
energies

Article

Spatio-Temporal Model for Evaluating Demand
Response Potential of Electric Vehicles in
Power-Traffic Network

Lidan Chen 1,* , Yao Zhang 2 and Antonio Figueiredo 3

1 School of Electrical Engineering, Guangzhou College of South China University of Technology,
Guangzhou 510800, China

2 School of Electric Power, South China University of Technology, Guangzhou 510640, China;
epyzhang@scut.edu.cn

3 Department of Electronic Engineering, University of York, York YO10 5DD, UK; ajff_08@outlook.com
* Correspondence: chenld@gcu.edu.cn

Received: 23 April 2019; Accepted: 18 May 2019; Published: 23 May 2019
����������
�������

Abstract: Electric vehicles (EVs) can be regarded as a kind of demand response (DR) resource.
Nevertheless, the EVs travel behavior is flexible and random, in addition, their willingness to
participate in the DR event is uncertain, they are expected to be managed and utilized by the
EV aggregator (EVA). In this perspective, this paper presents a composite methodology that take
into account the dynamic road network (DRN) information and fuzzy user participation (FUP) for
obtaining spatio-temporal projections of demand response potential from electric vehicles and the
electric vehicle aggregator. A dynamic traffic network model taking over the traffic time-varying
information is developed by graph theory. The trip chain based on housing travel survey is set up,
where Dijkstra algorithm is employed to plan the optimal route of EVs, in order to find the travel
distance and travel time of each trip of EVs. To demonstrate the uncertainties of the EVs travel
pattern, simulation analysis is conducted using Monte Carlo method. Subsequently, we suggest a
fuzzy logic-based approach to uncertainty analysis that starts with investigating EV users’ subjective
ability to participate in DR event, and we develop the FUP response mechanism which is constructed
by three factors including the remaining dwell time, remaining SOC, and incentive electricity pricing.
The FUP is used to calculate the real-time participation level of a single EV. Finally, we take advantage
of a simulation example with a coupled 25-node road network and 54-node power distribution system
to demonstrate the effectiveness of the proposed method.

Keywords: electric vehicle (EV); trip chains; demand response; user participation; dynamic road
network; fuzzy algorithm

1. Introduction

1.1. Motivation and Background

Persistent growth of the global economy is causing issues relating to energy supply, environmental
pollution, and dependence on fossil fuels, all of which need to be addressed with a sense of urgency [1].
To better tackle these problems, many countries have been committing to support the development of
electric vehicle technologies as well as provide incentives to encourage the use of EVs (e.g., battery
electric vehicles (BEV) and plug-in hybrid vehicles (PHEV)) [2]. It means that more and more EVs
will be connected to the grid and interact with the utility in the future. On the one hand, EVs are a
flexible power load [3], they will require charging from the grid at different times and at different
locations [4,5]. As a consequence, the coordination of EVs’ charging has been widely studied in the
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recent period [6,7]. On the other hand, it is also a kind of distributed energy storage resource. Since EVs
have a lot of time to dwell in the parking lots during the day, they have great potential to participate
in the power system DR service [8,9]. However, due to the flexibility and randomness of electric
vehicle behavior and the uncertainty of participation in demand response [10], it is difficult to assess
the potential of participation in demand response events, especially under the power-traffic hybrid
network, which is important for the planning and operation of the power grid and transportation,
therefore, an assessment of spatio-temporal uncertainties and user participation uncertainties in EV-DR
is inevitable. It is worth noting that because different types of EVs have a different charging time,
charging power, and battery capacity, we focus on BEVs in this paper.

1.2. Literature Overview

Motivated by the above reasoning, at present, many researchers have carried out EV and grid
interaction related research, in particular, user-side management, EVs’ demand response. Reference [11]
analyzes the users’ power transfer, reduction behavior, and the response to the demand of dispatching
in the context of time-of-use electricity price and pricing strategy. In [12], an algorithm for distributed
EVs’ DR to shape the daily demand profile in a day-ahead market is presented. The authors in [13]
provided a collaborative evaluation of dynamic-pricing and peak power limiting-based DR strategies
for home energy management (HEM). The authors in [14] make full use of the EVs’ DR capability
and propose a corresponding frequency control strategy. Also, in [15], the author investigated a
charging and discharging strategy for EVs that can utilize the DR capability of V2G in residential
distribution networks. However, EVs’ DR capability is assumed to be activated only after the vehicles
arrive home. The authors in [16] presented an intelligent energy management framework with DR
capability for industrial facilities, yet the user’s willingness to participate DR program was ignored. In
a recent work [17], an EV parking lot energy management system is present in consideration of the
uncertainties of the arrival and departure time, and the remaining state-of-energy of EVs just before
charging operation.

Valuable insights of EVs demand response works were provided in previous studies. However,
it is worth mentioning that in the previously cited approaches, only the EVs’ time-varying
charging/discharging characteristics were taken into account, they consider EVs as a type of fixed load
or response resource, while the location of EVs is commonly disregarded. In addition, the previous
studies’ take on EVs is that they can participate in DR events when EVs have objective controlled
ability, ignoring the uncertainty of user participation willingness, the subjective participation degree of
users is not considered in detail.

1.3. Contributions

Thus, our focus in this paper is the EV demand response potential evaluation from the perspective
of spatio-temporal distribution and vehicle owner participation capability. The main contributions of
this work are summarized as follows.

(1) Aspects beyond the characteristics of spatial distribution of EVs and travel pattern analysis have
been neglected in the existing literature, we model a dynamic traffic network considering the
traffic time-varying information with randomness in travel behavior based on trip chains.

(2) A method to analyze EVs’ objective and subjective participation in a DR event is developed.
(3) Differently from the fixed demand response mode in the related research, we proposed a fuzzy

logic-based mechanism, we modeled uncertainties that affect the estimation of demand response
potential of a single EV and EVA. Three key factors—the remaining parking time, the remaining
SOC, and incentive electricity pricing—are considered.

(4) The real-time participation level of a single EV and EVA from a spatio-temporal scope in the
power-traffic network are evaluated.
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The remainder of this paper is organized as follows: In Section 2, we formulate the spatio-temporal
model of electric vehicle travel patterns based on trip chains under dynamic road network. In
Section 3, the objective participation ability as well as the subjective participation ability of EV users
are considered, and the EVs DR mechanism is obtained by fuzzy algorithm. In Section 4, the case study
and the results are presented, analyzed, and discussed. Conclusions are drawn in Section 5.

2. EVs Travel Model in Dynamic Traffic Network

The proposed electric vehicles aggregator demand response evaluation (EVA-DRE) method is
illustrated in Figure 1. The first part of the method is EVs’ travel modeling to get the spatial and
temporal distribution, which will be introduced in this section. Another part is the EV user participation
modeling and response mechanism to obtain the EV-DR power and capacity.

Energies 2019, 12, x FOR PEER REVIEW 3 of 20 

 

The remainder of this paper is organized as follows: In Section 2, we formulate the spatio-temporal 

model of electric vehicle travel patterns based on trip chains under dynamic road network. In Section 

3, the objective participation ability as well as the subjective participation ability of EV users are 

considered, and the EVs DR mechanism is obtained by fuzzy algorithm. In Section 4, the case study and 

the results are presented, analyzed, and discussed. Conclusions are drawn in Section 5. 

2. EVs Travel Model in Dynamic Traffic Network 

The proposed electric vehicles aggregator demand response evaluation (EVA-DRE) method is 

illustrated in Figure 1. The first part of the method is EVs’ travel modeling to get the spatial and 

temporal distribution, which will be introduced in this section. Another part is the EV user 

participation modeling and response mechanism to obtain the EV-DR power and capacity.  

In this section, we will provide a general method for simulating the daily travel pattern with 

dynamic traffic network and trip chains. First, the time-dependent dynamic road network model is 

established by using graph theory. Travel characteristics of EVs are then analyzed. Furthermore, the 

process of the travel pattern simulation is presented. 

Spatial and temporal 
model

Area road network

· Node coordinates
·  Connection
·  Road level, et al

Travel data

· Trip start time
· Trip purpose
· Duration time, et al 

Dynamic 
traffic 

network

Charging 
and 

dischargi
ng model

Travel 
model 

Traffic information

· Real time flow
· Congestion
· Speed Limits
· Traffic signal

Parameters of EVs

· Battery
· Mileage 

· Charging level
· Charging efficiency

Parameters of facilities

Electricity Price 
information

Fuzzy response 
mechanism 

EVA-DR Capacity 

EVA-DR Power 

Spatial and temporal 
distribution of EVs

Spatial and temporal 
distribution of SOC

Charging and 
discharging judgement 

Shortest path algorithm

Trip chains

EV user 
participation

EVDR Period time

 

Figure 1. Scheme of proposed EVA-DRE method. 

2.1. Time-Dependent Dynamic Road Network Model 

During the day’s travel of a private electric vehicle, it will depart from the starting point which 

we assume the house, and it will pass through one or more trip destinations, including multiple trip, 

and the choice of each travel route will be affected by the road network and traffic conditions. Yet, 

the traffic conditions of the road network change over time as shown in Table 1. In addition, graph 

theory is usually adopted to describe the complicated actual road network [18]. In this work, the 

traffic time-varying information is considered in the road network, as in Equation (1). 

  

Figure 1. Scheme of proposed EVA-DRE method.

In this section, we will provide a general method for simulating the daily travel pattern with
dynamic traffic network and trip chains. First, the time-dependent dynamic road network model is
established by using graph theory. Travel characteristics of EVs are then analyzed. Furthermore, the
process of the travel pattern simulation is presented.

2.1. Time-Dependent Dynamic Road Network Model

During the day’s travel of a private electric vehicle, it will depart from the starting point which
we assume the house, and it will pass through one or more trip destinations, including multiple trip,
and the choice of each travel route will be affected by the road network and traffic conditions. Yet,
the traffic conditions of the road network change over time as shown in Table 1. In addition, graph
theory is usually adopted to describe the complicated actual road network [18]. In this work, the traffic
time-varying information is considered in the road network, as in Equation (1).
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G = (V, E, W, D, T)
V = {1, 2, . . . , n}
E =

{
ei j

∣∣∣i, j ∈ V
}

W =
{
tr(k)

∣∣∣r ∈ E, k ∈ T
}

D =
{
td(k)

∣∣∣d ∈ V, k ∈ T
}

T = {k|k = 1, 2, . . . , K}

(1)

where, the vertex V of the graph G represents the intersection of the road, and the edge E of the graph
represents the section between the two adjacent intersections, and the set of road weights W is used for
describing various road lengths, travel times, and other attributes, D is the set of the delayed time of
all intersections. tr(k) is the travel time function at time slot k of link r, td(k) is the delayed time in the
intersection d at time slot k; T represents the time set, and K is the total number of time intervals in
a day.

Table 1. Dynamic travel time of each road section.

Road Sections/links
Time Intervals

1 2 . . . k . . .

1 t1(1) t1(2) . . . t1(k) . . .
2 t2(1) t2(2) . . . t2(k) . . .
. . . . . . . . . . . . . . . . . .
r tr(1) tr(2) . . . tr(k) . . .
. . . . . . . . . . . . . . . . . .

2.2. Spatio-Temporal Travel Characteristics of EVs

Suppose that EV users will go to one or more destinations during a day’s travel, and the EV
charging and discharging may occur in these trip destinations.

2.2.1. Trip Chains and Travel Route Planning

We use daily trip chains [19–21] which are created to show the whole travel routes in one day
with spatial and temporal information, shown in Figure 2 and Equation (2).

Q =
{
q0(x0, y0), q1(x1, y1), · · · , qs(xs, ys), · · ·

}
(2)

where, Q is the set for the duration trip destinations of the trip chain, s is the number of the duration trip
destinations, q0, q1 . . . qs indicate all of the trip destinations, (xs, ys) is the corresponding coordinates, q0

is the first place of the trip chain which is considered to be the house in this paper.
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Figure 2. The daily trip chains.

A path among consecutive trip destinations in the trip chain is represented by ψ(qs, qs+1). The
path set that characterizes the EV’s spatial travel process is expressed as Π in Equation (3).

Π =
{
ψ(q0, q1),ψ(q1, q2), · · · ,ψ(qs, qs+1), · · ·

}
(3)
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Let ti
l, ti

p(i = 0, 1, 2, . . . , s, . . .) be the departure time and the parking duration time in the ith trip
destination, respectively, and t0

p is the dwelling time in the house. In Figure 2, Li,i+1(i = 0, 1, 2, . . . , s−
1, . . .) and ∆Ti,i+1 are the travel distance and travel time between two trip destinations, respectively.

2.2.2. Departure Time of the First Trip

Here, we consider the departure time t0
l of the EVs’ first trip in a daily horizon to be randomly

distributed according to probability distribution function (pdf) as

t0
l ∼ f (t0

l ) (4)

2.2.3. Traveling and Traveled Time

In a completed trip, EVs will path several links and several intersections. Hence, it is necessary
to draw the required time to pass each link at a certain time when calculating the travel time
between two destinations. Some existing link travel time functions are discussed in [22], and the
traffic time-consuming coefficient is used to calculate the travel time of the road segment under the
corresponding traffic index, which is more than the time-consuming multiple in the unblocked state.
The logit-based volume delay function [23] as in Equation (5) is used for depicting travel time.

t(s, s + 1) =
nr∑

r=1

tr(k) +
md∑

d=1

td(k) (5)

where, 

tr(k) = t0·c1·

[
1− c2

1+exp(c3−c4·θr(k))

]−1

td(k) = t0·p1·

[
1 + p2

1+exp(p3−p4·λr(k))

]
θr(k) =

qr(k)
Cr

,λr(k) =
qr(k)

Xr

t0 = lr
v0

, r ∈ E

(6)

where, t(s, s + 1) represents the traveling time from s to s + 1; nr, md are the total links and the total
intersections between s and s + 1, respectively; t0, v0 are the free-flow traveling time and free-flow
driving speed which are related to the road grades, respectively; lr is the length of link r, in km; qr(k) is
the real-time traffic of link r at time slot k; Cr and Xr represent road capacity and intersection capacity of
link r, respectively; saturation of traffic volume θr(k) and λr(k) are used to characterize the congestion
factor (traffic index), the greater the values, the more congested roads and junctions; ci(i = 1, 2, 3, 4) are
the adaptive coefficients that related to road grades, pi(i = 1, 2, 3, 4) are the adaptive coefficients of the
intersection related to whether there is a traffic light.

2.2.4. Arrival and Departure Time at the Destination

The arrival and departure time of every trip’s destination can be obtained by Equation (7). ts
a = t0

l +
s−1∑
i=0

t(i, i + 1) +
s−1∑
i=1

ti
p

ts
l = ts

a + ts
p

(7)

where, ts
a and ts

l are the arrival and departure time at the trip destination, ts
p is the parking time.
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2.2.5. Parking Times

In this paper, it is also assumed that parking duration ts
p of the EVs in non-residential areas—i.e.,

office, shopping mall—follows a probability distribution ts
p ∼ f (ts

p). In addition, the parking duration
in the residential area can be obtained by Equation (8).

th
p =

{
th
l − th

a , 0 < th
a < 0.5K

th
l − th

a + K, 0.5K ≤ th
a ≤ K

(8)

where, ts
p and th

p represent the parking time at trip destination s and in the house, respectively; th
a , th

l are
the arrival and departure times at the house, respectively.

2.2.6. Route Planning

When the vehicle travels from the current location (source point) to a destination (destination
point), the vehicle users tend to select the route in advance, and the users will choose different road
resistances according to their different preferences, such as driving distance, travel time, road quality,
congestion situation, travel expenses, etc. We assume that the user considers ‘travel time’ as the
important basis for route selection. Therefore, the minimum travel time, which includes road travel
time and traffic light delay time, is set as the target for the shortest path planning, i.e., Dijkstra’s
algorithm [24].

2.3. EV Battery SOC Estimate

When EVs arrive at a destination, when there is no demand response event, the user will decide
whether to replenish the energy for their EV according to the current battery SOC and the next trip, is
defined as, 

S(ts
a)·Em −

ns,s+1∑
r=1

ωr·lr ≤ ζ0·Em

S(ts
a) = S(ts−1

a ) − (
ns−1,s∑
r=1

ωr·lr)/Em

(9)

where, S(ts
a) is the SOC at arrival time of destination s; Em is the battery capacity of EV m, in kWh;

ωr is the energy consumption per kilometer, in kWh/km; ζ0 is preset by EV user; ns−1,s and ns,s+1

represent the number of links between two trip destinations. Likewise, the battery state of leaving the
trip destination is obtained.

S(ts
l ) =


S(ts

a),γ = 0
min

{
S(ts

a) + ∆S(ts
p), Sset, Sup

}
,γ = 1

max
{
S(ts

a) + ∆S(ts
p), Sset, Slow

}
,γ = −1

∆S(ts
p) = γ·δ·

Ps
c·ts

p
Em

(10)

where, S(ts
l ) is the SOC at the departure time; Ps

c is the rated charging power; γ is a flag sign, 0, 1, and
−1 are no charging, charging and discharging, respectively; δ is the charging/discharging efficiency;
Sset is the SOC of the departure time set by EV user; Sup and Slow represent the upper limit considering
the battery life and the minimum limit to support the next trip, respectively.

2.4. Travel Pattern Simulation

The temporal and geographical information of EVs in a travel day can be obtained by performing
the following six key steps:

Step 1. Obtain the survey results of residents from the transportation department and analyze the
structure type of the vehicles’ trip chains.
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Step 2. The space movement state of the vehicle is determined according to the trip chain structure that
the travel destinations of the vehicle are clear.

Step 3. The first departure time of the vehicle is extracted by Equation (4) according to the type of travel
chain Equation (2).

Step 4. The travel path space and time between two consecutive trip destinations are determined by
the path planning algorithm and Equations (3), (5), and (6).

Step 5. Extract the dwell time of the different destinations according to Equation (8). The arrival and
departure time are calculated by Equation (7).

Step 6. The state of charge of the battery in each destination is judged and calculated by Equations (9)
and (10).

Through Step 1 to Step 6, we can obtain the spatio-temporal characteristics of each EV in a travel
day, including the remaining SOC, the travel destination, and its dwell time. The simulation flowchart
is shown in Figure 3. Monte Carlo simulation will be carried out with EVA-DRE process which will be
presented in Section 3.4.Energies 2019, 12, x FOR PEER REVIEW 8 of 20 
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3. Methodology for EVA-DRE

Having obtained the modeling of EVs travel pattern in the dynamic road network, including
spatial and temporal information and SOC distribution, analyzing the user participation ability is of
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importance to evaluate the demand response potential upon each destination. A fuzzy rule response
mechanism with three key factors are then considered in this section. The temporal and geographical
distribution of single EV and EVA demand response capacity is obtained by Monte Carlo simulation.

3.1. User Participation of EVs DR

EV users usually exhibit complete rationality, limited rationality and satisfactory decision-making
in the process of charging and discharging power consumption. When EVs arrive at a destination, it
is only possible to participate in the actual DR event when they objectively have the DR capability.
Otherwise, even if the EV user has a strong willingness to participate, it is unable to participate in the
DR event. Here, the DR participation is divided into three categories: (1) participate in adjusting the
charging time (delayed charging), (2) participate in the discharge case, (3) have no DR capability.

3.1.1. Objective Participation Ability

We introduce the objective participation ability Ks
m(t) here to show the actual participation of EVs

DR, which is presented as Equation (11) and illustrated in detail as Table 2.

Ks
m(t) =

{
1, A or B
0, C

A : ∆S ≥ Slim
B : ∆S < Slim & ts

ch < ∆Ts
sur

C : ∆S < Slim & ts
ch ≥ ∆Ts

sur
∆S = S(ts

a) − S(t(s, s + 1))
ts
ch = ∆S×Em

δ×Ps
c

(11)

where, ∆S is the current available SOC; S(t(s, s + 1)) is the SOC consumed by the vehicle from s to s +

1; Slim is the minimum residual capacity level to prolong battery life; ∆Ts
sur indicates the remaining

time of the vehicle to the next trip; ts
ch is the required charging time. EVs in cases of A and B have the

capability of objective participation, but for C, regardless of parking time or SOC, it mismatches for its
next trip driving requirement, thus, EVs in case C should charge the battery immediately. The charging
power can be calculated by Equation (12).

Ps
C(t) = Ps

c

NC(t)∑
m=1

ζ(t)

ζ(t) =
{

1, ts
a < t < ts

a + ts
ch

0, else

(12)

where, Ps
C(t) is the total charging power of EVs in case C of time t at the destination of s; NC(t) is the

number of EVs in case C at time t.

Table 2. Objective participation ability of EVs under different situation.

Cases
Situation Remaining

SOC
Whether to Meet the
Next Trip Demand

Dwelling
Time

Enough Time to
Replenish

Objective
Participation Ability

A Sufficient Yes - - 1
B Insufficient No Long Yes 1
C Insufficient No Short No 0

3.1.2. Subjective Participation Willingness

For different EV owners, they will make different decisions whether to participation in a DR event
always based on the current state of charge, electricity price, and remaining travel time. Even the same
electric vehicle owner may have different decision-making results due to random factors such as mood
at the time.
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We define ρm(t) as subjective participation, to characterize the subjective willingness of EV users
to participate in a DR event. Then, the subjective participation degree of A, B, and C in Section 3.1.1
can be described as Equation (13).

A : 0 ≤ ρdel
m (t) ≤ 1, 0 ≤ ρv2g

m (t) ≤ 1
B : 0 ≤ ρdel

m (t) ≤ 1, 0 ≤ ρv2g
m (t) ≤ 1

C : ρdel
m (t) = 0,ρv2g

m (t) = 0

(13)

where ρdel
m (t) and ρv2g

m (t) are the delayed and V2G participation degree of EV users, respectively.
Meanwhile, the subjective participation is limited by objective responsiveness, and it is to be

satisfied as
ρm(t) = f (αm(t), βm(t),γm(t)||Ks

m(t)) (14)

where, three essential factors αm(t), βm(t), and γm(t) are considered, which represent the remaining
parking time, the remaining SOC, and the incentive price at the current time, respectively. It should be
mentioned that, Equation (14) is an uncertainty function, thus, to focus on the uncertainty of EVs DR
participation, fuzzy algorithm is used to calculate EV user demand responsiveness.

3.2. Responsive Mechanism Based on Fuzzy Rules

Firstly, based on the known remaining parking time and the remaining SOC from Section 2, and
the incentive price are extracted to build the inputs for the fuzzy evaluator at each sampling period,
these three factors should be normalized by Equation (15). Secondly, the fuzzification of the inputs is
implemented based on the input membership functions and the output membership functions, which
are shown in Figure 4a–c, respectively. Thirdly, the Mamdani fuzzy reasoning is carried out. The rule
base is shown in Table 3, the fuzzy rules can be tuned with real tested results under different scenarios.

x∗ =
x− xmin

xmax − xmin
(15)
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Table 3. Rule base and defuzzification.

If SOC Is AND
RPD Is AND IP Is

Then the
Participation
of EVs DR Is

If SOC Is AND
RPD Is AND IP Is

Then the
Participation
of EVs DR Is

L L L EL H M L M
L L M L H M M H
L L H M H M H EH
M L L L L H L L
M L M M L H M H
M L H M L H H H
H L L L M H L M
H L M M M H M H
H L H H M H H EH
L M L L H H L M
L M M M H H M H
L M H H H H H EH
M M L L
M M M M
M M H H

3.3. EVA-DR Energy and Capacity

After obtaining the demand response potential of a single EV, then we construct an aggregation
model of EVs’ DR. From a spatial perspective, if multiple functional blocks are powered by a certain
grid node, all vehicles supplied electricity by the node are referred to herein as electric vehicle clusters
which are managed by EVA. The response capability of delayed charging power and the participating
discharge power at the sampling period is given by Equation (16).

EVAdel(i, t) =
EVnum,i∑

m=1
ρdel

m (t)·Ps
c

EVAv2g(i, t) =
EVnum,i∑

m=1
ρ

v2g
m (t)·Ps

dis

(16)

where, EVnum,i is the number of EVs in the ith EVA cluster, Ps
c and Ps

dis are the rated charge and discharge
power, respectively.

The DR capacity of an EVA and total EVAs are estimated by using Equations (17) and (18).

C(i, t) =
EVnum,i∑

m=1

(S(m, t) − ξm)·ρm(t)·Em (17)

Ctot(t) =
Na∑
i=1

C(i, t) (18)

where, C(i, t) shows the DR capacity of the ith EVA at time t, S(m, t) is the SOC of EV m at time t, ρm(t)
is the EVs participation in (13) and (14), ξm is the limited SOC set by the EVs user and Na is the number
of EVAs.

3.4. EVA-DRE Simulation Process

The steps for the proposed EVA-DRE method are provided as follows, and the simulation flowchart
is described in Figure 5.
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Step 1. The temporal and spatial distribution of the mth EV and related parameters are obtained from
Section 2.

Step 2. For the participating EVs, calling the fuzzy algorithm to calculate the responsiveness of the
mth EV.

Step 3. Calculate the delayed charging power and V2G power and capacity of EVA according to the
location of the current time of the vehicle to the corresponding EVA.

Step 4. Accumulate the total power and capacity of EVA in the entire area.

4. Simulation Results and Analysis

In this section, we present some simulation results and the performance of the proposed method.
The simulation is implemented and tested in the MATLAB software. All the results are obtained by
MATLAB R2018b on a PC with Intel Core i5–4278U CPU @ 2.60 GHz, 8GB RAM memory, and 64-bit
Windows 7 OS. The simulation in the case study would take 9.305 s for evaluation DR potential in
each minute. In a similar fashion, to deal with large-scale dimensionality of a large scale fleet of EVs
problem in [25–27], decentralized/distributed framework for evaluation can process.

4.1. Data Gathering and Parameter Settings

The parameters include road network information, traffic information, grid parameters, EV
parameters, survey data of resident users, etc. A coupled network with 25-node road network [28] and
54-node distribution system [29] as shown in Figure 6 is used in the simulation. The road network in
the region has 25 road nodes and 46 roads, 22 functional blocks, including 8 residential areas (H), 8
working places (W), 5 other functional areas (E), and 2 non-functional area (marked by Z1, Z2). Each
functional area is powered by the distribution network node which is indicated by an arrow. For
example, the gridlines in Figure 6 is the H7 block, which is powered by node 11.
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Figure 6. Topology coupled road network and distribution network. Figure 6. Topology coupled road network and distribution network.

4.1.1. Detailed Road Network Information

Detailed information including links and their corresponding area, traffic light, road grade, and
the length of each link are shown in Table 4. In the column of traffic light, ‘1’ denotes that there are
traffic lights in the link, otherwise, there are no traffic lights in the link which is the first road grade
with high free flow speed. In the column of area, ‘1’ and ‘0’ indicate the central area and other area of
the city, respectively.

4.1.2. Traffic Information

In this paper, all the road sections are divided into four grades. In Figure 6, the thick black solid
line is the fast track (FT), the blue sub-solid line is the main road (MR), and the rest are the secondary
roads (SR). The branch roads (BR) are not reflected in the topological map which located in each
functional area. Traffic lights are provided at the intersections of MR and SR. Different road grades
have different free flow speeds, as shown in Table 5.
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Table 4. Detailed information for the road network.

No. of Link Original
Node

Destination
Node Traffic Light Road Grade Length of

Link Area

1 1 5 1 3 5 0
2 1 2 1 3 4 0
3 2 3 1 3 3 0
4 2 4 1 2 4 1
5 3 4 1 3 4 0
6 3 9 1 3 4 0
7 4 5 1 3 3 0
8 4 7 1 3 5 1
9 4 8 1 2 5 1

10 4 9 1 3 7 1
11 5 6 1 3 5 0
12 5 7 1 2 5 0
13 6 7 1 3 3 0
14 7 8 1 2 3 1
15 7 11 1 3 8 1
16 7 12 1 3 9 0
17 8 9 0 1 6 1
18 8 10 1 2 6 1
19 8 11 0 1 7 1
20 8 13 1 2 7 1
21 9 10 1 3 6 0
22 10 13 1 3 6 0
23 10 14 1 2 3 0
24 11 12 1 3 2 0
25 11 13 1 3 3 1
26 11 16 0 1 7 1
27 12 15 1 3 4 0
28 12 16 1 3 4 0
29 13 14 1 3 7 0
30 13 16 1 3 7 0
31 13 19 1 2 4 0
32 14 19 1 3 7 0
33 14 21 1 3 2 0
34 14 22 1 3 4 0
35 15 16 1 3 4 0
36 16 17 1 3 4 0
37 17 18 1 3 3 0
38 17 19 1 2 3 0
39 18 20 1 3 3 0
40 19 20 1 3 3 0
41 20 21 1 3 2 0
42 20 25 1 3 4 0
43 21 24 1 3 5 0
44 22 23 1 3 3 0
45 23 24 1 3 3 0
46 24 25 1 3 8 0

Table 5. Free-Flow Speed in Different Urban Road Hierarchies.

Road Grade FT MR SR BR

Free-flow speed (km/h) 80 60 40 30

The road traffic status is divided into five levels including smooth, basically smooth, slow, medium
congested, and congested. The traffic index is shown in Table 6.
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Table 6. Urban Traffic Index in Different Traffic Conditions.

Status Congested Medium
Congested Slow Basically

Smooth Smooth

Index 0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2

Dynamic road network parameters are updated in real time, and the weekday and weekend traffic
index of Shenzhen City in southern China are used as shown in Figure 7.
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4.1.3. EVs Parameters

In our simulations, the initial and final locations of the EVs are considered to be parked in
residential areas in a day. The number of EVs in each residential area (H) is shown as H1~H8 in
Figure 6. The BEV Nissan Leaf, with lithium-ion battery capacity of 24 kWh, is chosen as the typical
private BEV used in the simulation. The initial and limited SOC is set to 0.9 and 0.3, respectively.

4.1.4. Resident Travel Parameters

The dataset for analyzing vehicle travel behavior is mainly derived from the National Household
Travel Survey (NHTS) [30]. Wednesday and Sunday data are used for weekdays and weekends,
respectively. A Gaussian distribution is considered for the first trip departure time with the mean and
variance presented in Table 7, four types of trip chains are used for simulation as shown in Table 7.

Table 7. Parameters of start time and dwell time of each trip purpose for different trip chains.

Type of Trip Chains

Parameters
Trip Chains
Penetration

First Departure
Time Parking (Dwelling) Time

Workday Weekend Workday Weekend Workday Weekend

H-W-H 40% 10% (457, 1422) (550, 1842) (544, 1222) (504, 1522)
H-E-H 20% 70% (635, 2202) (744, 2252) (222, 2082) (144, 1582)

H-W-E-H 20% 10% (432, 742) (544, 1322) (450, 1792) (57, 842) (393, 2272) (82, 1142)
H-E-W-H 20% 10% (601, 1982) (712, 2102) (550, 1842) (179, 2162) (94, 1042) (102, 1282)

4.1.5. Incentive Price Information

The incentive price parameter is assumed as Table 8.

Table 8. Peak-Valley Time-of-Use Incentive Price (yuan/kWh).

Type Time Slot Incentive Price

Flat period 7:00–10:00 & 15:00–18:00 & 21:00–23:00 0.6832
Peak period 10:00–15:00 & 18:00–21:00 1.0558

Valley period 23:00-Next day 7:00 0.3105
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4.2. Simulation Result of a Single EV DR Potential

With the time of use incentive price in Table 8, we report the simulation result of a single vehicle
in a workday as shown in Figure 8a. Considering the fuzzy participation response mechanism, its
response curve is shown in Figure 8b.

Energies 2019, 12, x FOR PEER REVIEW 15 of 20 

 

Table 7. Parameters of start time and dwell time of each trip purpose for different trip chains. 

Parameters 

Type of Trip Chains 

Trip Chains 

Penetration 
First Departure Time Parking (Dwelling) Time 

Workday Weekend Workday Weekend Workday Weekend 

H-W-H 40% 10% 2(457,142 )  
2(550,184 )  

2(544,122 )  2(504,152 )  

H-E-H 20% 70% 2(635, 220 )  
2(744, 225 )  

2(222, 208 )  2(144,158 )  

H-W-E-H 20% 10% 2(432, 74 )  
2(544,132 )  

2(450,179 )  2(57, 84 )  2(393, 227 )  2(82,114 )  

H-E-W-H 20% 10% 2(601,198 )  
2(712, 210 )  

2(550,184 )  2(179, 216 )  2(94,104 )  2(102,128 )  

4.1.5. Incentive Price Information 

The incentive price parameter is assumed as Table 8. 

Table 8. Peak-Valley Time-of-Use Incentive Price (yuan/kWh). 

Type Time Slot Incentive Price 

Flat period 7:00–10:00 & 15:00–18:00 & 21:00–23:00 0.6832 

Peak period 10:00–15:00 & 18:00–21:00 1.0558 

Valley period 23:00-Next day 7:00 0.3105 

4.2. Simulation Result of a Single EV DR Potential 

With the time of use incentive price in Table 8, we report the simulation result of a single vehicle 

in a workday as shown in Figure 8a. Considering the fuzzy participation response mechanism, its 

response curve is shown in Figure 8b. 

 
(a) 

 
(b) 

Figure 8. Probability of EV DR. (a) ‘H-W-H’ trip chain. (b) the demand response of a single EV. 

It can be seen from Figure 8a that the EV arrived at the working place after leaving the house for 

89 min and returned home after 557 min of parking. The return journey took 95 min. The path 

planned by the minimum travel time algorithm for the two trips is as shown in (19). 

1 6

6 1

( ) : (1,2,4,8,11,13,19,20,25)

( ) : (25,20,19,13,8,4,2,1)

H W
path

W H




  
(19) 

Figure 8. Probability of EV DR. (a) ‘H-W-H’ trip chain. (b) the demand response of a single EV.

It can be seen from Figure 8a that the EV arrived at the working place after leaving the house
for 89 min and returned home after 557 min of parking. The return journey took 95 min. The path
planned by the minimum travel time algorithm for the two trips is as shown in (19).

path
{

(H1 →W6) : (1, 2, 4, 8, 11, 13, 19, 20, 25)
(W6 → H1) : (25, 20, 19, 13, 8, 4, 2, 1)

(19)

where, the numbers in the brackets represent the road nodes. We can see that the round-trip routes
between the two trip destinations are different. The lengths of the road segments are 34 km and 31
km, respectively, but the travel distance for calculating the power consumption is 37.01 km and 31.47
km. This is due to the large area of the functional block used in this simulation, a random length
5× abs(2× rand(1, 1) − 1)km is added in the calculation to reflect the mileage in each functional area.
Additionally, although the ‘W-H’ trip’s driving distance was short, the traveling time was longer, which
was caused by the time-consuming increase in travel time.

Figure 8b shows that the EV did not have response ability during the two-way travel period, and
the lower response in the I-zone due to the low compensation of the incentive price and the closer to
the departure time of the next trip. However, notwithstanding its departure time is much closer, the
responsiveness in the second zone increases. This is because the increase in the incentive price has
stimulated user participation.

The responsiveness of the two initial parking periods in the workplace and the residential area is
relatively high, as shown in the zone III and zone V. Zone III is in a state where the incentive price is
much higher, and the battery charge rate is also high. Its responsiveness is the highest throughout
the day, but it gradually decreases with the declining of the remaining travel time. In zone IV, the
responsiveness is further reduced due to the drop of the compensation price.
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4.3. Validations

To validate the proposed method, four cases are simulated for sensitivity analysis.

4.3.1. Workdays VS Weekends

Firstly, the simulated result for the delay coefficients of the central urban and non-central areas on
weekdays and weekends are shown in Figure 9. Compared with Figure 7, the trend of the two curves
is basically the same which indicates that the traffic congestion caused delays, especially during peak
hours, the travel time of the central urban area is nearly 1.7 times that of the free-flow speed.
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Secondly, Table 7 shows that there is a big difference in user travel pattern between weekdays and
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4.3.2. DRN VS Static Road Network (SRN)

Table 9 displays the participation results in the dynamic road network and static road network. It
is to see that the travel route, arrival time, arrival SOC, and the DR participation are different.

Path_S = (25, 20, 21, 14, 10, 9, 3, 2, 1)
Path_19 = (25, 20, 21, 14, 10, 8, 4, 2, 1)
Path_23 = (25, 20, 19, 13, 8, 4, 2, 1)
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Table 9. Participation Simulation Results in Different Road Networks.

Road Network Travel Route Arrival Time Arrival SOC Participation

SRN
19:00 Path_S 20:28 0.3667 0.8806
23:00 Path_S 23:48 0.3667 0.4143

DRN
19:00 Path_19 21:23 0.35 0.8437
23:00 Path_23 00:31 0.3167 0.3661

4.3.3. Different Response Mechanism

Figure 11 shows the EVA-DR capacity under the proposed EVA-DRE method and the fixed
response mode that EVs will participation in DR when SOC is greater than 0.3 during the parking
period. From Figure 11, the capacity of fixed response mode is much larger than the proposed method.
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4.3.4. Different Incentive Price

We conducted the sensitivity analysis on the different incentive signals for the EVA-DR potential
in our case study, the result is shown in Figure 12.
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Taking EVs’ demand response participation in the peak load hours as an example, the V2G
incentive compensation for the peak load period (19:00–21:00) is set as 50%Pr, and V2G response power
result is shown in Figure 12a. It is apparent that in the case of non-peak time uncompensated electricity
price incentives, the regional V2G response capacity is significantly reduced, while during the peak
hours, especially in residential areas, user participation is high due to compensation incentives, and EVs
usually have returned home during this period, thus, the V2G response capacity increases dramatically.

Figure 12b provides the original load curve of the residential area H4 (powered by node 22, peak
load 825 kW), the load curve with EVs charging randomly, and then we simulate the response curve
of EVA-DR in the H4 functional area under different incentive signals. Figure 12b shows that the
‘peak-to-peak’ effect is formed with the disordered charging during the peak load period. After the
demand response project is implemented, EVA-DR effectively reduces the peak load.

5. Conclusions

We have proposed a novel quantitative evaluation method for obtaining spatio-temporal
projections of demand response potential from electric vehicles. The dynamic traffic network model
taking over the traffic time-varying information, trip chains, the shortest path planning algorithm,
and Monte Carlo simulation are employed to derive the spatio-temporal distribution of EVs dumb
charging load and battery state of charge. Investigating EV users’ willingness to participate in the
DR event, a fuzzy logic-based user participation response mechanism is developed that takes into
account various realistic factors such as the remaining dwell time, the remaining SOC and the incentive
electricity pricing. Compared to the related literature, numerical results obtained in different cases
of analysis demonstrate that the approach can achieve a reasonable spatio-temporal distribution of
EVs dumb charging load, delayed charging, V2G power, and capacity. It can provide a reference for
both the utilities and EVAs through the prediction of charging load and potential of electric vehicles
participating in a DR event. At the same time, the proposed evaluation method can be used in regions
with different sizes.

Our future work will enhance the EV user’s decision-making process considering different battery
degradation functions, investigate the pricing strategy of incentive pricing, extend the simulation
analysis by presenting more realistic scenarios and comparisons with other similar approaches, and
finally, large-scale dimensionality of a large scale fleet of EVs will be investigated.
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