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Abstract: The present study establishes a stochastic adaptive robust dispatch model for virtual power
plants (VPPs) to address the risks associated with uncertainties in electricity market prices and
photovoltaic (PV) power outputs. The model consists of distributed components, such as the central
air-conditioning system (CACS) and PV power plant, aggregated by the VPP. The uncertainty in the
electricity market price is addressed using a stochastic programming approach, and the uncertainty in
PV output is addressed using an adaptive robust approach. The model is decomposed into a master
problem and a sub-problem using the binding scenario identification approach. The binding scenario
subset is identified in the sub-problem, which greatly reduces the number of iterations required
for solving the model, and thereby increases the computational efficiency. Finally, the validity of
the VPP model and the solution algorithm is verified using a simulated case study. The simulation
results demonstrate that the operating profit of a VPP with a CACS and other aggregated units can
be increased effectively by participating in multiple market transactions. In addition, the results
demonstrate that the binding scenario identification algorithm is accurate, and its computation time
increases slowly with increasing scenario set size, so the approach is adaptable to large-scale scenarios.

Keywords: virtual power plant (VPP); stochastic adaptive robust model; binding scenario
identification approach; central air-conditioning system (CACS); multiple markets

1. Introduction

With the growth of electricity demand, fossil fuels have been widely used for electricity generation
in recent years as the cheapest source of energy. However, the use of fossil fuels causes a variety
of environmental effects and may endanger human health [1,2]. In order to meet the challenges
associated with energy shortages and environmental pollution, the world-wide energy production
infrastructure is slowly moving in the direction of clean and low-carbon options based on renewable
energy sources (RESs) [3,4]. However, RESs suffer from the disadvantages of strong randomness, high
volatility, and weak controllability. Therefore, the continuous expansion of grid-connected electric
power facilities based on RESs poses a challenge to the safe and reliable operation of electric power
grids [5–7]. Virtual power plants (VPPs) have been developed to address this challenge. Through
advanced control, measurement, and communication technologies, a large number of RESs, controllable
loads, energy storage systems (ESSs), and other distributed energy resources are aggregated by VPPs
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to participate in the power grid operation as a whole, which is conducive to the rational allocation and
utilization of resources [8–11].

In general, a VPP framework promotes the aggregation of various resources by simultaneously
participating in multiple markets, such as the day-ahead energy market (DAM) and real-time energy
market (RTM), which can improve the flexibility of scheduling [12]. Existing studies have mostly only
considered VPP participation in the DAM, and participation has been rarely extended to multiple
markets. For example, a VPP model that considers only DAM participation has been established,
where the overall demand response (DR) was divided into incentive-based DR and price-based DR
mechanisms [13–15]. A DR was also applied in a multi-market model, where a VPP participates in
both the DAM and RTM simultaneously [12,16]. However, the DR in the above studies was regarded
strictly as an interruptible/transferable load, and no specific modeling analysis was applied.

Meanwhile, VPP operations are impacted by uncertain factors such as RES outputs in the
scheduling process, resulting in economic and security issues. Therefore, addressing uncertain factors
in VPP operations has become a topic of increasing interest [17,18]. Numerous approaches have been
applied toward addressing uncertainty in VPP operations, such as stochastic programming [19–21],
robust optimization [22], chance-constrained programming [23], and point estimation [24]. In contrast,
the application of adaptive robust optimization has been relatively rare in this case. However, this
approach is more flexible than robust optimization because the decision making process is conducted
in stages, which to some extent can alleviate the conservativeness of robust optimization solutions.

Adaptive robust optimization considers the optimal solution under the worst-case conditions of
uncertain factors and is generally divided into two stages for decision making [25,26]. The first stage
employs what are denoted as here-and-now variables to make decisions before the level of uncertainty
is known. The second stage employs what are denoted as wait-and-see variables to make decisions
after the level of uncertainty is known. For example, an adaptive robust unit commitment model was
established to account for uncertainties in wind power output by the active regulation of pumped
storage power stations [27], and an adaptive robust reactive power optimization model was proposed
to address the uncertainties in wind power output under conditions of high wind power penetration
integrated into active distribution networks [28].

At present, numerous methods have been applied for solving adaptive robust models, such as
the affine policy, Benders decomposition, the column and constraint generation (CCG) algorithm,
and scenario-based algorithm. The affine policy method uses the linear decision rule to establish the
affine relationship between decision variables and uncertain parameters and transforms the two-stage
problem into a single-stage problem [29]. However, the results are conservative. A Benders/CCG
algorithm has been adopted for decomposing an original stochastic adaptive robust model problem
into a master problem and a sub-problem, but the Karush–Kuhn–Tucker (KKT) or duality method was
needed to transform the sub-problem into a single-level model, and a large number of integer terms
were introduced in the linearization process, leading to high model solution complexity in large-scale
problems [30,31]. The scenario-based algorithm was employed to transform a three-level adaptive
robust model into a single-level model by enumerating the uncertainty set based on the scenarios [32].
However, the computational efficiency of the scenario-based algorithm decreases as the scale of the
problem increases compared with the binding scenario identification approach. This is particularly the
case for large-scale scenario sets, where the number of scenarios required for solving the problem is
quite large, resulting in a very large computational burden [33,34].

Based on the above analysis, the present study considers a VPP that aggregates a photovoltaic
(PV) power plant, a gas turbine, an ESS, a central air-conditioning system (CACS), and interruptible
load, and simultaneously participates in multiple market transactions in the DAM, RTM, and carbon
trading market (CTM). The contributions of this paper can be briefly summarized as follows:

1. This paper establishes a stochastic adaptive robust model for VPP dispatch that considers CACS
and multiple markets. The stochastic programming approach is used to address the uncertainty of
market electricity price owing to the high accuracy of market price forecasting, and the adaptive
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robust method is used to address the uncertainty of PV output owing to the low accuracy of PV
output forecasting.

2. The binding scenario identification approach is used to solve the stochastic adaptive robust
model for VPP dispatch. The original problem is decomposed into a master problem for solving
the single-level optimization model with the binding scenario subset and a sub-problem for
identifying the binding scenario subset, which greatly reduces the number of scenarios and the
number of iterations required for the solution process. In addition, auxiliary variables are also
introduced rather than applying a cyclic solution process for the sub-problem to reduce the
number of times that the sub-problem must be solved.

3. This paper quantitatively eValuates the key factors affecting VPP profit, and the VPP scheduling
of aggregated units is analyzed. The results of a case study indicate that the binding scenario
identification algorithm effectively improves the computational efficiency of the solution process,
and is scalable to large-scale scenarios.

The remainder of this paper is organized as follows: Section 2 defines the modeling of a CACS.
The VPP model formulation is defined in Section 3. Section 4 introduces the solution methodology.
Section 5 presents the case study and results. Section 6 concludes the paper. The overall framework of
this study is shown in Figure 1.
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2. Central Air-Conditioning Systems

2.1. Comfort Index of the Human Body

A CACS is a kind of DR resource that can be beneficially regulated and controlled within a
VPP setting to decrease the peak load of power grids and alleviate conflicts between power supply
and demand. However, these systems must meet the comfort requirements of users. In this paper,
the comfort requirements of users are determined using the predicted mean vote (PMV) index, denoted
as σPMV, which represents the thermal sensation registered by a majority of people within the same
environment [35,36].

To ensure human comfort within an acceptable range, the present work applies the following
constraint to the regulation and control processes of CACSs based on σPMV [37]:

–0.5 ≤ σPMV ≤ 0.5 (1)

The relationship between σPMV and the indoor temperature Tin can be expressed as follows [38,39]:

σPMV =

{
0.3895× (Tin

− 26), Tin
≥ 26

0.4065× (−Tin + 26), Tin < 26
(2)

Therefore, the reasonable temperature range of human comfort can be determined according to
Equations (1) and (2).

2.2. Central Air-Conditioning System Model

According to the principle of energy conservation, the heat obtained by a public building over a
given period of time is the difference between the heat transferred in and the heat removed from the
inside over that period [40]. A diagram of public building energy conservation is shown in Figure 2.
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This yields the following thermodynamic equation in a public building with a CACS [41]:

γ
dTin

dt
+ βTin

− (α−Q) = 0 (3)

where α, β, and γ are parameters determined according to the individual characteristics of the
public building and its CACS, and Q is the total cold energy provided by the CACS. Accordingly,
the time-varying equation of Tin

t can be obtained for a public building as follows [42]:

Tin
t = e−

β
γ∆tTin

t−1 + (1− e−
β
γ∆t

)(
αt

β
−

Qt

β
) (4)
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αt =
∑

KwallAwall(Tcl + Td) +
∑

qwinAwinFdFsFcl +
∑

KwinAwinTout
t + 1000k1k2k3Phe+

1000k4k5k6k7Ple + Cclnφqsh + nφqlh + 1.01GnTout
t + 38.5Gn (5)

β =
∑

KwallAwall +
∑

KwinAwin + 1.01Gn (6)

γ = CaVρa + ShAin (7)

In addition, we present Equations (5)–(7) for determining the values of α, β, and γ for a public
building. In terms of the external walls and roofs of the building, Kwall, Awall, and Tcl are respectively
the heat transfer coefficient, total area, and the hourly value of the cooling load temperature, and Td is a
correction value for Tcl with respect to the regions. In terms of the outer windows of the building, qwin,
Awin, Fd, Fs, Fcl, and Kwin are respectively the maximum solar heat gain, total area, correction coefficient
based on the glass type, shading coefficient associated with inner shading measures, cooling load
coefficient, and heat transfer coefficient, and Tout

t is the outdoor temperature. In terms of the electric
heating equipment of the building, k1, k2, k3, and Phe are respectively the installation coefficient, load
coefficient, simultaneous utilization rate, and installed power. In terms of the lighting equipment of
the building, k4, k5, k6, k7, and Ple are respectively the simultaneous usage rate, heat storage coefficient,
power consumption coefficient of rectifiers, installation coefficient, and installed power. In terms of
the human occupants of the building, Ccl is the cooling load coefficient reflecting the sensible heat
gain of a human body, n is the total number of persons in the public building, φ is the coefficient of
occupant aggregation, qsh is the sensible heat gain per adult male, qlh is the latent heat gain per adult
male, with all females and children converted into an adult male equivalence. Finally, Gn is the fresh
air volume of the building, Ca is the specific heat capacity of air at a constant pressure, V is the volume
of refrigeration space in the building, ρa is the air density, Sh is the heat storage coefficient of interior
walls, and Ain is the total area of interior walls.

A CACS is generally composed of chillers that produce cold energy Qch
t and thermal storage tanks

for the storage and release of cold energy, which are denoted as Qst
t and Qre

t , respectively. Accordingly,
Qt can be given as follows [39]:

Qt = Qch
t −Qst

t + Qre
t (8)

The other constraints of a CACS can be expressed as follows:

0 ≤ Qch
t ≤ Qch,max (9)

0 ≤ Qst
t ≤ Qst,max (10)

0 ≤ Qre
t ≤ Qre,max (11)

0 ≤ Sc
t ≤ Sc,max (12)

Sc
t = Sc

t−1 + (Qst
t ηst −Qre

t /ηre)∆t (13)

Here, Qch,max is the maximum cold energy produced by chillers, Qst,max and Qre,max are the
maximum cold energy respectively stored and released by thermal storage tanks, Sc

t and Sc,max are the
respective cold energy in time period t and the cold energy capacity of thermal storage tanks, and ηst

and ηre are the respective storage and release efficiencies of thermal storage tanks. Finally, the total
power consumption of the CACS Pcold

t is mainly a function of the power consumed by chillers and the
storage and release processes of thermal storage tanks, and can therefore be expressed as

Pcold
t = Qch

t /µch + Qst
t µst + Qre

t µre (14)

where µch, µst, and µre are the respective energy conversion efficiencies of chillers and of the storage
and release processes of thermal storage tanks.
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3. VPP Model Formulation

3.1. Deterministic VPP Model

The VPP model considered in the present work is composed of a PV power plant, a gas turbine
power plant, an ESS, a CACS, and interruptible load. The VPP also participates in the DAM, RTM,
and CTM simultaneously.

3.1.1. Objective Function

The optimization objective of the VPP owner is to maximize the cumulative profit, including the
income obtained from participating in the DAM and RTM, the operation cost of the gas turbine CGT

t ,
the cost of interruptible load Ccurt

t , and the carbon trading cost Cc in the CTM. Therefore, the objective
function can be expressed as:

max
T∑

t=1

(λDA
t (SDA

t − kpPDA
t ) + λRT

t (SRT
t − kpPRT

t ) −CGT
t −Ccurt

t ) −Cc (15)

where λDA
t and λRT

t are the respective electricity prices in the DAM and RTM, PDA
t and SDA

t , and PRT
t and

SRT
t are the volumes of electricity respectively purchased and sold in the DAM and RTM, respectively,

and kp is the coefficient of electricity purchase, which represents the ratio of purchasing price to
selling price.

(1) Gas turbine operation cost
We modeled CGT

t as the following piecewise linear approximation [43]:

CGT
t = auGT

t +

Nl∑
l=1

Klgl,t + λsuusu
t + λsdusd

t (16)

gGT
t =

Nl∑
l=1

gl,t (17)

Here, a, λsu, and λsd are the respective fixed production, start-up, and shut-down costs of a gas
turbine, uGT

t , usu
t , and usd

t are binary variables that respectively indicate whether the gas turbine is
working, starting up, or shutting down, Kl is the slope of the l-th segment of the gas turbine production
cost curve composed of Nl segments, gl,t is the gas turbine production output in the l-th segment,
and gGT

t is the total power output of the gas turbine.
(2) Cost of interruptible load
Here, Ccurt

t is the total compensation fees paid by the VPP to users when curtailing load demands.
Different degrees of curtailment have different impacts on users according to the magnitude of the
curtailment. Therefore, users are compensated for load curtailment according to the level of load
curtailment. Accordingly, Ccurt

t can be expressed as follows [44]:

Ccurt
t =

nm∑
m=1

(λcurt
m Lcurt

m,t ) (18)

where nm is the number of levels of load curtailment, λcurt
m is the compensation price of the m-th level

load curtailment, and Lcurt
m,t is the magnitude of the m-th level load curtailment.

(3) Carbon trading cost
The carbon trading mechanism is based on a market-oriented adjustment mean that can effectively

reduce the carbon emissions of the power industry and promote the development of energy saving
and carbon emission reduction technologies. The Clean Development Mechanism is implemented as
the carbon trading mechanism in this paper. First, this mechanism determines the carbon emission
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quota of each CTM participant over a period of time T, and monitors its carbon emission in real time.
If the actual carbon emission of a participant is less than its quota, the remaining quota can be sold to
the CTM for profit, while, when the actual carbon emission exceeds the quota, the insufficient quota
must be purchased from the CTM or face a heavy fine [45].

Carbon emissions in a VPP mainly derive from the gas turbine, and can be expressed as:

EC =
T∑

t=1

σgGT
t (19)

where EC is the actual carbon emission of the VPP, and σ is the carbon emission coefficient of the
gas turbine. The carbon emission quota ED of a VPP employed in the present work is based on the
allocation scheme issued by the Shanghai Development and Reform Commission, which adopts the
reference line method defined as follows [46]:

ED = ε
T∑

t=1

ηPD
t (20)

where ε is the load rate correction factor, η is the carbon emission quota per unit of electric power
output, and PD

t is the total power output of the VPP. Therefore, the value of Cc for a VPP can be
expressed as:

Cc = λc(EC
− ED) (21)

where λc is the carbon price in the CTM.

3.1.2. Constraints of Aggregated Units

(1) Gas turbine constraints [43]

uGT
t gGT,min

≤ gGT
t ≤ uGT

t gGT,max (22)

− rD
≤ gGT

t − gGT
t−1 ≤ rU (23)

0 ≤ gl,t ≤ gmax
l uGT

t (24)

uGT
t − uGT

t−1 ≤ usu
t (25)

uGT
t−1 − uGT

t ≤ usd
t (26)

tsd
−tsd,0∑
t=1

uGT
t = 0 (27)

tsu
−tsu,0∑
t=1

(1− uGT
t ) = 0 (28)

tsuusu
t ≤

t+tsu
−1∑

h=t

uGT
t ,∀t ≤ T − tsu + 1 (29)

tsdusd
t ≤

t+tsd
−1∑

h=t

(1− uGT
t ),∀t ≤ T − tsd + 1 (30)

Here, gGT,max and gGT,min are the respective maximum and minimum power outputs of the gas
turbine, rU and rD are the respective ramp-up and ramp-down limits of the gas turbine, gmax

l is the
capacity of the l-th segment of the gas turbine production cost curve, tsu and tsd are the respective
minimum up and down times, and tsu,0 and tsd,0 are the respective initial up and down times.
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(2) Energy storage system constraints [22]:

Ses
t = Ses

t−1 + ηcgesc
t − gesd

t /ηd (31)

Ses,min
≤ Ses

t ≤ Ses,max (32)

0 ≤ gesc
t ≤ gesc,max (33)

0 ≤ gesd
t ≤ gesd,max (34)

Here, Ses
t is the electrical energy stored in the ESS, ηc and ηd are the respective charge and discharge

efficiencies of the ESS, gesc
t and gesd

t are the respective electrical charge and discharge power of the ESS,
Ses,max and Ses,min are the respective maximum and minimum allowed electrical energy stored in the
ESS, and gesc,max and gesd,max are the respective maximum electrical charge and discharge power of
the ESS.

(3) Interruptible load constraints [15]

0 ≤ Lcurt
m,t ≤ kcurt

m Lload
t (35)

Lcurt
t =

nm∑
m=1

Lcurt
m,t (36)

Lcurt
t−1 + Lcurt

t ≤ Lcurt,max (37)

Here, kcurt
m is the load curtailment coefficient of the m-th level, Lload

t is the electrical load and Lcurt
t

is the magnitude of load curtailment in time period t, Lcurt,max is the maximum magnitude of load
curtailment in continuous time. Equation (37) avoids the decreased user satisfaction caused by an
excessive magnitude of load curtailment in continuous time.

(4) Constraints of power sold to and purchased from the DAM and RTM [15]

0 ≤ SDA
t ≤ SDA,max (38)

0 ≤ PDA
t ≤ PDA,max (39)

0 ≤ SRT
t ≤ SRT,max (40)

0 ≤ PRT
t ≤ PRT,max (41)

Here, PDA,max and SDA,max, and PRT,max and SRT,max are the respective maximum power sold to
and purchased from the DAM and RTM, respectively.

(5) Energy balance constraint

SDA
t + SRT

t + gesc
t + Lload

t − Lcurt
t + Pcold

t = PDA
t + PRT

t + PRES
t + gGT

t + gesd
t (42)

Here, PRES
t is the power output of the PV power plant.

In addition, the deterministic model for the VPP must also meet constraints (1), (2), and (4)–(14)
for the CACS.

3.2. Stochastic Adaptive Robust Model for VPP Dispatch

The deterministic VPP model makes optimal scheduling decisions under the assumption that the
market electricity price and PV output are known, while, in fact, both of these factors are uncertain
to some degree. Therefore, the proposed stochastic adaptive robust VPP dispatch model combines
the adaptive robust approach, which considers the worst-case PV output for addressing the relatively
high level of PV output uncertainty, with the stochastic programming approach for addressing the
relatively low level of market electricity price uncertainty [30].
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The VPP model proposed in the present work is considered to participate in the DAM and
RTM simultaneously. The day-ahead decision variables in the DAM stage are determined before the
uncertain parameters of PV output are realized. In the RTM stage, the real-time decision variables are
determined after the uncertain parameters of PV output and day-ahead decision variables are realized.
Therefore, the proposed VPP model can adopt the form of a maximum-minimum-maximum process
with a three-level structure that is composed of the following two stages:

• In the DAM decision-making stage (i.e., the pre-decision stage), the VPP determines the on/off

statuses of the gas turbine and the DAM trading volume with the objective of maximizing profit.
• In the RTM decision-making stage (i.e., the re-decision stage), the VPP first considers the PV output

of all scenarios on the basis of the realization of decision variables obtained at the DAM stage,
and selects the worst-case scenario that minimizes the profit. Second, the VPP determines the
RTM trading volume and other variables after the realization of the day-ahead decision variables
and PV output with the objective of maximizing the profit.

The specific stochastic adaptive robust VPP dispatch model is accordingly given as follows in
conjunction with the diagram shown in Figure 3.
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(1) Objective function:

max
T∑

t=1

np∑
p=1

π(p)(λDA
p,t (S

DA
p,t − kpPDA

p,t )) + min
PRES

s ∈Ω
max

T∑
t=1

np∑
p=1

π(p)(λRT
p,t (S

RT
p,t,s − kpPRT

p,t,s) −CGT
p,t,s −Ccurt

p,t,s) −Cc
s (43)

Here, np is the total number of electricity price scenarios, π(p) is the probability of the pth electricity
price scenario, p and s are the respective electricity price and PV output scenarios, and Ω is the original
PV output scenario set.

(2) Day-ahead operation constraints:

uGT
p,t − uGT

p,t−1 ≤ usu
p,t (44)

uGT
p,t−1 − uGT

p,t ≤ usd
p,t (45)

tsd
−tsd,0∑
t=1

uGT
p,t = 0 (46)

tsu
−tsu,0∑
t=1

(1− uGT
p,t ) = 0 (47)

tsuusu
p,t ≤

t+tsu
−1∑

h=t

uGT
p,t ,∀t ≤ T − tsu + 1 (48)
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tsdusd
p,t ≤

t+tsd
−1∑

h=t

(1− uGT
p,t ),∀t ≤ T − tsd + 1 (49)

0 ≤ SDA
p,t ≤ SDA,max (50)

0 ≤ PDA
p,t ≤ PDA,max (51)

(3) Real-time operation constraints:

CGT
p,t,s = auGT

p,t +

Nl∑
l=1

Klgl,p,t,s + λsuusu
p,t + λsdusd

p,t (52)

gGT
p,t,s =

Nl∑
l=1

gl,p,t,s (53)

uGT
p,t gGT,min

≤ gGT
p,t,s ≤ uGT

p,t gGT,max (54)

− rD
≤ gGT

p,t,s − gGT
p,t−1,s ≤ rU (55)

0 ≤ gl,p,t,s ≤ gmax
l uGT

p,t (56)

Ses
p,t,s = Ses

p,t−1,s + ηcgesc
p,t,s − gesd

p,t,s/ηd (57)

Ses,min
≤ Ses

p,t,s ≤ Ses,max (58)

0 ≤ gesc
p,t,s ≤ gesc,max (59)

0 ≤ gesd
p,t,s ≤ gesd,max (60)

− 0.5 ≤ σPMV ≤ 0.5 (61)

σPMV =

 0.3895× (Tin
p,t,s − 26), Tin

p,t,s ≥ 26
0.4065× (−Tin

p,t,s + 26), Tin
p,t,s < 26

(62)

Tin
p,t,s = e−

β
γ∆tTin

p,t−1,s + (1− e−
β
γ∆t

)(
αt

β
−

Qp,t,s

β
) (63)

Qp,t,s = Qch
p,t,s −Qst

p,t,s + Qre
p,t,s (64)

0 ≤ Qch
p,t,s ≤ Qch,max (65)

0 ≤ Qst
p,t,s ≤ Qst,max (66)

0 ≤ Qre
p,t,s ≤ Qre,max (67)

0 ≤ Sc
p,t,s ≤ Sc,max (68)

Sc
p,t,s = Sc

p,t−1,s + (Qst
p,t,sηst −Qre

p,t,s/ηre)∆t (69)

Pcold
p,t,s = Qch

p,t,s/µch + Qst
p,t,sµst + Qre

p,t,sµre (70)

ED
s = ε

T∑
t=1

np∑
p=1

π(p)ηPD
p,t,s (71)

EC
s =

T∑
t=1

np∑
p=1

π(p)σgGT
p,t,s (72)
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Cc
s = λc(EC

s − ED
s ) (73)

Ccurt
p,t,s =

nm∑
m=1

(λcurt
m Lcurt

m,p,t,s) (74)

0 ≤ Lcurt
m,p,t,s ≤ kcurt

m Lload
t (75)

Lcurt
p,t,s =

nm∑
m=1

Lcurt
m,p,t,s (76)

Lcurt
p,t−1,s + Lcurt

p,t,s ≤ Lcurt,max (77)

0 ≤ SRT
p,t,s ≤ SRT,max (78)

0 ≤ PRT
p,t,s ≤ PRT,max (79)

SDA
p,t + SRT

p,t,s + gesc
p,t,s + Lload

t − Lcurt
p,t,s + Pcold

p,t,s = PDA
p,t + PRT

p,t,s + PRES
t,s + gGT

p,t,s + gesd
p,t,s (80)

Compared with the deterministic model, the stochastic adaptive robust VPP dispatch model
considers the electricity price scenarios in the DAM stage, and the day-ahead decision variables
all include subscripts p and t. In the RTM stage, the electricity price and PV output scenarios are
considered, and the real-time decision variables all contain subscripts p, t, and s.

4. Binding Scenario Identification

The three-level adaptive robust VPP dispatch model is solved using the binding scenario
identification approach. The solution algorithm decomposes the original model into a master problem
and a sub-problem. The master problem in the first stage solves a single-level optimization model
based on the binding scenario subset, and the sub-problem in the second stage solves a bi-level
optimization model to identify the binding scenario subset [33]. Compared with the scenario-based
algorithm [32], this approach greatly reduces the number of scenarios required for solution, alleviates
the computational burden, and is adaptable to obtaining solutions of the adaptive robust model with
large-scale scenario sets.

4.1. Master Problem

An auxiliary variable τMP that represents the VPP profit obtained from the RTM in the worst
case scenario sSP is introduced to replace the minimum-maximum problem in the second stage of the
stochastic adaptive robust VPP dispatch model. Therefore, this transforms the three-level optimization
model of the original problem into the following single-level model for solution.

(1) Objective function:

max
T∑

t=1

np∑
p=1

π(p)(λDA
p,t (S

DA
p,t − kpPDA

p,t )) + τMP (81)

τMP
≤

T∑
t=1

np∑
p=1

π(p)(λRT
p,t (S

RT
p,t,s − kpPRT

p,t,s) −CGT
p,t,s −Ccurt

p,t,s) −Cc
s , ∀s ∈ ΩMP (82)

(2) Day-ahead operation constraints: (44)–(51).
(3) Real-time operation constraints: (52)–(80), ∀s ∈ ΩMP.
Here, ΩMP is the binding scenario subset.
The single-level optimization model of the master problem is considered to be equivalent to the

three-level optimization model of the original problem when the master problem contains all vertices
of the PV uncertainty set [32]. However, including all vertices of the PV uncertainty set will sharply
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increase the computational complexity of the solution process because each additional vertex will add
a set of real-time operation constraints and variables in (52)–(80). Therefore, the original uncertainty
set is replaced by the binding scenario subset ΩMP that is identified in the sub-problem to reduce the
number of scenarios and improve the computational efficiency of the solution process. Additionally,
ΩMP theoretically retains all essential information in the original uncertainty set, and therefore can
guarantee that the single-level optimization model in the master problem is equivalent to the original
three-level optimization model.

4.2. Sub-Problem

Firstly, an auxiliary variable τSP
s is introduced to represent the VPP profit obtained from the RTM

with the PV output scenario set Ω\ΩMP. Here, Ω\ΩMP is the scenario set that ΩMP is removing from
Ω. Thus, the minimum-maximum model in the second stage of the original model is transformed into
the following single-level model for solution.

(1) Objective function:

maxτSP
s =

T∑
t=1

np∑
p=1

π(p)(λRT
p,t (S

RT
p,t,s − kpPRT

p,t,s)−CGT
p,t,s −Ccurt

p,t,s) −Cc
s , ∀s ∈ Ω\ΩMP (83)

τSP = min
s∈Ω\ΩMP

τSP
s (84)

(2) Real- time operation constraints: (52)–(80), ∀s ∈ Ω\ΩMP.
Then, the value of τSP

s obtained for each scenario of Ω\ΩMP is solved, and the worst-case scenario
sSP corresponding to the worst case VPP profit τSP obtained in the sub-problem can be identified from
Equation (84). However, the number of times the sub-problem must be solved increases as the size of
the scenario set increases, resulting in low computational efficiency for relatively large scenario sets.
Therefore, the auxiliary variable τSP

sum =
∑

s∈Ω\ΩMP

τSP
s is introduced to replace the original cyclic solution

process, and Equation (83) is converted into the following form:

maxτSP
sum =

∑
s∈Ω\ΩMP

(
T∑

t=1

np∑
p=1

π(p)(λRT
p,t (S

RT
p,t,s−kpPRT

p,t,s) −CGT
p,t,s −Ccurt

p,t,s) −Cc
s) (85)

τSP
s =

T∑
t=1

np∑
p=1

π(p)(λRT
p,t (S

RT
p,t,s − kpPRT

p,t,s)−CGT
p,t,s −Ccurt

p,t,s) −Cc
s , ∀s ∈ Ω\ΩMP (86)

Accordingly, sSP can be identified by solving the sub-problem only once using Equations (85) and
(86), which greatly improves the computational efficiency for relatively large scenario sets.

In the CCG algorithm, the KKT or duality method is used to transform the bi-level model
(minimum-maximum model) of the sub-problem into a single-level model (maximum model) and
inevitably introduces bilinear terms. Accordingly, the Big-M approach is used to linearize the nonlinear
single-level model, which introduces a large number of integer terms and leads to high model solution
complexity in large-scale problems. However, the use of auxiliary variables in the binding scenario
identification algorithm employed in the present work avoids the introduction of bilinear and integer
terms. In addition, the solution algorithm has the following advantages over the CCG algorithm:

• For nonlinear (nonconvex) problems, the optimality condition is false, which is not an
appropriate condition for the CCG algorithm, while it is acceptable for the binding scenario
identification algorithm.

• The scenario set used in the binding scenario identification algorithm to describe PV output
uncertainty is more accurate than the box or polyhedron uncertainty set used in the CCG
algorithm [47].
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• The number of iterations required by the CCG algorithm depends on the coupling between each
level of the problem, and may be quite large, while the number of iterations required by the
binding scenario identification algorithm is limited because the number of binding scenarios is
related to the uncertain scenario set and has nothing to do with the problem itself.

4.3. Solution Procedure

According to the previous discussion, the solution procedure for the binding scenario identification
algorithm can be outlined as follows in conjunction with the specific algorithm flowchart shown in
Figure 4:

1. Define an initial binding scenario subset ΩMP= {s0}, where s0 is the initial PV output scenario.
2. Solve the master problem with ΩMP, and denote the first stage decision variables {SDA∗

p,t , PDA∗
p,t ,

usu∗
p,t , usd∗

p,t , uGT∗
p,t } obtained from the master problem as zMP.

3. Substitute zMP into the sub-problem and calculate τSP
s with the PV output scenario set Ω\ΩMP.

Solve τSP = min
s∈Ω\ΩMP

τSP
s to identify ssp.

4. Compare τMP obtained in the master problem with τSP obtained in the sub-problem. If τMP
≤ τSP,

ΩMP includes the uncertainty information of all scenarios. Go to Step 5. Otherwise, add the
scenario ssp obtained to ΩMP, and go to Step 2.

5. Output the optimal scheduling results obtained in Step 2.
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5. Case Study

5.1. VPP Description and Parameter Settings

The VPP employed in this case study consists of a PV power plant, a TAU5670 gas turbine power
plant, an ESS, a CACS in a public building, and interruptible load, and participates in the DAM,
RTM, and CTM simultaneously. The scheduling cycle is set at 1 day and is divided into 24 periods
of 1 h duration. The specific parameters of the aggregated units and the public building are listed in
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Tables A1–A4 of Appendix A. The length and width of the bottom side of the public building are 95
and 35 m, the story height is 4.7 m, and the number of floors is 11. The load demand over a single day
is shown in Figure A1 of Appendix A. The interruptible load is divided into 3 levels, each of which is
set at 10% of the total load. The curtailment compensation price of each level is respectively 40 €/MWh,
45 €/MWh, and 50 €/MWh. The carbon price is 6.569 €/t. Finally, Figures A2 and A3 in Appendix A
respectively present the five electricity price scenarios in the DAM and RTM and 50 PV power plant
electricity output scenarios employed in the case study.

5.2. Simulation Results

The stochastic adaptive robust VPP dispatch model based on the binding scenario identification
approach was jointly solved using GAMS and Matlab in this paper. All simulations were conducted
on a personal computer equipped with an Intel Core 3.2 GHz CPU and 4 GB memory.

5.2.1. Analysis of the Factors Influencing VPP Profit

The impacts of DAM, RTM, and CTM participation and CACS regulation on VPP profit were
analyzed according to the five schemes listed in Table 1 along with the VPP profit obtained under
each condition.

Table 1. Comparisons of VPP profit obtained under different conditions.

Scheme Participate in
DAM

Participate in
RTM

Participate in
CTM

Regulate Central
Air-Conditioner VPP Profit (€)

1
√

× ×
√

1104.63
2

√
×

√ √
1358.43

3
√ √

×
√

2925.01
4

√ √ √
× 3060.59

5
√ √ √ √

3199.39

As shown in Table 1, the lowest VPP profit is obtained for Scheme 1 when the VPP participates
in the DAM only, while the highest profit is obtained for Scheme 5 when the VPP participates in the
DAM, RTM, and CTM simultaneously and the CACS is regulated by the VPP. We note from the results
of Schemes 1 and 2 that the lack of participation in the RTM seriously detracts from VPP profitability
because the VPP cannot select a suitable market to purchase/sell electricity by comparing the day-ahead
price and real-time price. Similarly, Schemes 1 and 3 indicate that the lack of participation in the CTM
also seriously detracts from VPP profitability because the carbon emission coefficient of the TAU5670
gas turbine is less than the carbon emission quota, and the PV power plant further reduces the carbon
emissions of the units aggregated in the VPP. Therefore, the large surplus carbon emission quota cannot
be sold to the CTM. Finally, a comparison of Schemes 4 and 5 indicates that CACS regulation by the
VPP increases VPP profitability because the VPP can reduce cost by storing cold energy in low price
periods and releasing cold energy in high price periods using the thermal storage tank.

5.2.2. Analysis of Optimized VPP Dispatch Results

The optimized dispatch results obtained for the electricity sold/purchased by the VPP in the DAM
and RTM and the aggregated units in the VPP over a 24 h period are shown in Figure 5.

The impact of purchasing and selling electricity by the VPP in the DAM and RTM has already
been analyzed in Section 5.2.1; however, the actual purchasing and selling activities conducted by the
VPP under Scheme 5 over the 24 h period are shown in Figure 5a. We note from Figure 5b that the
gas turbine is started up when the electricity price is greater than the generation cost; otherwise, it is
shut down. Similarly, the ESS charges during low price periods, and discharges during high price
periods. The interruptible load dispatched at all levels is shown in Figure 5c. We note that the VPP can
conduct partial load curtailment during high price periods and the load curtailment is conducted in



Energies 2019, 12, 1918 15 of 23

the order of increasing levels according to the curtailment compensation price. Therefore, the VPP can
increase its profitability by applying load curtailment to facilitate the selling of electricity within high
price periods.
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Figure 5. Optimized VPP dispatch results: (a) electricity sold/purchased in the DAM and RTM; (b) gas
turbine and ESS dispatch; (c) interruptible load dispatch; (d) CACS dispatch.

The dispatch results of the CACS are shown in Figure 5d. The cold energy produced by the chiller
is at a maximum during hours 1–6 (low electricity price period), and the excess cold energy is stored in
the thermal storage tank. The cold energy stored in the thermal storage tank has reached its upper
limit at hour 7 or 8, so the chiller is limited to meeting the indoor temperature requirements only,
which accordingly decreases the chiller output. During high electricity price periods, the CACS takes
advantage of the fact that the power consumption of the thermal storage tank is much less than that
of the chiller, and elects to release cold energy from the thermal storage tank, while the additional
cooling is provided by the chiller. Finally, the thermal storage tank stops working during the hours
of 16–24 because the profit obtained by transferring the period of high power consumption by the
CACS according to the difference between peak and valley electricity prices is not sufficient to make
up for the loss associated with the storage/release process. These results demonstrate that the cold
energy storage and release function of the thermal storage tank facilitates the concentration of power
consumption by the CACS during low electricity price periods, which not only reduces the cost of the
VPP, but can also alleviate the problems associated with peak load periods via load shifting.
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5.2.3. Analysis of Iteration Performance

The VPP profit results and values for the auxiliary variables τMP and τSP obtained for each
iteration of the solution algorithm based on the binding scenario identification approach are shown
in Figure 6. The results indicate that the VPP profit consistently decreases. This is because the
sub-problem identifies a binding scenario from the PV scenario set after each iteration, and the master
problem must apply a set of real-time operation constraints and variables, so that the constraints on
the master problem are progressively enhanced. The VPP profit decreases greatly from 3682.23 € to
3208.92 € in the second iteration and stabilizes gradually as the number of iterations increases. Similarly,
the difference between τMP and τSP substantially decreases in the second iteration, and gradually
stabilizes with increasing iterations. Accordingly, the binding scenario identification approach obtains
the optimal scheduling result in 4 iterations. This is because the binding scenario subset of the master
problem contains the worst-case scenario of all scenarios in the second iteration, and the severity of the
worst-case scenarios identified by the sub-problem decreases in subsequent iterations.
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5.2.4. Analysis of Adaptability to Large-scale Scenario Sets

The adaptability of the binding scenario identification algorithm to large-scale scenario sets is
demonstrated by comparing the computation times and numbers of iterations required to solve Case 1
with the 50 PV power output scenarios shown in Figure A3, with those required to solve Cases 2–5
shown in Figure A4 of Appendix A, which involve 100, 150, 200, and 250 PV power output scenarios,
respectively. The results are shown in Figure 7.

As can be seen from Figure 7, the number of iterations required by the binding scenario
identification approach is basically constant for all cases, and only 3 or 4 iterations are needed to achieve
convergence. Consequently, only 3 or 4 binding scenarios are identified by the sub-problem in each
case because the sub-problem identifies a single binding scenario in each iteration. The computation
time required for each binding scenario identification of the sub-problem increases with an increasing
number of scenarios in the scenario set while the number of times the master problem and sub-problem
required to be solved basically remains unchanged. Therefore, the computation time of the binding
scenario identification approach increases only slowly with an increasing number of scenarios in the
scenario set, as shown in Figure 7. These results demonstrate that the identification of the binding
scenario subset in the sub-problem greatly reduces the required number of scenarios, and thereby
substantially increases the computational efficiency of the solution algorithm. Accordingly, the binding
scenario identification algorithm can readily adapt to the stochastic adaptive robust VPP dispatch
model with large-scale scenario sets.



Energies 2019, 12, 1918 17 of 23Energies 2019, 12, x FOR PEER REVIEW 17 of 24 

 

 
Figure 7. Computation time and the number of iterations required for different scenario sets with 
varying numbers of scenarios. 

As can be seen from Figure 7, the number of iterations required by the binding scenario 
identification approach is basically constant for all cases, and only 3 or 4 iterations are needed to 
achieve convergence. Consequently, only 3 or 4 binding scenarios are identified by the sub-problem 
in each case because the sub-problem identifies a single binding scenario in each iteration. The 
computation time required for each binding scenario identification of the sub-problem increases with 
an increasing number of scenarios in the scenario set while the number of times the master problem 
and sub-problem required to be solved basically remains unchanged. Therefore, the computation 
time of the binding scenario identification approach increases only slowly with an increasing number 
of scenarios in the scenario set, as shown in Figure 7. These results demonstrate that the identification 
of the binding scenario subset in the sub-problem greatly reduces the required number of scenarios, 
and thereby substantially increases the computational efficiency of the solution algorithm. 
Accordingly, the binding scenario identification algorithm can readily adapt to the stochastic 
adaptive robust VPP dispatch model with large-scale scenario sets. 

5.2.5. Comparative Analysis of the Binding Scenario Identification Approach 

As discussed, the standard scenario-based approach [32] employs the entire scenario set, and 
therefore cannot fail to obtain an optimum scheduling result. However, in so doing, it suffers from a 
high computational burden. Therefore, we compare the solution results obtained for Cases 1–5 using 
the binding scenario identification approach and the standard scenario-based algorithm approach for 
the stochastic adaptive robust VPP dispatch model in Table 2. In addition, the efficiencies of the two 
algorithms are compared in Figure 8. 

Table 2. Comparison of the solutions obtained using the binding scenario identification approach and 
the standard scenario-based approach [32] for the stochastic adaptive robust VPP dispatch model. 

Optimized Results Case 1 Case 2 Case 3 Case 4 Case 5 
Number of scenarios 50 100 150 200 250 
Number of iterations 4 3 3 3 3 

Binding scenario subsets 1/23/49/37 1/12/9 1/110/32 1/41/186 1/171/14 
VPP profit of binding scenario approach (€) 3199.4 2932.4 2862.3 2836.6 2929.7 

VPP profit of standard scenario-based 
 approach (€) 3199.4 2932.4 2862.3 2836.6 2929.7 

Auxiliary variable MPτ  of binding scenario 
approach (€) 

−3848.1 −3848.1 −4021.1 −3954.9 −3951.6 

0

1

2

3

4

5

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250

N
um

be
r o

f i
te

ra
tio

ns

C
om

pu
ta

tio
n 

tim
e 

(s
)

Number of scenarios

Computation time Number of iterations

Case1 Case2

Case3

Case4

Case5

Figure 7. Computation time and the number of iterations required for different scenario sets with
varying numbers of scenarios.

5.2.5. Comparative Analysis of the Binding Scenario Identification Approach

As discussed, the standard scenario-based approach [32] employs the entire scenario set,
and therefore cannot fail to obtain an optimum scheduling result. However, in so doing, it suffers from
a high computational burden. Therefore, we compare the solution results obtained for Cases 1–5 using
the binding scenario identification approach and the standard scenario-based algorithm approach for
the stochastic adaptive robust VPP dispatch model in Table 2. In addition, the efficiencies of the two
algorithms are compared in Figure 8.

Table 2. Comparison of the solutions obtained using the binding scenario identification approach and
the standard scenario-based approach [32] for the stochastic adaptive robust VPP dispatch model.

Optimized Results Case 1 Case 2 Case 3 Case 4 Case 5

Number of scenarios 50 100 150 200 250
Number of iterations 4 3 3 3 3

Binding scenariosubsets 1/23/49/37 1/12/9 1/110/32 1/41/186 1/171/14
VPP profit of binding scenario approach (€) 3199.4 2932.4 2862.3 2836.6 2929.7

VPP profit of standard scenario-based approach (€) 3199.4 2932.4 2862.3 2836.6 2929.7
Auxiliary variable τMP of binding scenario approach (€) −3848.1 −3848.1 −4021.1 −3954.9 −3951.6

Auxiliary variable τMP of standard scenario-based approach (€) −3848.1 −3848.1 −4021.1 −3954.9 −3951.6

As is shown in Table 2, the VPP profit and τMP values obtained by the two algorithms are
equivalent for all Cases 1–5. These results demonstrate that the subset identified by the binding
scenario identification approach can accurately replace the initial PV output scenario set, that is,
the non-binding scenarios have no effect on the optimization results. Therefore, the binding scenario
identification approach provides an equivalent solution accuracy as that obtained by the standard
scenario-based approach. In terms of algorithm efficiency, Figure 8 demonstrates that the computation
time of the standard scenario-based approach increases sharply with an increasing number of scenarios.
In fact, the stochastic adaptive robust VPP dispatch model may eVen be unsolvable by the standard
scenario-based approach for a sufficiently large-scale scenario set, as shown in Table A5 of Appendix A.
In contrast, the required computation time of the binding scenario identification approach increases
much more slowly with an increasing number of scenarios, indicating that the computational efficiency
is much greater than that of the standard scenario-based approach, particularly with large-scale
scenario sets.
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Figure 8. Comparison of the computational efficiencies of the two algorithms for solving the stochastic
adaptive robust VPP dispatch model.

6. Conclusions

This paper established a stochastic adaptive robust dispatch model for a VPP that aggregates a PV
power plant, a gas turbine power plant, an ESS, a CACS, and interruptible load while considering VPP
participation in the DAM, RTM, and CTM simultaneously and uncertainties in the electricity market
price and PV generation output. The stochastic programming approach was adopted for addressing the
uncertainty in electricity market price, and the adaptive robust approach was adopted for addressing
the uncertainty in PV generation output. The model was decomposed into a master problem and
a sub-problem using the binding scenario identification approach. The master problem was used
to solve the single-level optimization model with the binding scenario subset, and the sub-problem
was used to identify the binding scenario subset. Finally, the validity of the model and algorithm
was verified by a case study with varying numbers of PV generation output scenarios. The primary
conclusions can be summarized as follows:

• Simultaneous participation in the DAM, RTM, and CTM allows the VPP to dispatch flexibly
according to the electricity market price, which improves the profitability of the VPP and adapts
its functionality to emerging low carbon emission requirements.

• The VPP can conduct the coordinated scheduling of aggregated units, such as the interruptible
load and CACS, to reduce electricity consumption during high electricity price periods and
alleviate problems associated with peak loads via load shifting.

• The binding scenario identification approach greatly reduces the number of scenarios that must
be considered, and thereby increases the computational efficiency of the solution algorithm.
The required computation time increases slowly with increasing size of the scenario set, so that
the solution algorithm is adaptable to the stochastic adaptive robust VPP dispatch model with
large-scale scenario sets.

• The binding scenario identification approach accurately identifies the binding scenario subset,
and therefore attains an equivalent solution accuracy as that of the standard scenario-based
approach, while providing a greatly increased computational efficiency.

Future works will focus on two major parts: firstly, the effects of CACS modeling parameters
on VPP profit will be studied. Secondly, the stochastic adaptive robust model for VPP dispatch and
binding scenario identification approach will be tested using more real market scenarios.
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Appendix A

Table A1. Parameters of the TAU5670 gas turbine.

Maximum/Minimum
Output (MW)

Ramp-up/Ramp-down
Limit (MW/h) Start-up/Shut-down Cost (€) Fixed Production Cost (€)

5.67/2.5 3/3 30/30 30

Slope of Segment l/2/3
(€/MW)

Minimum Up/Down
Time (h) Initial Up/Down Time (h) Carbon Emission

Coefficient/Quota (t/MWh)
40/45/50 2/2 0/1 0.184/0.3863

Table A2. Parameters of the CACS.

Qch,max (MWh) Qst,max (MWh) Qre,max (MWh) Sc,max (MWh) ηst ηre µch µst µre

10 5 5 26.4 0.95 0.92 5.6 0.008 0.007

Table A3. Parameters of the ESS.

gesc,max (MW) gesd,max (MW) Ses,max (MWh) ηc ηd

8 8 40 0.9 0.9

Table A4. Parameters of the public building.

Type Kwall,q * (W/(m2·K)) Kwall,d * (W/(m2·K)) Awall/Awin (Tcl+Td)E ** (◦C) (Tcl+Td)S ** (◦C)

Building 1.49 0.6 0.7/0.3 39 35.6

(Tcl+Td)W ** (◦C) (Tcl+Td)N ** (◦C) (Tcl+Td)H ** (◦C) Kwin(W/(m2·K)) qwin,E ** (W/m2) qwin,W ** (W/m2)
39.4 34.9 37.6 5.8 531 531

qwin,S ** (W/m2) qwin,N ** (W/m2) Fcl,E ** Fcl,S ** Fcl,W ** Fcl,N **
195 145 0.31 0.81 0.24 0.85

Fd Fs k1 k2 k3 k4
0.93 1 0.7 0.7 1 0.85

k5 k6 k7 Sh(W/(m2·K)) Ccl qsh(W)
1 1 0.7 10.63 0.03 63.94

qlh(W) ϕ Gn(m3/per·h) n Ple,ep *** (kW) Ple,lp *** (kW)
117.46 0.89 10 3000 1280.13 1280.13

Phe,ep *** (kW) Phe,lp *** (kW) Ain,ep *** (m2) Ain,lp *** (m2) Ca(J/kg·◦C) ρa(kg /m3)
— — 4704.7 4704.7 0.28 1.29

* Terms subscripted with q and d refer to the respective values obtained for external walls and roofs, respectively. **
Terms subscripted with E, S, W, N, and H refer to the respective values obtained in the east, south, west, north,
and roof positions, respectively. *** Terms subscripted with ep and lp refer to the respective values obtained in the
early and late peak-shaving periods, respectively.

Table A5. Comparison of the computation times of the two algorithms in Cases 6–10.

Optimized Results Case 6 Case 7 Case 8 Case 9 Case 10

Number of scenarios 400 500 600 700 800
Computation time of binding scenario approach(s) 66.56 86.63 110.34 133.67 165.48

Computation timeof standard scenario-based approach(s) 421.44 882.88 1049 Unsolvable Unsolvable
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Figure A1. Load demand over a single day.
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Figure A2. Five electricity market price scenarios: (a) day-ahead price scenarios; (b) real-time
price scenarios.
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Figure A4. PV power output scenarios of Cases 2–5 randomly generated: (a) 100 scenarios (Case 2);
(b) 150 scenarios (Case 3); (c) 200 scenarios (Case 4); (d) 250 scenarios (Case 5).
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