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Abstract: Currently, one of the biggest concerns of human beings is greenhouse gas emissions,
especially carbon dioxide emissions in developed and under-developed countries. In this study,
connectionist models including LSSVM (Least Square Support Vector Machine) and evolutionary
methods are employed for predicting the amount of CO2 emission in six Latin American countries,
i.e., Brazil, Mexico, Argentina, Peru, Chile, Venezuela and Uruguay. The studied region is modelled
based on the available input data in terms of million tons including oil (million tons), gas (million tons
oil equivalent), coal (million tons oil equivalent), Rew (million tons oil equivalent) and Gross Domestic
Product (GDP) in terms of billion U.S. dollars. Moreover, the available patents in the field of climate
change mitigation in six Latin American countries, namely Brazil, Mexico, Argentina, Peru, Chile,
Venezuela and Uruguay, have been reviewed and analysed. The results show that except Venezuela,
all other mentioned countries have invested in renewable energy R&D activities. Brazil and Argentina
have the highest share of renewable energies, which account for 60% and 72%, respectively.

Keywords: CO2; modelling; environment; South America; connectionist model

1. Introduction

The continuous rise of carbon dioxide emissions is a major cause of global warming.
Global warming is one of the biggest and probably most difficult environmental, social and economic
threats that the world has faced so far in the recent century [1]. Increasing carbon dioxide emission
into the atmosphere is one of the main reasons for global warming with adverse environmental effects
such as sea level rise, floods, droughts, etc. During the 20th Century, the average temperature of the
Earth increased by 0.6 degrees, and it is estimated that it will increase 1–5 more degrees in the next
century [2]. According to the studies conducted by the World Meteorological Organization, the average
global temperature in 2015 was the highest one ever recorded. Based on research, a combination of
El Niño streams and global warming resulting from human activities has led to the highest recorded
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average global temperatures in 2011–2015. The COP21 conference in Paris could be regarded as a
sign of solidarity and amenability for tackling the problem of climate change. The primary aim of
COP21 was to prevent the increase of global temperature under two degrees Celsius and also to limit
this increase under 1.5 degrees compared to the time before industrialization. One of the outcomes of
this treaty was the enactment of supporting plans for providing financial resources for countries to
reconstruct damaged structures polluting the environment.

One of the substantial solutions in facing climatic changes is a reduction of carbon dioxide
emission [2,3], and the best way to prevent destructive environmental outcomes is capturing and
storing this gas [4]. One of the key research works in the field of carbon capture and storage technology
was about analysing the potential of carbon capture and storage in power plants [5]. Due to the fact
that the available systems in such power plants are the same as the kind of available capture systems
in coal power stations, an estimation has been made about the reduction of greenhouse gas effects
until 2030 via carbon capture and storage technology. In the first stage, researchers have found that the
initiation time and dispersion rate of the technology are of importance when it comes to determining
the emission reduction rate and fuel consumption for carbon capture and storage technology [6].
The influential approaches that are currently carried out are, namely, making energy systems more
efficient to decrease and restrict the increasing consumption rate of fossil fuels, applying practical
strategies for carbon capture and storage technologies, taking the benefits of CO2 by converting it
into useful products, introducing renewable energies to the energy mix, limiting deforestation and
replanting, respectively. Based on the records, the foremost sources of CO2 production, i.e., one third of
global carbon dioxide production, are conventional fossil fuel power plants, oil and gas refineries [1].

Modelling the CO2 emission in order to predict the influence of other factors such as utilized
energy will be helpful for researchers and policy makers to have a broad vision about future energy
demand, which is entwined with a sustainable environment. The amount of CO2 production of
a country is highly affected by some factors such as the transportation system, the efficiency of
power plants and specifically the energy consumption pattern of residents [7–10]. Ruiz-Mendoza an
Sheinbaum-Pardo [11] analysed the effect of reforms performed on the electricity generation sector
and their effect on carbon dioxide production in Latin American countries. The authors monitored
1990–2006 and reported that, except Columbia, which increased its capacity for renewable energies,
specifically in the hydropower sector, the other countries in this region decreased the installation
capacity of renewable sites. Therefore, the amount of CO2 emission has remained almost constant in
other countries. Jardon et al. [12] proposed an empirical correlation between the production of carbon
dioxide (per capita) and economic issues. In this study, the authors analysed the validation of the
hypothesis that in long-term periods, economic growth would be possible if environmental issues
are addressed, as well, and rejected this statement for Caribbean and Latin countries. Zaman and
Moemen [13] carried out an investigation to analyse the relation between utilization of renewable
energies, fixed cropland, the technology of exporting, health issues and CO2 production in 14 selected
countries in Latin and Caribbean countries. It was found out that fixed cropland and electricity
production from fossil fuels have a negative effect and increase the amount of CO2 production,
while utilization of renewable technologies and using high-level technologies lower the negative
impacts on the environment. Hanif [14] analysed the impact of fossil fuel consumption, electricity
generation, the amount of imported oil and urbanization on the energy-environment-economic nexus
in Latin American countries (1990–2015). It was concluded from the findings that it is necessary for
these countries to develop and apply renewable energy programs to increase the quality of their
environment and also decrease their dependency on oil importing.

Evolutionary algorithms, as well as machine learning are considered as powerful tools in the
modelling of different energy systems [15]. For instance, the group method of data handling and
least squares support vector machine are applied to model several engineering systems by selecting
appropriate input data for proposing precise models [16,17].
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The major distinction that gives superiority to renewable energy is the lower amount of GHGs
(greenhouse gases) emission in comparison to typical fossil fuels. Different techniques and equipment
are employed in energy systems for electricity production or other possible energy conversion targets
such as heating or cooling, etc. [18–23].

Geothermal, solar and wind are the most practical sources of renewable energies, which have
been developed vastly in recent years [24–32]. These sources are utilized in various applications such
as power production, proving heating loads, freshwater production systems, etc. [33–38]. The amount
of GHGs emission can be reduced by either increasing the portion of renewable energies in the
total energy consumption or by improving the operational efficiency of energy-conversion systems.
Various investigations have concentrated on optimization and enhancement of energy-conversion
systems to reach more desired operating statuses [39–41]. One of the powerful tools that is highly
utilized in the modelling process of the energy-conversion systems is machine learning. A recent
method based on machine learning was introduced, Least Squares Support Vector Machine (LSSVM),
which has been vastly used in modelling of engineering systems [42–51].

Applicable and fit data are required to have an accurate model. In this investigation, the input of
the designed model was fuel consumption (i.e., oil, natural gas, coal and possible renewable energy
sources) of countries in South America and the GDP of each studied country in the period from
1990–2016. The amount of carbon dioxide emission in each year was defined as the output of the study.
Here, all of the influential items that were considered by other researches are gathered in order to give
an inclusive model. Moreover, the most highlighted novelty of this study is proposing a mathematical
model to estimate the amount of carbon dioxide emission of different countries in the region of South
America and Mexico. The precision of the introduced model is examined and evaluated by statistical
methods including relative error and R2 (R-squared).

Furthermore, patents can provide visual information about the future of the technology and
the amount of investment in a policy. Accumulated numbers of published patents by a country not
only determine the industrial orientation, but also demonstrate the future program of that country
in a specific domain. Therefore, the mentioned countries are investigated in terms of the published
patents in the technologies for mitigating greenhouse gas emission. In this paper, all patents that have
been published by Brazil, Chile, Argentina, Uruguay, Mexico, Peru and Venezuela are extracted and
analysed. Finally, the top five published patents by the mentioned Latin countries for mitigating CO2

emission technology are indicated.

2. Methodology

Based on Ahmadi et al. [52,53], applying some non-population optimization methods such as
Levenberg–Marquardt (LM) and Simplex Simulated Annealing Algorithm (M-SIMPSA) is not practical
since these approaches are not able to handle the SVM techniques since the nonlinearity factor is high.
Therefore, GA, which is a population-based optimization method, was employed in order to assess the
two major factors of γ and σ2. In addition, a fitness function was used in the external optimization
process, i.e., the Mean Squared Error (MSE) of estimated data. In order to specify the most optimum
result of the fitness function, the optimization process was repeated several times. Here, the LSSVM
machine learning technique was hybridized with GA, PSO, ICA and GAPSO to model an accurate
estimation of CO2 production in Latin American countries. Each methodology is briefly discussed in
the following.

2.1. Least Squares Support Vector Machine

Suykens and Vandewalle introduced LSSVM for the first time in 1999 and applied it to the primary
kind of SVM, in order to specify the regression and function. Over-fitting issues were recognized as a
challenging situation when dealing either with conventional SVM or feed-forward neural networks.
Therefore, the LSSVM is proposed to surmount this specific barrier. Here, Xi, Rew, and GDP were
defined as the input values of the problem, and Yi was the objective output. The time series of Xi
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consisted of oil (million tons), gas (million tons oil equivalent) and coal (million tons oil equivalent).
Rew and GDP were measured as million tons oil equivalent and in billion 2005 U.S. dollars, respectively.
Overall, the LSSVM nonlinear function can be demonstrated as follows [54–59]:

f (x) = wTφ(x) + b (1)

f illustrates the relation between input variables and the objective function of CO2 production
(million tons). Input variables were oil (million tons), gas (million tons oil equivalent), coal (million
tons oil equivalent), Rew (million tons oil equivalent) and GDP (billion 2005 U.S. dollars). w represents
the weight vector (m-dimensional); φ maps x into the characteristic vector (m-dimensional); and b
states the bias [54–56].

In order to minimize the topology, defining a fitting error function is necessary for solving the
regression problem [45–50]:

minJ(w, e) =
1
2

wTw + γ
m

∑
k=1

e2
k (2)

However, a constraint should be noted as follows [45–50]:

yk = wTφ(xk) + b + ek k = 1, 2, . . . , m (3)

In Equation (3), y is defined as the margin variable and ek indicates the loose parameter of
xk [55–59].

Employing the Lagrange multipliers αi in order to change the previous limited problem to an
unlimited problem is a strong and efficient tool to determine the optimization problems that are stated
in Equation (2) [55–59]:

L(w, b, e, α) = J(w, e)−
m

∑
k=1

αi{wTφ(xk) + b + ek −Yk} (4)

As stated in the investigation of Karush–Kuhn–Tucker (KKT), considering the stated variables
including w, b, e and α and also performing the partial derivatives of Equation (4), the optimum
condition can be expressed as follows [55–59]:

w =
m

∑
k=1

αiφ(xk)

m

∑
k=1

αi = 0

αi = γei

wTφ(xi) + b + ei −Yi = 0

(5)

Therefore, the linear equations are specified as [55–59]:[
0 −YT

Y ZZT + 1/γ

] [
b
α

]
=

[
0
1

]
(6)

In Equation (5), Y, Z, I and α are defined as: {Y = Y1, . . . , Ym}, Z = φ(X1)
TYi, . . . , φ(Xm)TYm,

I = [1, . . . , 1] and α = [α1, . . . , α1], respectively. By applying the kernel function of K(X, Xk) =

φ(X)Tφ(Xk), i = 1, . . . , m, the discussed LSSVM regression is formulated as follows [55–59]:

f (x) =
N

∑
k=1

αkK(x, xk) + b (7)
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The Radial Basis Function Kernel (RBFK) is typically utilized in regression errors. This function is
stated as follows [55–59]:

K(x, xk) = exp
(
−||xk − x||2

σ2

)
(8)

In Equation (8), σ2 indicates the squared bandwidth. This parameter should be calculated
during any optimization procedure, such as the GA optimization method, in order to have a potent
optimization approach. The Mean Squared Error (MSE) of the results of the LSSVM optimization
approach is defined as the target function. The MSE of the results of the LSSVM method can be
expressed as follows [60–67]:

MSE =
∑n

i=1 CO2rep/predi
− CO2measi

ns
(9)

where CO2 illustrates the amount of CO2 emission (million tons) and subscripts rep/pred and meas
denote predicted and measured amount of CO2 emission, respectively. The number of samples from
the original population is indicated by ns. In this investigation, the evolved model of the LSSVM
method, which was previously implemented by Pelckmans et al. [59] and Suykens and Vandewalle [60],
was applied.

In general, Equation (10) simply states the optimization issue:

Min F(γ, σ2) = Min(MSE) (10)

2.2. Evolutionary Algorithms

2.2.1. Genetic Algorithm

The preliminary stage of the Genetic Algorithm (GA) procedure is to form the primary population.
Then, every stage is precisely assessed to form a statistical fitness function. In the following, every stage
should be evaluated to be compatible. The “global best satisfactory” result, which is the result with a
range of acceptable error, ended the algorithm, and then, the parameters were extracted and reported.
When the global best satisfactory result was not achieved, weaker individuals were opted to be deleted
in the next stage. In the next stage, in order to decrease the error, mutation and cross-over operations
were applied. This stage is then called the “evaluation fitness” [68–71]. The process of the genetic
algorithm LSSVM is demonstrated in Figure 1.

Figure 1. The overall scheme of the GA-least squares support vector machine method [72].
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2.2.2. Particle Swarm Optimization

At the commencement of Particle Swarm Optimization (PSO), pattern arbitrary locations and
velocities are used to initialize the primary population. The particle’s fitness is then performed by
utilizing the statistical function. The desired factors are extracted, when the particle’s fitness rate
meets the stopping norms. In the cases that the desired fitness rate is not achieved, in order to fulfil
the requested rate, the particle’s velocity and locations are varied under specific conditions. In the
first step, the global best factor should be evaluated and used to monitor how the particle fitness is
in comparison to the global best. An update to the pertinent factors of the prime particle is needed
when the fitness is greater than the global paramount fitness. At last, subsequent particles should
be assessed again by changing the direction to the 2nd stage [73–76]. The schematic process of the
PSO-LSSVM is illustrated in Figure 2.

Figure 2. The overall scheme of the PSO-least squares support vector machine [72].

2.2.3. Hybrid PSO and GA

This hybridization is started by arbitrarily forming the primary population and its following
assessment. The process is stopped when the regulated values of the amount of produced error of
the best individual is achieved. If the regulated values are not met, then the procedure continues
to reach toward the closest acceptable range by utilizing the PSO algorithm. In this algorithm,
the number of leaders are increased, tournament selection is carried out based on the chaining
processes, mutations and cross-over operations are applied and, finally, the fresh offspring are
generated. New populations with improved characterizations of elites and offspring are generated
by merging the effects of these two methods with each other [77,78]. The box chart of the Hybrid
GAPSO-LSSVM method is shown in Figure 3.



Energies 2019, 12, 1916 7 of 20

Figure 3. The overall scheme of the hybrid approach of PSOGA-least squares support vector machine
method [72].

2.2.4. Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) follows a similar process as GA to solve optimization
problems. However, ICA is based on a human socio-political organization and evolution strategy
instead of the biological evolution of GA. ICA creates several social domains, transferring a number of
colonies to their related domains. Then, the colony’s cost of an empire should be evaluated. A variation
in the locations of domains and colonies is needed when the colony’s cost is high for a specific domain.
After that, the cost of all domains is computed in the next step. In the following phase, the greatest
colony of the greatest domain owns the colony with the lowest potential. Afterwards, all domains
without colonies should be cut. The next level is to examine the breaking sets to monitor the amount
of satisfaction to cease the algorithm [79,80]. The schematic diagram of the ICA-LSSVM method is
demonstrated in Figure 4.

The LSSVM Lab 1.8 free toolbox and GA Toolbox of MATLAB R2009a were used to optimize
the GA-LSSVM problem. In addition, other optimization techniques including ICA, PSO and
hyper-PSOGA were coded and run in MATLAB software in order to determine the hyperparameters
of the LSSVM. When the dataset was identified and collected, the model was formed and the input
parameters into the model and the target output of the model were specified. Based on the reported
data from the mentioned literature, the amount of carbon dioxide emission (million tons) was selected
as the output of the LSSVM model and forecasted.

The collected real data were classified into two subclasses: 80% of the total data, which was
68 data points or 55 data lines, were employed in the training process; the other 20% of the data
established the test and validation process to verify the recommended method.

The RBF was opted for this problem, since there were few variables in this optimization problem
and also the 1st-rate total performance of the RBF kernel function. Based on the literature, the RBF
is in agreement with other kernel functions and also is highly practical [81,82]. In the process of
modelling the problem utilizing the LSSVM with RBF kernel function, the feature of parameters γ

and σ2 is a fundamental task (see Equation (8)). These parameters have a noticeable role in verifying
the acceptance of the LSSVM approach used. Here, the regularization factor is indicated by γ, and σ

denotes the kernel sample variance [83] (see Figure 5).
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Figure 4. The overall scheme of the Imperialist Competitive Algorithm (ICA)-least squares support
vector machine method [72].

Figure 5. Schematic diagram of the employed methodology to predict the amount of produced carbon
dioxide in Latin American countries (mtoe: million tons oil equivalent; b$: billion dollars).

3. Patent Analysis

Is there any helpful technology for mitigating greenhouse gas emission? What are the
technological roles of South American countries in mitigating greenhouse gas emission? One of the
reliable approaches to denote the technological profile of countries is patent analysis. Patents have a
technical value, determining the market potential [84,85]. The economics of a patent can be an indicator
of the market tendency of that technology. The patent provides useful information for the business
developer, policy makers and researchers. To extract this information and visualize it, analysing the
patent is required [86]. Patent analysis, besides showing the technology trend, can demonstrate
countries’ orientation on the specific technology sector. The total published patents in the specific
technology by a country may indicate is movement in that specific industry. Additionally, one of the
interesting results of the analysis of the patent can be the indication of a hot area in technology. Indeed,
the specific groups of technology used by a country are found by this analysis.
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Therefore, what are the technological approaches of these countries for mitigating CO2 emission?
Have they matured in their technology? To estimate their technological approaches, investigating
patents could be helpful. To find the technology status, the technological life cycle is curved.
As was said earlier, patents were used as data for this investigation. Patents can be assumed as
one of the most reliable indexes for estimating technology development. Patents, by stimulating the
economy and technological innovation, motive firms to develop the technology [79,81]. Patents play
a climatic role in highlightingbetter technology life cycles and each step through innovation,
technology development to market growth [78]. The data were extracted from the SaaS online
database, Patentispiration (Patentispiration.com). Finding the best approach for mitigating CO2

emission technologies that are employed by the mentioned countries was determined by investigating
the obtained patents. Thus, the exactness of the extracted patent is the key factor of this investigation.
Since searching patents by keywords may not be an efficient method, the combination of keywords and
patent codes significantly increased the data accuracy. In the first place, interviewing of experts was
done to refine the main keywords. Then, the patents were searched by keywords, which are shown in
Figure 6. These keywords were candidate from the result of interviewing.

Figure 6. Related keywords for searching patents.

After searching by keywords, the extracted patents were screened to find key codes. Key codes
refer to CPC (Cooperative Patent Classification), which organizes the patents into nine classes.
Searching patents by codes averts extracting irrelevant patents; therefore, this approach certifies
the accuracy. For better insight into the technology categories, the hierarchy of CPC of the patent
survey is presented in Table 1.

Table 1. The hierarchy of the extracted patents on climate change mitigation technologies.

Section Class Subclass Definition

Y02A Technologies for adaptation to climate change
Y02B Indexing scheme related to buildings
Y02C Capture, storage, sequestration or disposal of greenhouse gases

Y Y02 Y02D Information and communication technologies
Y02E Reduction of GHG emission related to energy generation and distribution
Y02P Production or processing of goods
Y02T Transportation
Y02W Wastewater treatment or waste management
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After finding key codes, the patents of Brazil, Argentina, Mexico, Peru, Venezuela, Chile and
Uruguay were analysed. The extracted patent database covered 1970–2017.

4. Results and Discussion

The values of σ2 and γ for the studied methods including GA, PSO, ICA and hybrid GAPSO were
obtained and are listed in Table 2. In addition, sensitivity analysis was performed on the numbers of
the introduced digits of the mentioned variables.

Table 2. The hierarchy of extracted patents on climate change mitigation technologies.

σ2 γ

Genetic Algorithm (GA) 5.32 51,088.13
Particle Swarm Optimization (PSO) 5.3178 51,037.11
Imperialist Competitive Algorithm (ICA) 5.3069 50,099.84
Hybrid GAPSO (HGAPSO) 5.3296 52,039.38

The predicted obtained values through the GA-LSSVM model in comparison to the real amount
of measured carbon dioxide emission for South America is depicted in Figure 7a. In order to obtain
the best linear fit line between the predicted and real amount of CO2 emission, a correlation coefficient
of 0.9965 resulted in the GA-LSSVM. The closeness of the coefficient to the unit demonstrates that the
forecasted and measured data points were similar. The scatter plot of the amount of forecasted CO2

emission through PSO-LSSVM vs. the measured data is illustrated in Figure 7b. Applying the
PSO-LSSVM method resulted in the correlation coefficient of 0.9957 for the best linear fit line
between the predicted and measured values of CO2 emission. It can be seen than the calculated
correlation coefficient was closer to unity in PSO-LSSVM than the GA-LSSVM method, and it can
be stated that the precision of PSO-LSSVM model was higher and the estimations close enough to
the measurements of the carbon dioxide emission. The regression plot of the obtained results from
the HGAPSO-LSSVM method and related actual amount of carbon dioxide emission is demonstrated
in Figure 7c. The regression of the predicted results through the ICA-LSSVM model in comparison
to actual measured data of the carbon dioxide emissions is depicted in Figure 7d. As can be clearly
understood, based on the values of the correlation coefficient, the ICA-LSSVM approach gained the
lowest amount among all other models, including PSO-LSSVM, GA-LSSVM and HGAPSO-LSSVM.

It was concluded that among all the discussed methods, the HGAPSO-LSSVM technique was
more accurate based on the obtained correlation coefficients. In addition, the relative deviation of the
calculated results through the discussed methods vs. corresponding oil production (million tons) is
demonstrated in Figure 8. It can be seen from Figure 8a that the obtained results from the GA-LSSVM
model deviated from actual measured carbon dioxide emission values by 20%. This means that the
deviation of the obtained results by the GA-LSSVM model from the real measured amount of carbon
dioxide was about 15%. It can be understood from Figure 8b that the deviation of the obtained results
through the PSO-LSSVM model was in the range of 22%. It can be stated that the error of estimations
from the PSO-LSSVM model was between the error lines of −22% and +22%. The relative error
graph of the estimations based on the HGAPSO-LSSVM model in comparison to the actual measured
data to carbon dioxide emission is depicted in Figure 8c. It can be clearly seen from Figure 8c that
the highest error of the HGAPSO-LSSVM model was in the range of 12%. The relative deviation
results of ICA-LSSVM model are shown in Figure 8d. It can be seen from Figure 8d that the highest
deviation of the ICA-LSSVM approach from actual CO2 emission was −22%. The relative error
distribution shows that the HGAPSO-LSSVM method had dominance in comparison to the other
discussed LSSVM models. Overall, two dependable statistical benchmarks including Average Absolute
Relative Deviation (AARD%) and MSE were applied to determine powerful intelligent techniques
among the recommended LSSVM models.
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(a) Estimated values obtained from
the GA-LSSVM approach vs. actual
measured values of CO2 emission

(b) Output of the PSO-LSSVM model
vs. actual measured data of CO2

emission

(c) Estimations based on the
HGAPSO-LSSVM model vs. actual
CO2 emission

(d) Prediction based on the
ICA-LSSVM technique vs. actual
measured CO2 emission

Figure 7. Model comparison.

(a) Relative error of the estimations
based on GA-LSSVM

(b) Relative error of the estimations
based on PSO-LSSVM

(c) Relative error of the estimations
based on HGAPSO-LSSVM

(d) Relative error of estimations
based on ICA-LSSVM

Figure 8. Relative error per model.
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The obtained AARD (%) from the LSSVM methods and the actual logged data of carbon dioxide
emissions are compared and demonstrated in Figure 9a. In addition, Figure 9b depicts the comparison
between the resulting MSE of different LSSVM models. It can be seen from Figure 9 that the
HGAPSO-LSSVM technique is an accurate and precise method for estimating CO2 emission in gas
injection processes.

(a) Average Absolute Relative Deviation
(AARD) of the studied LSSVM
approaches

(b) Mean Squared Error (MSE) of the
studied LSSVM approaches

Figure 9. Errors for the LSSVM-based models.

The obtained programming codes and the required instructions are straightforwardly accessible
and will be shared readily with others. Therefore, people can easily use the model to re-calculate all of
our results and may predict carbon dioxide emission for any circumstances.

The patent analysis result of the technology trend for mitigation of CO2 shows that Brazil with
5885 patents is the leader in mitigation of CO2 emission technology so far. All the published patents of
the South American countries are illustrated in Figure 10.

Figure 10. The number of published patents in South American countries.

Mexico has published 2644 patents and after Brazil is the second pioneer country. According to
the extracted data, which were patents in this case, only 101 patents have been published by Uruguay.
The trends of published patents by these countries from 2007–2017 are illustrated in Figure 11. What can
be noted in the countries’ trends is that Chile and Peru have accelerated working on mitigating
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technologies. The top patent main technology groups that indicate movement of these countries to
mitigate CO2 emission will be discussed further. The country with a modest behaviour would be
Venezuela. Furthermore, Mexico can be considered as the next most modest country in published
patents. In fact, the published patents by country in the specific technology determines R&D activities
and expenditure directed toward mitigating CO2 emission.

Figure 11. South American countries’ activity in the recent decade.

Brazil and Mexico have the biggest economies in Latin America, which determines their
remarkable role in CO2 mitigation. Although the CO2 emission from Brazil and Mexico is not the
highest one, their policy and program to enhance mitigation action are considered globally [87].
Argentina has the fourth biggest economy in Latin America. In spite of being a relatively small CO2

emitter, Argentina has made efforts to mitigate CO2 emission recently. Peru is one of the countries
that ratified the Paris agreement. The annual rate of CO2 emission of Peru in 2016 was 2.67%,
which determines 0.68 metric tons CO2, increasing from 1997–2016 [88]. As is obvious in Figure 11,
Uruguay patent trends have not increased or faced a considerable change during the last decade.
About 80% of CO2 in Uruguay was produced by the agriculture sector in 2013 [89]. According to its
GDP, Venezuela has the seventh largest economy in Latin America. The main source of CO2 emission
is energy in Venezuela. The total produced CO2 by Venezuela in 2014 was 6.03 metric tons [89].
Chile is another important Latin American country with a high GDP. The total CO2 emission by
Chile in 2016 was 5.45 metric tons [90]. To find out the technological orientation of the mentioned
Latin countries, the main technology groups of each country’s patents are illustrated by Figure 12,
which considers the technologies for mitigating CO2 emission published as patents by the mentioned
Latin American countries, except Uruguay. The reason for considering Uruguay as an exception is the
low number of patents. Only 45 patents have been published by this country, which demonstrates
that the major activity by Uruguay is to promote renewable energies. Being a developing country and
less industrialized, and not significant, does Uruguay have an influence on CO2 emission? However,
the approach of Uruguay to reduce CO2 is promoting renewable energies. The energy sector in
Uruguay contributed more than 90% of CO2 emissions, and the ambition is to reduce this by 29% by
2025 [91].
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(a) Brazil (b) Mexico

(c) Argentina (d) Chile

(e) Peru (f) Venezuela

Figure 12. Top five published patents by country in mitigating CO2 emission technology.

Figure 12a demonstrates the top five patent technology scopes that have been published by Brazil
since 1970. Energy generation through renewable energy resources and technologies for the production
of fuel of non-fossil origin, which is 60%, is the lion’s share of technologies for mitigation of CO2

emission. Production of fuel from non-fossil fuel origin includes biofuel technologies. One of the
programs for achieving 10% reduction of greenhouse gasses by 2028 is Brazil’s biofuel mix stimulation
from the current 20% to 28.6% [92]. In fact, Brazil’s key strategies include a deforestation action plan
and developing renewable energies. The other approach in order to reduce CO2 emission involves the
industrial sector: modifying the efficiency of processes [93]. Mexico as the second biggest economy in
the region, besides developing a renewable energies program, concentrates more on specific regulatory
tools in the industrial sector. As is obvious in Figure 12b, only 13% of the top five technologies are
allocated to energy generation through renewable energy resources. Mexico is the thirteenth largest
steel producer in the world, which produces more than 14% CO2 [94]. For that reason, the four other
areas of technologies in which more efforts are made in the R&D activities are the metal and related
chemical industries. Therefore, the main program for mitigation of CO2 emission in Mexico would be
improving the energy efficiency. Regarding Figure 12c, which demonstrates the technology sector in
Argentina with respect to published patents, energy generation through renewable energy resources
accounts for more than 70% of the patents. Road transport of goods or passengers and arrangements
for handling mechanical energy structurally associated with dynamo-electric machines are the next
highlighted ones. Their target that the net emissions must not exceed more than 483 MtCO2eq is
divided into three main sectors, which are energy, forest and transport. The main scenario for Argentina
to mitigate CO2 is renewable energies’ promotion [95]. Indeed, developing renewable energies has
gained the majority of funds in Argentina through the renewable energy auction program of Argentina
(RenovAr). As a result of the first round of this program, the total wind and solar capacities are
3469 MW and 2813 MW, respectively [96]. The top five patent technologies that have been published
by Chile from 1970–2017 are illustrated in Figure 12d. Being the world’s largest exporter of copper [97],
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the main published sector of technology by Chile is the industrial sector. Although expanding the
renewable capacity and transition from coal to non-conventional resources for energy supply comprise
the main action plan of Chile in order to reduce CO2 emission, enhancing the efficiency of industrial
processes has received high attention in their R&D activities. Regarding Figure 12e, Peru’s technology
sectors for published patents are somewhat similar to Brazil. The energy generation through renewable
energy sources accounts for 36%, while the four other sectors have the same shares when combined
into two groups. Forestry, energy and agriculture are the three main greenhouse gas sources in Peru.
The main energy sources in Peru for electricity and transportation are gas power plants and imported
oil and gasoline. Renewable energy can be the best opportunity for addressing electricity demand,
and the transportation sector demands can be met by low-carbon technologies [98]. The auction plan
for developing renewable energies by Peru is illustrated in Figure 13.

Figure 13. Renewable energies auction in Peru [98].

Despite other mentioned Latin American countries, in the top five published patents technology
sectors, there is no share of energy generation through renewable energy sources in Venezuela in the
published patents. The lion’s share of the technology sector in the published patents by Venezuela is
technologies related to metal processing, which account for 36%, according to Figure 12f.

5. Conclusions

In this investigation, two artificial intelligence techniques were discussed to estimate the CO2

emission. The LSSVM and evolutionary methods have been used to predict the CO2 emission precisely.
The information used here was gathered from the accessible data in the literature. A comparison was
made between the estimated amounts of CO2 from the optimization techniques and the measured
actual data of carbon dioxide emission. Based on the recommended methods, the following major
conclusions have been extracted:

1. All of the discussed optimization approaches showed agreement for forecasting the amount of
carbon dioxide emission. However, HGAPSO-LSSVM demonstrated a more accurate result and
showed a higher reliability and compatibility. In addition, under specific circumstances with
restricted field information, the significance of these methods was highlighted more than other
predicting techniques.

2. The HGAPSO has the potential to be integrated with other evolutionary algorithms in order to
optimize its parameters and additionally enhance its strength and accuracy.

Moreover, the patents related to climate change mitigation were evaluated in six Latin American
countries, namely Brazil, Mexico, Argentina, Peru, Chile, Venezuela and Uruguay. The results
showed that, except Venezuela, all other mentioned countries have invested in renewable energy R&D
activities. Brazil and Argentina have the highest share of renewable energy, which accounts for 60%
and 72%, respectively.
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