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Abstract: Fracture conductivity decline is a concern in the Tuscaloosa Marine Shale (TMS) wells
due to the high content of clay in the shale. An analytical well productivity model was developed
in this study considering the pressure-dependent conductivity of hydraulic fractures. The log-log
diagnostic approach was used to identify the boundary-dominated flow regime rather than the
linear flow regime. Case studies of seven TMS wells indicated that the proposed model allows
approximation of the field data with good accuracy. Production data analyses with the model
revealed that the pressure-dependent fracture conductivity in the TMS in the Mississippi section
declines following a logarithmic mode, with dimensionless coefficient χ varying between 0.116 and
0.130. The pressure-dependent decline of fracture conductivity in the transient flow period is more
significant than that in the boundary-dominated flow period.

Keywords: Tuscaloosa Marine Shale; well productivity; fracture conductivity; production decline;
analytical model

1. Introduction

The Tuscaloosa Marine Shale (TMS) across Louisiana and Mississippi has been an attractive
unconventional shale oil reservoir since 2012 [1]. The TMS is a sedimentary formation that consists of
organic-rich fine-grained sediments deposited during the Upper Cretaceous [2]. The TMS is one part of
the Tuscaloosa group consisting of Upper Tuscaloosa, Middle Marine Shale, and Lower Tuscaloosa [3].
The thickness of TMS ranges from 500 ft in the southwestern Mississippi to more than 800 ft in
southeastern Louisiana, within a depth range of 11,000 to more than 15,000 ft [4]. Middle Tuscaloosa
is composed of a dark grey, fissile, and sandy marine shale. Experimental results indicated that the
permeability ranges from less than 0.01 to 0.06 md, and porosity ranges from 2.3% to 8.0% [4].

More than 80 multi-fractured horizontal wells were drilled in the TMS between 2012 and 2014 [2].
Several TMS wells were recorded to have appealing initial oil production rates exceeding 1000 stb/d.
Although such significant high production rates were observed, drilling activities stopped in 2014 due
to the high cost of drilling and low price of oil. Previous studies estimated an unproven recoverable oil
of seven billion barrels [4], but the real production potential from TMS is still poorly understood. It is
of significance to assess the TMS well performance through production decline analysis and identify
key factors controlling the productivity of TMS wells.

Mathematical modeling plays an important role in analyzing well behavior and identifying
factors that affected well performance in the past. The available models for predicting shale oil well
long-term productivity include (1) analytical transient flow models [5–7], (2) numerical computer
models [8–10], and (3) empirical production decline models [11–15]. The analytical transient flow
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models are utilized in pressure transient test analysis rather than in production data analysis. Although
numerical computer models are flexible in handling systems with non-symmetrical fractures and
multiphase flow, applications of these models are limited owing to the low efficiency of their numerical
nature, especially the numerical treatment of local grid refinement near the fractures. Uncertainty in
locations of natural fractures is another concern regarding the accuracy of the computer simulation
result. The empirical production decline models were not derived based on engineering principles.
They are mainly utilized for evaluating field development projects on the basis curve fitting to the
production history data [16]. Besides, empirical production decline models are mostly applicable to
boundary-dominated flow conditions that are often the case for conventional reservoirs. Wells in
unconventional reservoirs are characterized by long-term transient flow owing to ultra-low reservoir
permeability [17,18]. These models are not suitable for evaluating the real potential and identifying
factors controlling the potential of TMS wells.

Hydraulic fracture conductivity plays an essential role in well performance [19–24]. It can
decline significantly during production owing to proppant embedment and blockage of debris [25,26].
Experimental investigations have indicated that hydraulic fracture conductivity declines logarithmically
or exponentially with time [27,28]. Sun et al. [28] demonstrated that the decrease in fracture conductivity
could reduce the production decline curve value and lead to a significant production drop. Production
decline analysis failing to take time-dependent fracture conductivity into account will lead to significant
errors in production prediction of multi-fractured wells in unconventional shale reservoirs.

Fracture conductivity declines exponentially in the Haynesville Shale, which is very close to
the TMS [29]. The decline in TMS is of particular concern because of the high level of clay materials
in TMS [2]. Clay minerals are water-sensitive, making the fracture face soft and vulnerable to the
embedment of fracture proppant, leading to a fracture conductivity drop due to partial closure of the
fracture. This study focuses on capturing the pressure-dependent decline rate of fracture conductivity
in TMS wells under the boundary-dominated flow conditions using production data. An analytical
well productivity model was developed in this study considering time-dependent fracture conductivity.
Case studies of seven TMS wells indicate that the production rates calculated by the analytical model
agree with field data very well. Production data analyses with the model revealed that fracture
conductivity in the TMS in the Mississippi section declines following a logarithmic mode.

2. Mathematical Model

An analytical model was developed in this work for capturing the decline of pressure-dependent
fracture conductivity of multi-fractured shale oil wells under boundary-dominated flow conditions.
The assumptions on the analytical model include the following,

1. The oil formation is isotropic.
2. Boundary-dominated flow has been reached within the fracture drainage area.
3. Linear flow prevails from the shale matrix to the fractures.
4. Fracture and formation damages are negligible.
5. No change in fluid composition during production.
6. Hydraulic fractures have the same geometry.
7. Reservoir pressure is above the bubble point pressure.

Derivation of the analytical model considering the pressure-dependent decline of fracture
conductivity is shown in Appendix A. The analytical model for predicting the productivity of
multi-fractured shale oil wells is,
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where qo is the oil production rate, nf is the number of hydraulic fractures, km is the matrix permeability,
h is the reservoir thickness, pi is the initial formation pressure, pw is the wellbore pressure, Bo is the oil
formation volume factor, µo is the oil viscosity, Sf is the hydraulic fracture spacing, xf is the fracture
half-length, αb is the Biot coefficient, ν is the Poisson’s ratio, Np is the cumulative oil production, Ni is
the original oil in place within the well drainage area, ct is the total compressibility, Cf0 is the initial
fracture conductivity, and cp is the compressibility of the proppant pack.

The analytical model for capturing time-dependent fracture conductivity of shale wells during
the boundary-dominate flow period is,

C f = C f 0e−3cp
ν

1−ν
αb
ct

ln (
Np
Ni

+1) (4)

where Cf is the fracture conductivity.
From Equation (4) we can see that fracture conductivity can be predicted if the cumulative oil

production data are known.

3. Flow Regime Diagnosis

3.1. Flow Regime Diagnosis Method

As stated earlier, the proposed model is only applicable to the wells that have reached the
boundary-dominated flow over the production time. Therefore, preliminary analysis of production
data should be performed to make sure that the candidate wells are in the boundary-dominated
flow regime.

Four flow regimes may exist in multi-fractured reservoirs: (1) early time reservoir linear flow
(transient flow), (2) mid-time boundary-dominated flow, (3) late time reservoir radial flow, and (4) very
late time bounded flow. For wells in shale plays the third and fourth flow regimes usually are
not seen due to the ultralow permeability of shale matrix. To fully understand the performance of
multi-fractured horizontal wells, we identify the first two flow regimes between fractures. Figure 1a
presents two fractures with an assumption of a virtual boundary between these two fractures. In the
transient flow period, pressure propagates outward from the fracture face without encountering the
virtual boundary. In the boundary-dominated flow period, the pressure transient has reached the
virtual boundary, and the static pressure is declining at the boundary, as shown in Figure 1b.Energies 2018, 11, x FOR PEER REVIEW  4 of 17 
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In this section, the log-log diagnostic plots of production rate versus real production time as
well as material balance time (MBT) are constructed to identify the flow regime of TMS wells. The
procedure for identifying the flow regime is as follows [30].

Construct the production rate versus real production time curve (i.e., PT curve) and production
rate versus material balance curve (i.e., MBT curve) on the same log-log plot. Then plot a tangent
line LMBT using the end of MBT curve. If the slope kMBT of the tangent line LMBT is close to −1, then
we have confidence that the boundary-dominated flow regime has been reached. If the slope kMBT
is greater than -1, one can move the line LMBT onto the PT curve and get an approximately tangent
point P. We draw another tangent line LPT using data between point P and the end of production
data. If the slope kPT of this line is less than or equal to −1, it is believed that the well has reached the
boundary-dominated regime, and the real production time corresponding to point P is the estimated
switching time from transient flow to the boundary-dominated flow. However, if it is difficult to draw
a tangent line LPT with slope kPT less than or equal to −1 owing to few points after point P, then one
failed to obtain the conclusion that the well has reached boundary-dominated flow.

3.2. TMS Well Description

The study area in Mississippi is presented in Figure 2. The shapes for Louisiana and Mississippi
counties were downloaded from the website (https://www2.census.gov). The production data as of
May 2018 were gathered from 55 TMS wells in Mississippi from the Alfred C. Moore, Pearl River, and
Henry Fields. These data were downloaded from the Mississippi Automated Resource Information
System (MARIS) website (www.maris.state.ms.us).

Quality control of the production data was performed to validate the compliance of the field
data with the assumptions used in the analysis. Those wells that had abrupt changes in monthly
oil production rate during the production history were removed. This helps minimize the influence
of changes in the production operations that would have a great effect on the production history.
Following this, seven TMS wells that had reached the boundary-dominated flow regime were analyzed.
Other wells could not be analyzed because of absence of a definite trend in the reported production
data, most likely dictated by the used production strategy for which no details are available.

It should be stated that other wells may also have reached the boundary-dominated flow regime.
However, we did not analyze these wells due to lack of completion data and also abrupt changes in
production data of these wells over time. Seven TMS wells used in this study are shown as blue dots in
Figure 2. The wells’ labels and their locations are listed in Table 1. Proppant has a major impact on
fracture conductivity. Unfortunately, the type of proppant used in these seven TMS wells could not be
identified due to the lack of completion data. The average fracture spacing can be estimated by using
the stages.

Table 1. TMS wells used in this study.

Well Label True Vertical Depth (ft) Effective Lateral Length (ft) Frac Stages

1 11,783 8442 29
2 12,598 6757 22
3 11,992 2923 10
4 11,489 6451 26
5 12,245 5601 24
6 12,016 6681 24
7 11,841 5681 25

https://www2.census.gov
www.maris.state.ms.us
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3.3. Flow Regimes of TMS Wells

Figure 3 shows the log-log diagnostic plot of the seven TMS wells. Well 1 has a horizontal length
of 9102 ft and an effective lateral length of 8442 ft with 29 stages, and each stage has four clusters. We
drew a tangent line of MBT curve and found that the production data at the end of material balance
time lies on the tangent line LMBT with a slope of −0.779. As kMBT is less than −1, the tangent line,
LMBT, was moved onto the PT curve, and it showed tangency to this curve. If we draw a tangent line
LPT using production data vs. real production time. The slope kPT is found to be −1.085, indicating a
typical behavior of boundary-dominated flow over 16 months of production.

Well 2 was drilled and completed with an effective lateral length of 6757 ft and a 22 stage hydraulic
fracturing operation. We can see from Figure 3b that the slopes of MBT curve (kMBT) and PT curve
(kPT) are −0.688 and −1.002, respectively, indicating that well 2 should be in the boundary-dominated
flow regime with an estimated switching time of 9.5 months.

Well 3 was drilled and completed with a 4,508 ft lateral and a ten stage hydraulic fracturing
operation. From this plot, we can see that kMBT and kPT are −0.845 and −1.295, respectively. Therefore,
we have confidence that well 3 switched from the transient flow to the boundary-dominated flow over
27 months of production. Figure 3c also shows that well 3 experienced a long-term transient flow for
over two years.

Well 4 has a true vertical depth of 11,489 ft and an effective lateral length of 6451 ft with 26 stages.
We can see from Figure 3d that well 4 has reached the boundary-dominated flow regime as the slope
kPT is less than −1. The estimated switching time from the transient flow to the boundary-dominated
flow is 12 months.

Well 5 has a true vertical depth of 12,245 ft and an effective lateral length of 5601 with 24 stages. It
can be seen from Figure 3e that the diagnostic plot that the slope kMBT and kPT are −0.733 and −1.123,
indicating a boundary-dominated flow regime.

Well 6 has a true vertical depth of 12,016 ft and an effective lateral length of 6,681 ft with 25 stages.
From the diagnostic plot Figure 3f, we can see that kMBT and kPT are −0.787 and −1.173, indicating it
reached the boundary-dominated flow regime in over 13 months of production.

The true vertical depth and effective lateral length of well 7 are 11,841 and 5681 ft, respectively.
Slope kMBT and kPT are found to be −0.714 and −0.988, respectively. As kPT is approximately close
to −1, well 7 should be in the boundary-dominated flow regime in over 13 months from its first
production month.
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4. Model Verification

4.1. Verification of the Model on Simulated Production Dataset

To verify the proposed model, we compared the model-predicted production rates with simulation
results calculated by COMSOL Multiphysics. Figure 4 shows the grid of the model. Fluid flow in the
half fracture (xf) and half spacing (0.5Sf) area is modeled for convenience. In this case, Darcy’s law in
the subsurface flow module was used to model fluid flow within the porous medium. The hydraulic
fracture was represented by a boundary layer with a thickness of 0.5 w (i.e., line AB). The decline
of fracture conductivity is modeled using equation (A3). The following assumptions were made in
this section: the fracture half-length was 300 ft, the fracture spacing was 60 ft, the initial reservoir
pressure was 6,200 psia, the bottom hole pressure was 4,000 psia (at point A), the fracture height
was 100 ft, the matrix permeability was 0.0002 md, the number of clusters was 120, the porosity
was 8%, the oil formation factor was 1.5 rb/stb, the oil viscosity was 0.5 cp. We compared six cases,
case 1: Cf0 = 2 md-ft, and cp = 0.0005 psia−1; case 2: Cf0 = 2 md-ft, and cp = 0.001 psia−1; case 3:
Cf0 = 5 md-ft, and cp = 0.0005 psia−1; case 4: Cf0 = 5 md-ft, and cp = 0.001 psia−1; case 5: Cf0 = 10 md-ft,
and cp = 0.0005 psia−1; case 6: Cf0 = 10 md-ft, and cp = 0.001 psia−1.
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If the predicted production rates match the simulation results, the variation of fracture
conductivity can be captured using the proposed analytical model based on the production data under
boundary-dominated flow conditions. R-square (R2) and average absolute relative error percentage
(AAREP) were utilized to estimate the proposed model. AAREP is defined as [31,32],

AAREP =

N∑
i=1

∣∣∣∣Oi−Ei
Oi

∣∣∣∣
N

× 100% (5)

where N is the number of data points; Oi is the observed data; Ei is the predicted data.
The fracture compressibility can be obtained by fitting the proposed model to the production

rate calculated by COMSOL. Figure 5 compares the oil production rate calculated by the proposed
model and that of COMSOL Multiphysics software. After 40 months of production, the fracture
conductivity was reduced by 53% and 69% for case 1 and case 2, respectively. The comparison between
the prescribed fracture conductivity and the predicted value is presented in Table 2. Besides, there is
good agreement between the prescribed fracture compressibility and the model-predicted value, with
relative differences of fracture compressibility of less than 10%.
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Table 2. Comparison between prescribed fracture conductivity and model-predicted value.

No.
Oil Production rate (stb/d) Fracture Compressibility (psia−1)

R2 AAREP COMSOL Proposed Model

Case 1 0.999 1.40% 0.0005 0.00055
Case 2 0.998 3.29% 0.0010 0.00092
Case 3 1.000 2.83% 0.0005 0.00054
Case 4 0.998 4.77% 0.0010 0.00094
Case 5 1.000 2.59% 0.0005 0.00058
Case 6 0.999 1.53% 0.0010 0.00094
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4.2. Analysis of TMS Well Data

Figure 6 shows the comparison of field data and predicted values for the seven TMS wells studied
in this paper. The calculated R2 and AAREP values are listed in Table 3. For example, well 1 produced
1072 barrels of oil equivalent per day during the first 30 days of production. Even though this well
produced considerable amounts of hydrocarbons, its production rate decreased to 120 stb/d over
16 months of production. After 16 months, the cumulative oil production was 148,762 bbl. The R2 and
AAREP are 0.925 and 10.38%, respectively. In general, relatively high R2 and low AAREP values were
observed, indicating a good agreement between the field data and predicted results.

Energies 2018, 11, x FOR PEER REVIEW  9 of 17 

 

 
Figure 6. Comparison of predicted and field data of TMS wells. 

Table 3. Calculated R2 and AAREP values for TMS wells. 

Well Label Fracture Compressibility (psia−1) R2 AAREP 
1 0.00052 0.925 10.38% 
2 0.00056 0.960 5.71% 
3 0.00053 0.937 8.97% 
4 0.00047 0.978 4.65% 
5 0.00048 0.990 3.09% 
6 0.00052 0.974 6.27% 
7 0.00049 0.988 3.76% 

5. Variation of Fracture Conductivity 

Figure 7 presents the variation of the predicted fracture conductivity with time for the seven 
TMS wells. The fitted fracture compressibility is listed in Table 3. The numerical method used to 
calculate the fracture conductivity is demonstrated in Appendix. The fracture conductivity changes 
over time owing to depletion of pressure in the hydraulic fractures. Previous studies found that time-
dependent fracture conductivity changes in logarithmic or exponential types [28]. It is evident from 
Figure 7 that the fracture conductivity for these TMS wells varies logarithmically with the production 
time. Take well 1 as an example. The fracture conductivity at the switching time is about 0.63 times 
its initial value, which gives an average decline rate of 27.3% per year in the transient flow period. 
The fracture conductivity was reduced by 52% over 65 months of production. We can see that the 
variation of fracture conductivity in the transient flow period is more significant than that in the 
boundary-dominated flow period. 

 
Figure 7. Variation of fracture conductivity with production time for different wells. 

Figure 6. Comparison of predicted and field data of TMS wells.



Energies 2019, 12, 1938 9 of 16

Table 3. Calculated R2 and AAREP values for TMS wells.

Well Label Fracture Compressibility (psia−1) R2 AAREP

1 0.00052 0.925 10.38%
2 0.00056 0.960 5.71%
3 0.00053 0.937 8.97%
4 0.00047 0.978 4.65%
5 0.00048 0.990 3.09%
6 0.00052 0.974 6.27%
7 0.00049 0.988 3.76%

5. Variation of Fracture Conductivity

Figure 7 presents the variation of the predicted fracture conductivity with time for the seven TMS
wells. The fitted fracture compressibility is listed in Table 3. The numerical method used to calculate
the fracture conductivity is demonstrated in Appendix A. The fracture conductivity changes over time
owing to depletion of pressure in the hydraulic fractures. Previous studies found that time-dependent
fracture conductivity changes in logarithmic or exponential types [28]. It is evident from Figure 7
that the fracture conductivity for these TMS wells varies logarithmically with the production time.
Take well 1 as an example. The fracture conductivity at the switching time is about 0.63 times its
initial value, which gives an average decline rate of 27.3% per year in the transient flow period.
The fracture conductivity was reduced by 52% over 65 months of production. We can see that the
variation of fracture conductivity in the transient flow period is more significant than that in the
boundary-dominated flow period.
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We also compared the time-dependent fracture conductivity with the empirical model expressed
by [28],

C f = C f 0[1− χ ln(1 + t)] (6)

where t is the production time in months, χ is the dimensionless coefficient describing the
time-dependent fracture conductivity.

Figure 8 shows the comparison of fracture conductivity of well 4 between our proposed model
and the empirical equation. A summary of R2 and AAREP values for the seven TMS wells is listed in
Table 4. From Figure 8 we can see that the empirical equation exhibits a linear trend on the semi-log
plot. Our proposed model predicts an S-type decline curve. The dimensionless coefficient χ has been
found in the range of 0.116~0.130 with an average of 0.123 for the seven wells. Very high values of R2

and extremely low AAREP values have been observed, indicating excellent goodness of fit between
our proposed model and the empirical equation.
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Table 4. Calculated R2 and AAREP values for TMS wells.

Well Label χ R2 AAREP

1 0.127 0.998 0.86%
2 0.130 0.999 0.71%
3 0.127 0.997 1.51%
4 0.122 0.997 0.60%
5 0.116 0.997 0.50%
6 0.123 0.995 1.07%
7 0.116 0.998 0.28%

6. Discussion

A mathematical model was developed in this study to capture the pressure-dependent decline
of fracture conductivity from production data. As stated previously, the newly proposed model is
suitable for wells with production in the boundary-dominated flow period. It has been recognized
that the production rate declines with material balance time with slopes of −1/2 and −1 during the
linear flow and boundary-dominated flow periods, respectively, in the log-log plot when there is
no skin effect [33]. Many multi-fractured horizontal wells producing from shale reservoirs have
been reported to experience a long-term linear flow (transient flow) period. The presence of decline
of fracture conductivity and formation damage is usually interpreted as skin factor, which may
change the shape of the diagnostic plot [22]. Nobakht and Mattar [34] stated that the linear flow is
no longer a straight line with a slope of −1/2 other than the late-time data. They suggested using
the square-root-of-time plot to identify the linear flow. Sun et al. [28] investigated the influence of
time-dependent fracture conductivity on the production decline curves. Their study indicated that
both formation damage and time-dependent fracture conductivity could not delay the time that the
reservoir entered the boundary-dominated flow. Their influences on production decline are mainly
seen at the early stage. Therefore, the log-log diagnostic method proposed by Zhou et al. [30] was used
to identify the boundary-dominated flow regime rather than the linear flow regime in the present study.
The log-log diagnostic approach is an effective method to avoid misinterpretation and to estimate the
switching point.

The switching time from the transient flow to the boundary-dominated flow can also be estimated
using the concept of radius-of-investigation [35],

tel f =
1252φµoct

(
S f /2

)2

km
(7)
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where telf is the switching time in hours, φ is the porosity, ct is the total compressibility in psia−1.
From Equation (7) we can see that the switching time is highly related to the fracture spacing and

the matrix permeability. A decrease in fracture spacing will reduce the switching time, provided that
the matrix permeability is held constant. As the matrix permeability decreases, the expected switching
time increases. Therefore, the long-term transient flow period may be attributed to either the ultralow
permeability of the TMS or large fracture spacing.

Besides, it is assumed that the matrix permeability is constant. Besov et al. [2] hold the opinion
that the TMS is different from other shale reservoirs because its pores cannot store hydrocarbons. Their
experiments showed that the porosity of TMS formation is contained within its inorganic pores. They
also indicated that hydrocarbons are more likely to be stored and produced from microfractures of
TMS. It is well known that the permeability of microfractures exhibits stress sensitivity, which may
delay the switching time from the transient flow to the boundary-dominated flow [28]. To simulate the
fluid transport capacity of fractures during the whole life of hydrocarbon production where formation
pressure declines and thus effective stress increases, the variation of microfracture permeability values
need to be predicted. Our future work will focus on the conductivity of natural fracture and its
influence on the production decline behavior of TMS.

Another limitation in our current study is that the proposed model can only estimate the
pressure-dependent decline of fracture conductivity in the boundary-dominated flow period. Equation
(A3) was developed for fractures filled with different materials such as clay (relatively mechanically
unstable) and silica (mechanically stable). In the present study, we modified this equation to predict
the conductivity of propped fractures. It is understood that hydraulic fracture conductivity is highly
related to the closure stress, formation hardness, and proppant properties, etc. Once pumping is
stopped, the fracture conductivity diminishes owing to proppant pack compaction and embedment of
proppant particles during the production stage [22]. This means the compressibility of the proppant
pack defined in equation (4) may change with production. In this case, the following equation can be
used to describe the variation of the compressibility of the proppant pack [36],

cp =
cp0

α(σe − σe0)

[
1− e−α(σe−σe0)

]
(8)

where α is the decline rate of the propped fracture compressibility with increased effective stress, cp0 is
the initial compressibility of the proppant pack, σe is the effective stress, σe0 is the initial effective stress.

As we stated in Appendix A, the propped fracture compressibility is assumed to be constant to
simplify the solution. Results observed from the current study will be checked and further improved.

7. Conclusions

An analytical model was developed for capturing the pressure-dependent decline of fracture
conductivity in the TMS fields from production data. The following conclusions are drawn:

(1) The log-log diagnostic approach was used to identify the boundary-dominated flow regime of
seven TMS wells. The results indicated that these seven wells exhibited a long-term transient
flow period.

(2) The R-square and AAREP were utilized in this study to estimate the performance of the proposed
analytical well productivity model considering time-dependent fracture conductivity. The results
indicated that the proposed model allows approximation of the real production data of the project
wells in TMS formation with good accuracy.

(3) The proposed fracture conductivity model was verified against simulated production data for a
wide range of fracture conductivities/compressibilities. The results indicated that the predicted
fracture compressibilities agree well with the prescribed values, with relative differences of
fracture compressibility that were less than 10%.
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(4) The revealed average fracture conductivity decreases over time in the range of 100%-48% of
the initial fracture conductivity. The pressure-dependent decline of fracture conductivity can
be approximated using a logarithmic function given by equation (6) with the dimensionless
coefficient χ varying between 0.116 and 0.130.
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X.Z.; Writing – original draft, X.Y.
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Nomenclature

A constant defined by Equation (1)
AAREP average absolute relative error percentage
Bo oil formation factor, rb/stb
c defined by Equation (1)
c1 defined by Equation (A12)
c2 defined by Equation (A14)
Cf fracture conductivity, md-ft
Cf0 initial fracture conductivity, md-ft
cp compressibility of the proppant pack, psia−1

cp0 initial compressibility of the proppant pack, psia−1

ct total reservoir compressibility, psia−1

Ei model-predicted production rate, stb/d
h fracture height, ft
kf fracture permeability, md
kf0 initial fracture permeability, md
km matrix permeability, md
N number of production data points
nf number of hydraulic fractures
Ni initial oil in place in the drainage area of the well, stb
Np cumulative oil production from the well, stb
Np1 cumulative oil production at point 1, stb
Np2 cumulative oil production at point 2, stb
Oi observed production rate, stb/d
pi initial reservoir pressure, psia
p average formation pressure, psia
pw wellbore pressure, psia
qo oil production rate, stb/d
qo1 oil production rate at point 1, stb/d
qo2 oil production rate at point 2, stb/d
Sf fracture spacing, ft
telf time at the end of transient flow, hour
w fracture width, inch
xf fracture half-length, ft
αb Biot coefficient
µo oil viscosity, cp
σe effective stress, psi
σe0 initial effective stress, psi
φ matrix porosity
α decline rate of the propped fracture compressibility, psia−1

ν Poison’s ratio
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Appendix A. Derivation of Productivity Model with Pressure-Dependent Fracture Conductivity

This section provides the derivation of an analytical model to capture the pressure-dependent decline
of fracture conductivity from production data. Li et al. [35] proposed an analytical model for predicting the
productivity of multi-fractured shale oil wells. The following assumptions are made,

1. The oil formation is isotropic.
2. Boundary-dominated flow has been reached within the fracture drainage area.
3. Linear flow prevails from the shale matrix to the fractures.
4. Fracture and formation damages are negligible.
5. No change in fluid composition during production.
6. Hydraulic fractures have the same geometry.
7. Reservoir pressure is above the bubble point pressure.

As stated by Li et al. [35], it is not always valid to make the sixth assumption. However, it is acceptable for
developing a simple analytical model. The oil production rate is [35],

qo =
5.91× 10−3n f kmh(p− pw)

BoµoS f
√

c
[

1
1−e−

√
cx f
−

1
3x f
√

c

] (A1)

where

c =
96km

k f wS f
(A2)

where p is the average formation pressure, kf is hydraulic fracture permeability, and w is the average fracture width.
It is generally believed that fracture conductivity plays an essential role in well performance. In the present

study, we take the pressure-dependent decline of fracture into account. Chen et al. [36] developed a model to
predict the conductivity of fractures filled with some porous materials such as carbonate and silica. It is assumed
that the fracture conductivity of the propped fracture (kf·w) can also be described by the following equation [36],

C f = C f 0e3cp
ν

1−ναb(p−pi) (A3)

To simplify the model, it is assumed that the compressibility of the proppant pack is constant [37]. Substituting
Equation (A3) into Equation (A2) gives,

c =
96km

S f C f 0
e−3cp

ν
1−ναb(p−pi) (A4)

Under the condition that reservoir pressure is above the bubble point pressure, based on the material
balance equation,

Np

Ni
= ect(pi−p)

− 1 (A5)

The average reservoir pressure is expressed as,

p = pi −
1
ct

ln
(

Np

Ni
+ 1

)
(A6)

Substituting Equation (A6) into Equations (A1) and (A4) yields,

qo =
5.91× 10−3n f kmh

(
pi − pw −

1
ct

ln
(

Np
Ni

+ 1
))

BoµoS f
√

c
[

1
1−e−

√
cx f
−

1
3x f
√

c

] (A7)

c =
96km

S f C f 0
e3cp

ν
1−ν

αb
ct

ln (
Np
Ni

+1) (A8)

Equation (A7) is simplified as,

qo = A

[
pi − pw −

1
ct

ln
(

Np
Ni

+ 1
)]

√
c
[

1
1−e−

√
cx f
−

1
3x f
√

c

] (A9)
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where

A =
5.91× 10−3n f kmh

BoµoS f
(A10)

To determine the values of cp in Equation (A8) and A in Equation (A9) using production data, select two
points in the trend where,

qo1 = A

[
pi − pw −

1
ct

ln
(

Np1

Ni
+ 1

)]
√

c1

[
1

1−e−
√c1x f
−

1
3x f
√

c1

] (A11)

where

c1 =
96km

S f C f 0
e3cp

ν
1−ν

αb
ct

ln (
Np1
Ni

+1) (A12)

and

qo2 = A

[
pi − pw −

1
ct

ln
(

Np2

Ni
+ 1

)]
√

c2

[
1

1−e−
√c2x f
−

1
3x f
√

c2

] (A13)

where

c2 =
96km

S f C f 0
e3cp

ν
1−ν

αb
ct

ln (
Np2
Ni

+1) (A14)

Solving Equations (A11) and (A13), one can get the values of cp and A. Then the variation of fracture
conductivity during production can be determined by substituting Equation (A6) into Equation (A3),

C f = C f 0e−3cp
ν

1−ν
αb
ct

ln (
Np
Ni

+1) (A15)

If desired, Equation (A9) can be used for predicting future production. The procedure is outlined as follows,

1. Tabulate a column of qo values from the present oil production rate to the abandonment oil production rate.
2. Use a numerical algorithm to solve Equation (A9) for a column of Np values.
3. Construct columns of Np.
4. Construct a column of t by dividing Np by qo.
5. Construct a column of t based on t =

∑
∆t.

6. Plot qo versus t columns for a future production curve.
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