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Abstract: The oil jet lubrication performance of a high-speed and heavy-load gear drive is significantly
influenced and determined by the oil jet nozzle layout, as there is extremely limited meshing clearance
for the impinging oil stream and an inevitable blocking effect by the rotating gears. A novel
mathematical model for calculating the impingement depth of lubrication oil jetting on an orthogonal
face gear surface has been developed based on meshing face gear theory and the oil jet lubrication
process, and this model contains comprehensive design parameters for the jet nozzle layout and face
gear pair. Computational fluid dynamic (CFD) numerical simulations for the oil jet lubrication of an
orthogonal face gear pair under different nozzle layout parameters show that a greater mathematically
calculated jet impingement depth results in a greater oil volume fraction and oil pressure distribution.
The influences of the jet nozzle layout parameters on the lubrication performance have been
analyzed and optimized. The relationship between the measured tooth surface temperature from the
experiments and the corresponding calculated impingement depth shows that a lower temperature
appears in a situation with a greater impingement depth. Good agreement between the mathematical
model with the numerical simulation and the experiment validates the effectiveness and accuracy of
the method for evaluating the face gear oil jet lubrication performance when using the impingement
depth mathematical model.

Keywords: orthogonal face gear; oil jet lubrication; impingement depth mathematical model;
numerical simulation; optimal nozzle layout; tooth surface temperature

1. Introduction

Large amounts of energy will be lost in overcoming the internal friction between the meshing
gears, and this will seriously reduce the mechanical efficiency and performance of the transmission
system, especially for aeronautical gears under high-speed and heavy-load operation conditions. Face
gear drives are a new type of transmission in which the involute cylindrical gear meshes with the
face gear. Face gear drives have been widely used in aeronautical transmission systems, as they offer
the advantages of a large contact ratio, good power splitting effect, compact structure, insensitivity
to installation errors, etc. [1–4]. Due to the high-speed and heavy-load conditions in aeronautical
transmission applications, as well as the space limitations for installation and working, face gear drives
will inevitably produce a large amount of heat and result in energy loss. An effective way to solve
these problems is to lubricate the face gear drivers with an oil jet. If the lubrication is insufficient,
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gear meshing will occur under starved or even dry operation and ultimately lead to tooth surface
scuffing, pitting and failure damage. Therefore, it is of great importance to investigate the lubrication
performance of face gear drives and optimize the jet nozzle layout.

Currently, three primary methods have been developed to investigate the oil jet lubrication
performance of transmission gears. One method is to use numerical simulations or experiments.
For example, hydrodynamic models of spur gears were established to investigate the variation of oil
volume and pressure through CFD simulation to optimize the jet parameters [5,6]. High-speed infrared
testers and infrared sensors have been adopted to measure the instantaneous tooth temperature to study
the influence of the speed, load and jet location on the lubrication performance [7,8]. Ouyang et al. [9]
proposed a novel model of a spur gear pair based on friction dynamics theory and studied the
lubrication performance in the high-speed condition by CFD simulation. Massini et al. [10] exploited a
novel rotating test rig to analyze oil jet lubrication through high-speed visualizations. Zhao et al. [11]
proposed a simplified model based on CFD method for investigating the ripple source of gear pumps.
Moreover, to analyze the transient temperature behavior of spiral bevel gears, Gan et al. [12] proposed
a method combining the mixed elastohydrodynamic lubrication with the finite element method
and conducted the thermal analysis using the CFD method. Another method is to calculate the oil
film thickness and film pressure based on a theoretical equation. For example, Poulios et al. [13]
used a quadratic B-spline basis function to obtain a more accurate oil film thickness and pressure
field. Furthermore, Wang et al. [14] established formulas for the contact path of the face gear
loaded tooth contact analysis (LTCA) and the dimensionless face gear isothermal elastohydrodynamic
lubrication (EHL) to obtain the variation in the lubricating oil film thickness and oil film pressure.
Following Wang’s work, Liu et al. [15] established a comprehensive mechanical efficiency model of a
helical gear pair and evaluated the tribological performance in terms of the average film thickness,
the friction coefficient, the mechanical power loss, etc. A deterministic model combining contact
mechanics with pure extrusion lubrication was established by Xu et al. [16], so as to investigate the
extrusion effect of the oil film under the transient boundary lubrication condition. Ahmed et al. [17]
presented an automatic locally adaptive finite element solver for fully coupled EHL point contact
problems to significantly improve the accuracy of the elastic deformation solution. A calculating
model for the full tooth surface flash temperature distribution for face gear drives was established to
optimize the anti-scuffing tooth modification schedule for face gear drives based on the Blok flash
temperature formula [18], and this model improved the anti-scuffing capacity of face gear drives.
Thiagarajan et al. [19] proposed a mixed-thermoelastohydrodynamic (TEHD) model for investigating
the effects of surface roughness, fluid structure and thermal interaction on the mixed lubrication in
the regions of low film thickness. The final method is to analyze the impingement characteristic of
lubricating oil on the tooth surface. Previous research on this aspect is as follows, but only spur and
helical gears were studied: Akin et al. [20,21] deduced the formulas for the oil jet impingement depth
on spur and helical gears and studied the influence of the offset distance, jet angle and jet velocity on
the impingement depth. Ambrose et al. [22] used the lattice Boltzmann method (LBM) to study the oil
impingement on a spur gear and analyzed the effect of the oil feed delivery rate on the spreading of
the oil jet on the tooth and the splashing profiles.

However, as far as the relevant studies are concerned, it could take a long time to analyze and
evaluate the oil jet lubrication performance of gears using CFD simulations or experiments. There are
still a few assumptions in solving the equations of the oil film thickness and pressure, so the results are
not accurate enough. In addition, until now, only the oil jet impingement depth on the tooth surface of
the spur or helical gear pair has been studied. Furthermore, there are relatively few studies on the
influence of the jet nozzle layout parameters on the lubrication performance and the optimization of
the nozzle layout. Therefore, first, a novel mathematical model for the impingement depth calculation
for the orthogonal face gear is established based on face gear meshing theory [23], the involute function
of the spur gear [24], and the spatial positional relationship of the face gear tooth surface. Subsequently,
the oil volume fraction and oil pressure are obtained by CFD simulation to validate the effectiveness
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and accuracy of the mathematical model. Furthermore, the influence of the nozzle layout parameters
on the impingement depth and lubrication performance is analyzed to optimize the nozzle layout.
Finally, the steady-state temperature of the gear tooth surface is measured experimentally to analyze the
relationship between the impingement depth and the tooth surface temperature. The experiments can
also validate the impingement depth mathematical model and provide a method and technique for oil
jet lubrication performance evaluation and optimization for various face gears in practical applications.

2. Mathematical Model

The oil jet impingement depth for the face gear is defined as the linear distance from the
impingement point on the tooth surface to the gear addendum, as shown in Figure 1.
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Figure 1. Definition of the oil jet impingement depth for an orthogonal face gear.

The derivation steps for the mathematical model of the impingement depth are as follows:

1. Based on the meshing theory of a face gear, the space coordinate system of the orthogonal face
gear is defined.

2. The initial position parameters (t0 = 0) of the pinion and the face gear have been established
separately using an involute function of the spur gear and the spatial position of the face gear
tooth surface. After a period of time (t1 = t), the geometrical positions of the face gear pair and jet
stream are calculated.

3. Since the meshing time of face gear is equal to the time of jet stream reaching the tooth
surface, the impingement depth on the pinion and the face gear can be obtained by solving the
simultaneous equations.

2.1. Definitions of Nozzle Layout Parameters

For the orthogonal face gear drive, the tooth contact type is point contact, and the meshing process
can be regarded as the involute spur gear meshing with the rack at different shaft cross sections [25].
The space coordinate system is set up as shown in Figure 2. At this time, there is a circle on the pinion
pitch cylinder rolling purely with a circle along the direction of the face gear radius. Point O0 is the
gear coordinate origin, representing the center of the gear-locating surface. The x-axis represents the
intersection line between the symmetry surface and the locating surface of the face gear. The z-axis
represents the axis of the face gear. The y-axis can be determined by the right-hand rule. Point O
represents the intersection point of the face gear axis and the pinion axis. Furthermore, points Op and
Og represent the centers of the surfaces through impingement points and perpendicular to the pinion
axis and the face gear axis, respectively.

As shown, the impingement depth is directly relevant to the jet orientation parameters xH, yL, zV ,θ
and φ. xH, yL, zV denote the nozzle exit position; the parameter θ denotes the angle between the jet
stream and the z-axis, which is always restricted to π/2 ≤ θ ≤ π/2, and the parameter φ denotes the
angle between the jet stream projection line on the xOgy plane and the x-axis. Since the pinion is an
involute spur gear with a symmetrical structure, this paper focuses on the case that the jet stream is
parallel to the pinion shaft cross section, that is φ = π/2. Additionally, Σ denotes the shaft angle of the
face gear pair, and Ag is the distance from the pinion axis to the xO0y plane.



Energies 2019, 12, 1935 4 of 23

Energies 2019, 12, x FOR PEER REVIEW 4 of 26 

 

Vz 



pO

x

yHx

Ly

0O

gO
z gA



'p
O

p

g

O

pO

gO

 128 

Figure 2. Description of nozzle layout position and orientation parameters for the orthogonal face gear. 129 

As shown, the impingement depth is directly relevant to the jet orientation parameters 130 
, , ,H L Vx y z θ  and  . , ,H L Vx y z  denote the nozzle exit position; the parameter   denotes the angle 131 

between the jet stream and the z-axis, which is always restricted to  / 2 / 2π θ π , and the 132 

parameter   denotes the angle between the jet stream projection line on the gxO y  plane and the 133 
x-axis. Since the pinion is an involute spur gear with a symmetrical structure, this paper focuses on 134 

the case that the jet stream is parallel to the pinion shaft cross section, that is   / 2π . Additionally, 135 

  denotes the shaft angle of the face gear pair, and gA
 is the distance from the pinion axis to the 136 

0xO y  plane. 137 

2.2. Mathematical Model for the Pinion 138 

The oil jet orientation parameters , , ,H L Vx y z θ  are known initially, and the distance gA
 and 139 

the oil jet velocity jV
 are also given. Thus, the process for calculating the impingement depth of the 140 

pinion is as follows.  141 
At the initial moment (t0 = 0): the position parameters of the face gear pair and the jet stream are 142 

as illustrated in Figure 3. 143 

O

z
gO

0O
y

x

jV

pO

1g

r
zr

1pinv

'1
*

2
sin

2
L

p p ap p

y

m N h m




1p

aR


 144 

Figure 3. Illustration of the impingement depth on the pinion (t0 = 0). 145 

Figure 2. Description of nozzle layout position and orientation parameters for the orthogonal face gear.

2.2. Mathematical Model for the Pinion

The oil jet orientation parameters xH, yL, zV ,θ are known initially, and the distance Ag and the oil
jet velocity V j are also given. Thus, the process for calculating the impingement depth of the pinion is
as follows.

At the initial moment (t0 = 0): the position parameters of the face gear pair and the jet stream are
as illustrated in Figure 3.
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According to Figure 3, the projection length of the line from the point Og to the face gear addendum
on the surface Og can be expressed as

R′a
2 =

[
xH − (zV − zV′) tan(π− θ) sin

(
π
2
−φ

)]2
+

[
yL − (zV − zV′) tan(π− θ) cos

(
π
2
−φ

)]2
(1)

Substituting the parameter φ = π/2, Equation (1) can be written as

R′a =
√
(xH)

2 + [yL + (zV − zV′) tanθ]2 (2)

where zV′ denotes the z coordinate value of the point where the jet stream passes through the face gear
addendum. Let H be the distance from the face gear addendum to the xO0y plane; thus,

zV′ = H (3)
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It is known that the jet streamline is parallel to the pinion shaft cross-section; that is, the jet stream
is perpendicular to the x-axis. According to Figure 3, the projections of the jet stream on the surface Og

and surface Op are demonstrated in Figure 4a,b. Furthermore, in Figure 4b, the perpendicular line of
the projection line is drawn through the point Op, and the length of the perpendicular line is rα.
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According to the geometric relationship in Figure 4a, the following equation is obtained:

R′a =
√
(xH)

2 + (yL′)
2 (4)

Equations (2), (3) and (4) can be rewritten in a combined form:
xH′ = xH

yL′ = yL + (zV − zV′) tanθ
zV′ = H

(5)

where xH′ and yL′ represent the x and y coordinate values of the point where the jet stream passes
through the face gear addendum, respectively.

The following equations can be obtained from Figure 4b:

rα = rz cosλ (6)

λ = θ−
π
2

(7)

L = zV tan(π− θ) (8)

Ag = rz + (L− yL) tanλ (9)

By solving Equations (6), (7), (8) and (9), rα and rz can be expressed as

rz = Ag − zV − yL cotθ (10)

rα = Ag sinθ− zV sinθ− yL cosθ (11)

where rz denotes the distance from the intersection point of the jet stream with line OpO′0 to the point
Op; λ denotes the angle between the line rz and the line rα.

θp1 and θg1 represent the position parameters of the pinion and the face gear at the initial time
(t0 = 0), and their relationship can be deduced by the rotation angle relationship between the face gear
and the gear shaper cutter during the machining process. The rotation angles ϕg and ϕs of the face
gear and the gear shaper cutter satisfy the transmission ratio [26]:



Energies 2019, 12, 1935 6 of 23

ϕg

ϕs
=

Ns

Ng
(12)

where Ns and Ng denote the numbers of teeth on the shaper and the face gear, respectively.
To avoid the interference between the shaper cutter and the edge of the face gear, the face gear

drive is changed from an instantaneous line contact to a point contact drive. In this case, the number of
teeth on the pinion will be 1–3 teeth less than on the gear shaper cutter [27–29].

Ns = Np + (1 ∼ 3) (13)

Figure 5 illustrates an imaginary internal tangency of the shaper cutter and the pinion [30,31].

Energies 2019, 12, x FOR PEER REVIEW 6 of 26 

 

The following equations can be obtained from Figure 4b: 161 

 cosα zr r λ  (6) 

2
 

πλ θ
 

(7) 

  tanVL z π θ
 (8) 

    tang z LA r L y λ
 (9) 

By solving Equations (6), (7), (8) and (9), αr  and zr  can be expressed as 162 

   cotz g V Lr A z y
 (10) 

  sin sin cosα g V Lr A θ z θ y θ
 (11) 

where zr denotes the distance from the intersection point of the jet stream with line 

0pO O

 to the 163 

point pO
; λ denotes the angle between the line zr  and the line αr . 164 

1pθ
 and 1gθ

 represent the position parameters of the pinion and the face gear at the initial time ( 165 
0 0t ), and their relationship can be deduced by the rotation angle relationship between the face 166 

gear and the gear shaper cutter during the machining process. The rotation angles gφ
 and sφ  of 167 

the face gear and the gear shaper cutter satisfy the transmission ratio [26]: 168 

g s

s g

φ N
φ N

 
(12) 

where sN  and gN
 denote the numbers of teeth on the shaper and the face gear, respectively. 169 

To avoid the interference between the shaper cutter and the edge of the face gear, the face gear 170 
drive is changed from an instantaneous line contact to a point contact drive. In this case, the number 171 
of teeth on the pinion will be 1–3 teeth less than on the gear shaper cutter [27–29]. 172 

 1 3  ~s pN N
 (13) 

Figure 5 illustrates an imaginary internal tangency of the shaper cutter and the pinion [30,31]. 173 

pO sO

 174 

Figure 5. Tooth profiles of the pinion and the shaper cutter. 175 Figure 5. Tooth profiles of the pinion and the shaper cutter.

Op and Os denote the centers of the pinion and the shaper cutter shaft sections, respectively.
Their rotation angles satisfy the following equation:

ϕp

ϕs
=

Ns

Np
(14)

Combining Equation (12) with Equation (14), the relationship between the rotation angle ϕp of the
pinion and ϕg of the face gear can be expressed as:

ϕp

ϕg
=

Ng

Np
(15)

According to Figure 3 and Equation (15), the initial position parameter θp1 of the pinion is
expressed by

θp1 =
Ng

Ns
θg1 + invαp1 − λ (16)

where invαp1 is the involute function of the spur gear, representing the spread angle at the intersection
point between the pinion pitch circle and the involute; and the pressure angle αp1 on pitch circle of the
pinion is expressed as

invαp1 = tanαp1 − αp1 (17)

Obviously, from Figure 4, the initial position parameter θg1 of the face gear is

θg1 = tan−1 yL′

xH
(18)

At the moment (t1 = t), the position parameters of the face gear pair and the jet stream are
illustrated in Figure 6.
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As the flowing time of the jet steam is equal to the rotation time of the pinion, which is rotating
from the angle θp1 at the initial time t0 to the angle θp2 at time t1, the impingement depth dp can be
calculated as

(r′a − dp)
2 = Lp

2 + rα2 (19)

where
r′a =

1
2

Npmp + hap (20)

where Lp represents the impingement distance, and r′a represents the addendum radius of the pinion.

θp2 − θp1

ωp
=

∆h
V j

(21)

where ωp is the angular velocity of the pinion.
As can be seen in Figure 6, the position parameter of the pinion at t1 = t is

θp2 = tan−1 Lp

ra
+ invαp2 (22)

where invαp2 is the involute function of the spur gear, denoting the spread angle at the impingement
point M of the involute shown in Figure 7; αp2 denotes the pressure angle at the impingement point on
the volute. Their relationship can be obtained by

invαp2 = tanαp2 − αp2 (23)
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The following equations can be obtained from Figures 6 and 7:

αp2 = cos−1(rb/ri) (24)

ri = (Lp
2 + rα2)

1/2
(25)

where ri denotes the radius of the pinion at the impingement point, and rb denotes the base circle
radius of the pinion.

Equation (21) can be rewritten as

∆h =
V j(θp2 − θp2)

ωp
(26)

Figure 8 illustrates the projection of the jet stream on the surface Op; according to the geometric
relationship, the following equation can be obtained:

yL

cosλ
=

zV − zV′

sinλ
+ ∆h′ + Lp + rz sinλ (27)
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This can be simplified by substituting Equation (7) into Equation (27):

Lp =
yL

sinθ
+

zV − z′V
cosθ

− ∆h′ + rz cosθ (28)

where ∆h′ denotes to the projection of ∆h on the surface Op. Hence, the relationship between ∆h′ and
∆h is

∆h′ = ∆h (29)

Moreover, Equation (19) can be reformulated as

dp = r′a −
(
Lp

2 + rα2
)1/2

(30)

By substituting Equations (3), (10), (11), (20) and (26) into Equations (28) and (29), the mathematical
model of the impingement depth on the pinion can be established as follows:

dp =
1
2

Npmp + hap −

√
Lp2 +

[
Ag sinθ− zV sinθ− yL cosθ

]2
(31)

where

Lp =
yL

sinθ
+

zV −H
cosθ

−

V j
(
θp2 − θp1

)
ωp

+
[
Ag − zV − yL cotθ

]
cosθ (32)
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2.3. Mathematical Model for the Face Gear

The deduction process of the mathematical model of impingement depth for the face gear is
approximately the same as that for the pinion; therefore, only the main derivation steps are presented
in this paper. The position parameters of the face gear pair and the jet stream at the initial moment
(t0 = 0 ) and the moment (t1 = t) are as illustrated in Figure 9a,b, respectively.
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Additionally, projections of the jet stream on different surfaces at different moments are shown in
Figure 10.
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Figure 10. Projections of the jet stream (a) on the surface Op at t0 = 0, (b) on the surface Og at t0 = 0,
and (c) on the surface Og at t1 = t.

Similarly, the position parameters of the pinion and the face gear at the initial time (t0 = 0) and the
face gear at the moment (t1 = t) are denoted by θp4, θg2 and θg3, respectively, which can be calculated
using the following expressions

θp4 = cos−1
(AG −Z′V

r′a

)
− invαak4 + invαk4 (33)

θg2 = θp4
Np

Ng
(34)

θg3 = tan−1 Lg

XH
(35)

where Ag denotes the distance from the pinion axis to the xO0y plane; Z′V denotes the z coordinate
value of the point where the jet stream passes through the pinion addendum; αak4 and αk4 denote the
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pressure angles at the intersection point of the addendum circle and the pitch circle with the involute,
respectively; Lg denotes the impingement distance; and X, Y, Z,θ′, φ′ are the jet orientation parameters.

According to the definition of the impingement depth, there is an angle between the line from
the impingement point to the face gear addendum and the z-axis. The impingement depth on the
face gear is assumed to be equal to its projection on the surface Og. Hence, similar to Equation (19),
the impingement depth dg on the face gear can be calculated as[

Ri +

∣∣∣∣∣∣ XH

cosθg3
−Ri

∣∣∣∣∣∣
]2

=
(
Lg − dg

)2
+ XH

2 (36)

where Ri is the inner radius of the face gear, Lg is the impingement distance, which satisfies the
expression Lg = YL −

(
ZV −Z′V

)
tanθ′ −∆h′, while ∆h′ is defined as ∆h′ = ∆h sin(π− θ′), which is the

projection of ∆h on the surface Og, as shown in Figure 10a,c.
Therefore, the mathematical model of the impingement depth dg on the face gear can be

established as

dg = Lg −

√[
Ri +

∣∣∣∣∣√Lg2 + XH2 −Ri

∣∣∣∣∣]2
−XH2 (37)

where

Lg = YL +
(
ZV −Z′V

)
tanθ′ −

V j
(
θg3 − θg2

)
ωg

sinθ′ (38)

where V j denotes the jet velocity; ωg denotes the angular velocity of the face gear.

3. CFD Numerical Simulations

In the case of the given parameters, such as the gear structures, parameters and working conditions,
the oil jet lubrication performance can be judged by the oil volume fraction and oil pressure distribution
in the meshing area [32–34], and a greater oil volume fraction and pressure is commonly recognized
as providing better jet lubrication performance. The Fluent program based on the CFD method was
adopted to simulate the distribution of oil-air, two-phase flow in the meshing area.

3.1. CFD Model and Main Settings

For the face gear drive, the generated heat distribution to the pinion is more than the heat
distributed to the face gear at the same time; furthermore, the heat transfer coefficient of the pinion is
less than that of the face gear, so the pinion is more prone to damage during the meshing process. Hence,
this paper focuses on the jet lubrication performance of the pinion. The separation method [35,36] is
used to moderately increase the distance between the pinion and the face gear. The parameters of the
face gear pair are listed in Table 1.

Table 1. Main parameters of the face gear pair.

Parameters Values

Teeth number of the pinion 17
Teeth number of the face gear 51

Module (mm) 2.5
Pressure angle (◦) 25

Shaft angle (◦) 90
Inner radius of the face gear (mm) 64.0
Outer radius of the face gear (mm) 82.0
Rotation rate of the pinion (r/min) 3000

Rotation rate of the face gear (r/min) 1000
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To ensure the reliability and accuracy of the transient simulation results, grid independence tests
were preferentially performed. The distributions of the oil volume fraction and oil pressure at 0.005 s
on a specific plane parallel to the coordinate plane xOz were taken for the grid independence tests.
Table 2 lists the number of mesh elements in six cases. In the simulations, the number of the mesh
elements was ensured as the only independent variable. As seen from simulation results illustrated
in Figure 11, the trends of the oil pressure and the oil volume fraction become insignificant with the
increasing number of mesh elements. When the mesh elements reach Case 4, the oil pressure and oil
volume fraction can be considered to be stable. Therefore, the total mesh elements in all subsequent
simulations were controlled at approximately 3.2 million.

Table 2. Six cases of the mesh elements.

Case Mesh Elements of the
Gear Body

Mesh Elements of the
Fluid Domain Total Mesh Elements

1 270,556 553,844 824,400
2 406,277 785,481 1,191,758
3 884,096 1,402,760 2,286,856
4 1,190,696 1,909,611 3,100,307
5 1,645,237 2,441,267 4,086,504
6 2,190,696 3,016,876 5,207,572
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volume fraction.

According to the grid independence test results, the computation domain was divided into
tetrahedral meshes with approximately 3.2 million mesh elements, where the defeature size and
curvature size of the engaged teeth were 0.1 mm and 0.4 mm, respectively. Figure 12 presents the final
mesh model, where the maximum skewness and the mesh quality are 0.842 and 0.283, respectively.
During the progress of oil jet lubrication, the fluid in the gearbox changes from the initially only air into
oil-air, two-phase mixture flow. The viscosity and density of the lubrication oil are set as 1.98 mm2/s
and 959.4 kg/m3, respectively.

It is known that the two-phase flow distribution is time-varying, so the pressure-solver and
transient-state were adopted in the paper. The VOF multiphase flow model was applied to simulate
the oil-air flow in the meshing area [37,38]. Considering the swirling effects generated by high-speed
rotating gears, the RNG k − ε turbulence model with higher precision was used. The lower circular
surface of the nozzle was set as the velocity inlet, and the velocity and hydraulic diameter were
set to 50 m/s and 0.0014 m, respectively. Moreover, non-slip boundary conditions were used for all
walls. The dynamic mesh was adopted to simulate the real rotation of the face gear drive. Figure 13
demonstrates the distributions of the oil volume fraction at different moments. To obtain more accurate
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results, the second-order windward methods of the momentum, the turbulent kinetic energy, and the
turbulent dissipation rate were adopted for spatial discretization. Furthermore, the standard SIMPLE
algorithm was used for pressure-velocity coupling.
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For the determination of the time step size, an initial value of 5 × 10−6 s was obtained by the
minimum edge length of the nozzle divided by the fluid velocity. With respect to the solving efficiency
and accuracy, it was necessary to perform time step independence tests in the six cases of 5× 10−6 s,
2× 10−5 s, 3.5× 10−5 s, 5× 10−5 s, 6.5× 10−5 s and 8× 10−5 s. Similar to the grid independence tests,
the distributions of the oil pressure and oil volume fraction on the specific plane were used for
evaluation. As shown in Figure 14, the changes of the oil pressure and oil volume fraction were within
an allowable error range before 5× 10−5 s. Subsequently, as the time step increased, the oil pressure
and oil volume fraction were significantly affected. Thus, the time step was determined to be 5× 10−5 s.
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The simulation results should be obtained in a convergence state. In this paper, whether the
calculation reached convergence was mainly judged by the following three aspects: Firstly, all residuals
were set to 0.001, including the Continuity Equation, the Momentum Equations, the Turbulent Kinetic
Energy Equation and the Turbulent Kinetic Energy Dissipation Rate Equation. Secondly, when
the residual values all dropped below 0.001, the residual was adjusted to continue the simulations.
Meanwhile, the oil pressure and oil volume fraction in the meshing area were monitored. Finally,
when the monitored variables almost exhibited no further change with the increase of the iteration
step, the mass and momentum data would be conserved. If the error was within the allowable range,
the simulation could be considered to reach the convergence.

According to Equations (31) and (32), the impingement depth on the pinion surface is directly
related to the nozzle layout parameters xH, yL, zV,θ. Since the nozzle layout parameters are restricted
by the gearbox space, the initial nozzle position is determined as (70, 52, 32, 105◦). Each parameter
of the initial position is investigated to verify the impingement depth mathematical model and to
optimize the nozzle layout.

3.2. Verification and Optimization of Parameter xH

According to the initial position, four groups of the parameter xH are set preferentially as 65 mm,
70 mm, 75 mm and 80 mm, respectively, while the other three parameters remain the same. Based on
the mathematical model established above, the values of the impingement depths corresponding to
the four groups are obtained by the implicit function in the program MATLAB, as given in Table 3.
It can be seen that a maximum impingement depth can be obtained with xH = 75 mm.

Table 3. Values of parameter xH and the corresponding calculated impingement depths.

Number xH(mm) yL(mm) zV(mm) θ(◦) dp(mm)

1 65 52 32 105 0.16
2 70 52 32 105 0.60
3 75 52 32 105 0.63
4 80 52 32 105 0.54

Accordingly, the CFD models using the parameters provided in Table 3 are established. Figure 15
illustrates the distributions of the oil volume fractions in the meshing area in the convergence state of
the calculation. Obviously, Figure 15c exhibits superior characteristics on the pinion surface, as the oil
distribution is more concentrated and uniform with relatively little oil flowing out.
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Figure 16a,b demonstrates the behaviors of the oil volume fractions and oil pressures on the plane
parallel to the coordinate plane xOz and near the meshing point within the range of x ∈ [64 mm, 82 mm].
In the meshing cycle, the trends of the oil volume fraction and oil pressure generally increase, and both
can reach the maximum values in the case of xH = 75 mm; consequently, a better lubrication
performance can be achieved. Mutual verification was achieved between the mathematical model
and the numerical simulation. The oil volume fractions and pressures were observed to fluctuate at
different moments; this result was due to the fact that the jet stream was blocked by the rotating gear
and could not enter the meshing area smoothly.
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Furthermore, the parameter xH = 75 mm may be a point close to the optimal or peak value,
and the optimal value could be more accurate, as the solution interval is smaller. Figure 17 illustrates
the calculated impingement depth within the range of xH ∈ [70 mm, 80 mm] with an interval length of
only 1 mm. The maximum impingement depth is observed to appear when xH = 71 mm, which is
regarded as the optimal value for generating a better lubrication performance.

3.3. Verification and Optimization of Parameter yL

Similarly, four groups of the parameter yL are set preferentially as 37 mm, 42 mm, 47 mm and
52 mm, respectively, while the parameter xH is set at the optimal value of 71 mm, as determined
previously, while the other two parameters remain the same. The corresponding impingement depths
are calculated as shown in Table 4, where negative values indicate that the jet stream could not reach
the tooth surface. The maximum impingement depth could be obtained when yL = 42 mm.
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Table 4. Values of parameter yL and corresponding impingement depth.

Number xH(mm) yL(mm) zV(mm) θ(◦) dp(mm)

1 71 37 32 105 −2.02
2 71 42 32 105 3.72
3 71 47 32 105 2.57
4 71 52 32 105 0.89

Accordingly, CFD models were established with the different parameters provided in Table 4.
Figure 18 illustrates the distribution of the oil volume fractions in the meshing area; obviously,
Figure 18b,c exhibits superior distribution characteristics.
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Figure 19 further presents that both the oil volume fraction and the oil pressure can achieve
maximum values in the case of yL = 42 mm. A good agreement between the mathematical model and
the CFD numerical simulation can be achieved. However, moving the nozzle closer to the meshing
point does not improve the lubrication performance, as can be seen from the figure; when the yL

decreases to 37 mm, the oil volume fraction and oil pressure both decrease significantly. This condition
is due to the noticeable accumulation of oil in the meshing area, leading to more heat accumulation
and a poor cooling effect.
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Furthermore, Figure 20 illustrates the calculated impingement depth within a range of yL ∈

[37 mm, 47 mm] with a smaller interval length of 1 mm. The maximum impingement depth occurs
when yL = 40 mm, which is regarded as an optimal value.
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3.4. Verification and Optimization of Parameter zV

When the value of parameter zV changes, while the jet angle parameter θ remains unchanged,
the jet stream may be prevented by the gear teeth, leading to unexpected lubrication performance.
According to the above research, the parameter zV is set as 27 mm, 32 mm, 37 mm and 42 mm in the
case of xH = 71 mm and xH = 40 mm, as given in Table 5.
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Table 5. Values of parameter zV and corresponding impingement depth.

Number xH(mm) yL(mm) zV(mm) θ(◦) dp(mm)

1 71 40 27 105 −3.79
2 71 40 32 105 3.92
3 71 40 37 105 −4.07
4 71 40 42 105 −7.20

Multiple calculated impingement depths appear to be negative values, indicating that the jet
stream could not successfully jet onto the tooth surface. Therefore, there is no need to compare the
oil volume fraction and oil pressure distributions, since only the model number 2 has a positive
impingement depth. Using a method similar to that employed in Sections 3.2 and 3.3, an appreciable
maximum impingement depth when zV = 32 mm could be obtained, as seen in Figure 21.
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3.5. Verification and Optimization of Jet Angle θ

Based on the above research, the maximum impingement depth and the best lubrication
performance could be obtained in the case of xH = 71 mm, yL = 40 mm and zV = 32 mm. The jet
angles were set preferentially as 100◦, 102.5◦, 105◦, and 107.5◦, respectively, and the corresponding
impingement depths are presented in Table 6. The maximum impingement depth could be obtained
when the jet angle was 105◦.

Table 6. Different jet angles θ and the corresponding impingement depth.

Number xH(mm) yL(mm) zV(mm) θ(◦) dp(mm)

1 71 40 32 100 −2.50
2 71 40 32 102.5 2.74
3 71 40 32 105 3.92
4 71 40 32 107.5 2.87

Figures 22 and 23 show that both the oil volume fraction and oil pressure can reach maximum
values in the case of θ = 105◦; consequently, a better lubrication performance can be achieved. A good
agreement between the mathematical model and the CFD numerical simulation was achieved.
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Furthermore, Figure 24 illustrates that the calculated impingement depth within the range of
θ ∈ [102.5◦, 107.5◦] with the smaller interval length of only 0.5 degrees. It can be seen that the maximum
impingement depth appears when θ = 105◦, which is regarded as the optimal value.
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From the analysis and optimization above, an optimal combination of jet nozzle layout parameters
that can generate a greater impingement depth, a greater oil volume fraction and a greater oil pressure
for this face gear pair are determined and exhibit a better lubrication performance.

4. Experiments

To validate the feasibility and reliability of the theoretical method for evaluating the lubrication
performance using the impingement depth mathematical model, oil jet lubrication experiments were
performed under different nozzle layouts, which was an important prerequisite for deriving the
novel impingement depth mathematical model for face gears and conducting numerical simulations.
Figure 25 shows the whole experimental system, including a gearbox equipped with a nozzle layout
adjustment device, a lubrication oil supply system, a driving motor, a loading motor, torque transducers,
a thermal infrared imager, and a high-speed camera. The main experimental parameters are shown in
Table 7.
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Different nozzle layout parameters, including the jet angle and the jet offset distance, as shown in
Table 8, were designed and arranged in the experiments. Figure 26 shows the jet oil states photographed
by a high-speed camera. Furthermore, a thermal infrared imager was used to capture pictures of the
tooth surface temperatures, as listed in Table 9. The measured temperatures for one model test are
shown in Figure 27.
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Table 7. Main parameters for the experimental system.

Teeth Number Rotation Speed
(r/min)

Jet
Velocity

(m/s)

Oil Jet
Quantity
(mL/min)

Torque
(N·m)

Jet
Height
(mm)

Jet Nozzle
Diameter

(mm)

Initial Oil
Temperature

(◦C)

Gear Pinion Gear Pinion
5 235.5 200 100 2 3042 24 856.14 1500

Table 8. Different nozzle layout parameters with the corresponding calculated impingement depths.

Jet Angle (degree) Offset Distance (mm) Impingement Depth (mm)

1 0 0 0
2 2.5 −4.0 0.93
3 5.0 −8.0 0.95
4 7.5 −11.4 1.02
5 10.0 −14.8 0.98
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Figure 26. Jet flow photographed by high-speed camera for different models. 436 Figure 26. Jet flow photographed by high-speed camera for different models.

Table 9. Measured tooth surface temperatures for different models.

Model Jet Angle
(Degrees)

Offset
Distance (mm)

Impingement
Depth (mm)

Pinion
Temperature (◦C)

Gear
Temperature (◦C)

1 0 0 0 84.7 80.3
2 2.5 −4.0 0.93 78.8 76.8
3 5.0 −8.0 0.95 77.6 75.9
4 7.5 −11.4 1.02 76.3 75.6
5 10.0 −14.8 0.98 77.3 76.2
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Figure 28 and Table 9 summarize the measured tooth surface temperatures corresponding to the
calculated impingement depths.
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depths.

As shown, with an increase in the calculated impingement depth, the tooth surface temperature
is reduced, and consequently, better lubrication and cooling performance can be achieved, which
can validate the effectiveness and accuracy of the method used to evaluate the oil jet lubrication
performance using the impingement depth mathematical model.

5. Conclusions

The major conclusions drawn from this work include the following:

1. A novel mathematical model for accurately calculating the lubrication oil jet impingement depth
on the orthogonal face of a gear pair has been established, and this mode consists of comprehensive
and detailed design parameters for the jet nozzle layout and face gear pair.

2. CFD numerical simulations of an orthogonal face gear pair under different nozzle layouts reveal
that a greater jet impingement depth, as calculated by the mathematical model, results in a
greater oil volume fraction and oil pressure in the simulation. In addition, the optimal jet
nozzle layout parameters, including the jet nozzle position and jet angle, have been determined
and recommended.

3. Good agreement was achieved between the mathematical model and the numerical simulation,
validating the effectiveness and accuracy of using the impingement depth mathematical model for
evaluating the oil jet lubrication performance of face gears. This mathematical model can provide
a valuable method for the evaluation and optimization of the oil jet lubrication performance for
various face gears in practical applications.

4. Through oil jet lubrication experiments, the jet flow trajectories and tooth surface temperatures
for different jet nozzle layouts were measured and compared. The relationship between the tooth
surface temperature and the jet impingement depth revealed that the method for evaluating the
oil jet lubrication performance using the impingement depth mathematical model was feasible
and reliable.
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