator was changed on Figure 3. Also the same is done for the
case of the gearbox change in Figure 4. Both algorithms were configured to analyze the top 200 words.
It was important to note that the most common word root was prevent that stands for prevention and
the same happened for the word root cambi that means change, so in both cases (before and after),
there was a regular preventive change in the turbine, mainly produced by scheduled maintenance.
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Figure 3. Word clouds with the top 200 most frequent words for the generator before (a) and after (b) the
replacement. Notice that the most important words (the biggest ones) have changed. For example, the
word realiz (to do something) is no longer the most important in (a); or the word manten (maintenance)

appears before but not after.
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(a) (b)
Figure 4. Word clouds with the top 200 most frequent words for the gearbox before (a) and after
(b) the replacement. In this case, even if the most important words are similar, the clusters have

changed. However, both word clouds seem similar, and further analysis has to be done in order to

obtain clear differences.

3.3. Model Results

Two different models were applied to both generator and gearbox failures. Table 1 summarizes
the metrics results for both DT and RF models. The same is presented in Table 2 for the gearbox
failures models. These results show that it was possible to determine the state of the turbine simply by
capturing the combination of words that are present in the event of a fault. Depending on the type of
model, the sequence or combination of words that are present in the unhealthy turbine was shown by
printing the decision trees; in others evaluating their importance. Both methods achieved an adequate
level of detection, but the most important point was which combination of words the expert should
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take into account when analyzing new turbines or creating a supervised classification problem with
healthy and unhealthy turbines using analog SCADA data.

3.3.1. Decision Trees

Generator Failures

The classification results are shown in Figure 5. Numerical values are presented in the Table 1.
We observe that the best range that a word has to be in the training dataset to be chosen to train the
model (minimum and maximum frequency) is from 1% to 90%. A similar behavior (and therefore the
same range) was observed for the kappa (panel (c)) and F-score (panel (b)) values. On the contrary,
the AUC (panel (d)) got the best result in the range from 1% to 90%. The decision tree is shown in the
Figure 5 for the best range from 1% to 90%. This figure shows the decisions of the different levels of the
sub-trees in boxes. These boxes were colored green when the probability of the class “before the failure”
won, and blue when the probability class “after the failure” won. Each one of these boxes shows the
probability of each class and the percentage of observations included in this node. In this case, the
last sheet on the left side was selected if the text subestacion was smaller than 11. The winning class
was “before the failure” and therefore the box was green. This node contains 83% of the observations,
which is a large proportion of them.

Table 1. Classification metrics results for generator failures with Decision Trees and Random Forest
models. Min. frequency % and max. frequency % columns indicate the minimal and maximal frequency
that a word has to be in the training dataset to be chosen to train the model.

Model Type Min. Freq. % Mx. Freq. % Accuracy F-Score AUC Kappa

0 5 0.772 0.866 0.755  0.159
0 10 0.782 0.87 0.757  0.226
1 5 0.772 0.866 0.755  0.159
1 10 0.782 0.870 0.757  0.226
1 20 0.790 0.873 0.746  0.302
1 50 0.792 0.873 0.741  0.321
1 90 0.793 0.873 0.743  0.326
DT 5 10 0.768 0.862 0.705 0.172
5 20 0.781 0.866 0.714  0.288
5 50 0.785 0.869 0.727  0.291
5 90 0.783 0.866 0.716  0.310
10 50 0.776 0.864 0.710  0.244
10 90 0.775 0.861 0.696  0.287
40 90 0.760 0.858 0.674  0.145
60 90 0.748 0.852 0.617  0.082
0 5 0.9391 09686 0950  0.008
0 10 0.9390 09685 0924  0.007
1 5 0.9393 09687 0.841  0.023
1 10 0.9390 09685 0.750  0.019
1 20 0.9392 09686  0.788  0.025
1 50 0.9388 09685 0.869  0.001
1 90 0.9389 09685 0.969  0.003
RF 5 10 0.9388 0.9684 NA NA
5 20 0.9388 0.9684 NA NA
5 50 0.9388 0.9684 NA NA
5 90 0.9388 0.9684 NA NA
10 50 0.9388 0.9684 NA NA
10 90 0.9388 0.9684 NA NA
40 90 0.9389 09685 0.969  0.003
60 90 0.9388 0.9684 NA NA
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Figure 5. Decision tree result for the generator failures (a). The model was generated with the words
that have a frequency from 1% to 90%. This range is a good trade-off for each of the metrics of Figure 6.
The zoomed panel (b) shows that with only the word subestacion almost the 83% of the observations
are classified as “before failure”.

Gearbox Failures

The classification results metrics are shown in Figure 7 and the decision tree is shown in Figure 8.
Numerical values are presented in the Table 2. The accuracy is showed in panel (a), and the best values
are obtained for the range from 1% (min freq) to 90% (max freq). The same behaviour is observed
for the F-score in panel (b) and for the kappa in panel (c). For the AUC, in panel (d), the best result
is obtained in a narrower range, from 40% to 90%. The decision tree is depicted in Figure 8, for the
best range from 1% to 90%, showing the different nodes of decisions in boxes. As before, green boxes
correspond to the case when the “before failure” class probability won, and in blue color when the
“after failure” probability class won. Each of these boxes contains the probability of each class and
the percentage of observations included in this node. In this case, the last leaf on the left side was
selected if the word root potenciometr was smaller than 19. The winning class was “before failure”
and therefore the box was in green color. This node contains 93% of the observations, which was a
large proportion of them.
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Max. Value

(b)
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Figure 6. Summary of the results for the generator failures using a decision tree model. The vertical

(d)

axis indicates the minimal frequency in % of a word in the training dataset in order to be selected by

the model. The horizontal axis indicates the maximum frequency in %. Each of the panels shows a

different metric for the same experiment. (a) shows the accuracy %, (b) the F-score in %, (c) the kappa
in % and (d) indicates the area under the curve (AUC). Empty blocks (ranges) are values that cannot be
calculated are from a prediction with a unique class output.

Table 2. Classification metrics results for gearbox failures with Decision Trees and Random Forest

models. Min. frequency % and max. frequency % columns indicate the minimal and maximal frequency

that a word has to be in the training dataset to be chosen to train the model.

Model Type Min. Freq. % Max. Freq. % Accuracy F-Score = AUC Kappa
0 5 0.823 0.901 0796  0.117

0 10 0.829 0904 0825 0.163

1 5 0.822 0.901 0.788  0.109

1 10 0.828 0904 0821 0.155

1 20 0.832 0905 0812 0.198

1 50 0.840 0909 0831 0.254

DT 1 90 0.841 0910  0.828  0.266
5 10 0.821 0.900  0.790  0.099

5 20 0.828 0903 0801 0.165

5 50 0.837 0.908  0.830 0.232

5 90 0.838 0.909  0.826  0.244

10 50 0.833 0.906  0.798 0214

10 90 0.834 0906 0784 0.234

40 90 0.825 0.903 0908 0.109
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Table 2. Cont.

Model Type Min. Freq. % Max. Freq. % Accuracy F-Score AUC Kappa

0 5 0.823 0.901 0.798  0.119
0 10 0.824 0.901 0797 0.124
1 5 0.824 0.901 0.768  0.142
1 10 0.828 0.903 0.773 0.19
1 20 0.828 0.903 0.773  0.188
1 50 0.831 0.905 0.792  0.203
1 90 0.836 0.907 0.833  0.219
RF 5 10 0.816 0.898 0.727  0.070
5 20 0.820 0.899 0.732  0.129
5 50 0.832 0.905 0.807  0.199
5 90 0.828 0.904 0.846  0.145
10 50 0.828 0.904 0.824  0.155
10 90 0.828 0.904 0.820  0.158
40 90 0.812 0.896 NA NA
60 90 0.812 0.896 NA NA

20
0
5 maxfreq

minfreq 10
40

0
5 maxfreq

(a) (b)

Min. Value Max. Value

minfreq 0 minfreq 1
4 40

1 1
0 5 maxfreq 5 maxfreq

(c) (d
Figure 7. Summary of the results for the gearbox failures using a decision tree model. The vertical axis
indicates the minimum frequency % of a word in the training dataset in order to be selected by the
model. The horizontal axis indicates the maximum frequency %. Each of the panels show a different
metric for the same experiment. (a) shows the Accuracy %, (b) the F-Score in %, (c) the Kappa in
% and (d) indicates the AUC. Empty blocks (ranges) are values that cannot be calculated are from a
predictionwith a unique class output.
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Figure 8. Decision Tree result for the gearbox failures (a). The model was generated with the words
that have a frequency from 1% to 90%. This range is a good trade-off for each of the metrics of Figure 7.
The zoomed panel (b) shows that with only the word potenciometr almost the 93% of the observations

are classified as “before failure”.

3.3.2. Random Forest

Generator Failures

The classification results are shown in Figure 9. Numerical values are presented in the Table 1.
The accuracy is in panel (a), where the best values are obtained in a narrower range from 1% (min freq)
to 5% (max freq). The same behaviour was obtained for the F-score in panel (b) and for the kappa
in panel (c). In the case of AUC, the best range was between 0% to 5%. The variable importance is
shown in Figure 10, where the word augment that stands for increase, was one of the most important
variables in this model. In that case, the best word frequency range, based on the metrics used to

characterize the results, was from 1% to 10%.



Energies 2019, 12, 1982

10

90 5 maxfreq 10

90 5 maxfreq

@) (b)

Min. Value

Max. Value

100
90

50
10

20
90 5 maxfreq

5 10 maxfreq

(c) (d)

Figure 9. Summary of the results for the generator failures using a random forest model. The vertical
axis indicates the minimal frequency % of a word in the training dataset in order to be selected by the
model. The horizontal axis indicates the maximum frequency %. Each of the panels show a different
metric for the same experiment. (a) shows the accuracy %, (b) the F-score in %, (c) the kappa in % and

(d) indicates the AUC. Empty blocks (ranges) are values that cannot be calculated are from a prediction
with a unique class output.
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Figure 10. (a): Top 100 random forest variable importance for the failures of the generator. The model

was generated with words that have a frequency from 1% to 10%. This range is a good trade-off

according to the metrics of Figure 9. The top most and less important words can be seen in panel

(b), delimited by an orange and a red square, respectively. The RF model selected the word augment,

which is the root of the word augmentar (to increase), as the most important one.

Gearbox Failures

The classification results are shown in Figure 11. Numerical values are presented in Table 2. The
accuracy is depicted in panel (a), where the best values are obtained in a narrower range from 1% (min
freq) to 5% (max freq). The same behavior was observed for the F-score in panel (b), for the kappa in
panel (c) and for the AUC in panel (d). The variable importance is shown in Figure 12, where the word
arranc that stands for start was one of the most important variables in this model. In that case, the best

range, based on the metrics used to characterize the results, was from 1% to 50%.
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Figure 11. Summary of the results for the gearbox failures using a random forest model. The vertical
axis indicates the minimal frequency % of a word in the training dataset in order to be selected by the
model. The horizontal axis indicates the maximum frequency %. Each of the panels show a different
metric for the same experiment; (a) shows the accuracy %, (b) the F-score in %, (c) the kappa in % and

(d) indicates the AUC. Empty blocks (ranges) are values that cannot be calculated from a prediction
with a unique class output.

As can be seen, it is important to use the information available in the service history logs.
This allows us to know what interventions and repairs have been carried out. The analysis of this
information implies that several pre-processing steps must be performed. Among them, pre-cleaning
the text was key. This cleaning step was a process that must include technical language. Note that
this step depended on the wind turbine model, as many words were names of particular parts or
components of a particular model. This implies that models built for one type of machine and wind
turbine may not work properly for another type of turbine.

Because the text used by maintenance personnel does not come from a set of predefined phrases,
the complexity of the problem increases. This is why this first approach to text mining has required a
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great deal of effort. A dictionary of more than 600 terms has been built to replace the misspelled terms
used by maintenance personnel with the correct ones.

Another important issue has been the search for the roots of the words. The available library (TM)
did not include the treatment of technical words. Therefore, a replacement text list (a dictionary with
the root of the technical words) has been added to the library. With the previous pre-processing steps,
it was possible to derive successful classification models using simple and traditional methods.
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Figure 12. (a): Top 100 random forest variable importance for the gearbox failures. The model was
generated with words that have a frequency from 1% to 50%. This range is a good trade-off according
to the metrics of Figure 11. The top most and less frequent words can be seen in panel (b), delimited by
an orange and a red square, respectively. The RF model selected the words arranc, which is the root of
the word arrancar (to start), and absoluto (absolute), as the most important ones.

4. Conclusions

In this work, a study based on the text-mining of work orders has been carried out to detect,
by means of machine-learning tools, the essential words used by maintenance personnel in the
maintenance/repair of turbines. It has been shown that when a turbine has a fault in the generator
system and it has been repaired, there is a difference in the amount of wind production. This difference
is shown in the power curve before and after the maintenance intervention. This difference is captured
with the parameters of the sigmoid curve that best fit the cloud of points. These metrics are useful for
selecting the turbine that has the greatest significant difference before and after the failure. Having
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access to the machine’s service reports which contains the description of the maintenance and/or
repair carried on, having a real difference in turbine’s performance and being able to quantify and
compare it, further analysis has been carried out using natural language processing techniques to train
the DT and RF model with the maintenance logs of this turbine. The pre-processing of the text of
the machine’s service reports allows the generation of classification models that obtain accuracy and
F-score rates above 90% in several cases. This shows that the classifier has extracted the important
words that characterize a failure case. We observe that the more important the difference in these
metrics, the better the results obtained for the text classification model.

Through the analysis of the relevance in the DT and RF models, it is possible to find which
word /words indicate that a turbine has a failure. This allows to automate the detection of interventions
in new turbines to know their state from start. So far, this is done manually by a human expert who
looks for words and combinations of them that are key in maintenance and/or repair interventions.
This is tedious work which can be biased by the expert judgement and/or affected by other
non-technical aspects. Now, with the proposed system, this can be done using the classification
model, and therefore we can know when a turbine has a failure through this text mining process,
which applies a data labelling before and after a specific sequence or combination of words. A number
of future works have been identified, and there is much room for improvement, because there are
several critical steps that have a significant impact on the final result. For the pre-processing step,
a better sentence analysis can be done; a syntax analysis step can be implemented to identify the
technical domain nouns and verbs and create the model with them. In addition, the construction of
the document term matrix can be improved by generating a combination of two, three, or “n” terms at
the expense of computational time. In addition, a third dimension can be added indicating the type of
term (verb, noun, adverb, etc.) since in the stemming process this information can be lost.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC area under the curve

CBM condition based maintenance

CMS condition monitoring systems

M confusion matrix

CP decision trees complexity parameter
DT decision trees

MAE mean absolute error

MSE mean squared error

O&M operation and maintenance

RF random forest

SCADA  supervisory control and data acquisition data
WO work order
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