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Abstract: Brønsted acid-catalyzed reactions of α-pinene have been studied because of their ability to
produce various types of fragrance molecules. Beyond this application, dimeric hydrocarbon products
produced from coupling reactions of α-pinene have been suggested as renewable high-density fuel
molecules. In this context, this paper presents the application of a sulfated tin(IV) oxide catalyst
for the partial coupling reaction of α-pinene from turpentine. Brønsted acid sites inherent in this
solid superacid catalyst calcined at 550 ◦C successfully catalyzed the reaction, giving the largest yield
of dimeric products (49.6%) at 120 ◦C over a reaction time of 4 h. Given that the low-temperature
viscosity of the mentioned dimeric products is too high for their use as a fuel in transportation
engines, lowering the viscosity is an important avenue of study. Therefore, our partial coupling
reaction of α-pinene provides a possible solution as a considerable amount of the isomers of α-pinene
still remained after the reaction, which reduces the low-temperature viscosity. On the basis of a
comparison of the reaction products, a plausible mechanism for the reaction involving coinstantaneous
isomerization and coupling reaction of α-pinene was elucidated.

Keywords: solid superacid catalyst; sulfated tin(IV) oxide; α-pinene partial coupling; renewable
high-density fuel

1. Introduction

Turpentine, one of the most widely produced plant-derived secondary metabolites, is a mixture of
monoterpenes. It is made up mainly of α-pinene and its isomers, such as β-pinene and camphene.
Depending on the production method, it is categorized as gum turpentine (produced from oleoresins
of conifers), wood turpentine (produced from aged pine stumps), sulfate turpentine (produced by the
kraft pulping process), and sulfite turpentine (produced by the sulfite pulping process) [1]. Concerns
about fossil fuel depletion and environmental destruction urge us to develop alternative energy
resources. In this regard, turpentine, in which C10 hydrocarbons form major components, has been
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reported as a potential candidate for providing biofuel blends for fueling both spark ignition engines
and compression ignition engines [2–5].

A coupling reaction by which C20 hydrocarbons can be synthesized from renewable α-pinene
has been devised for ramjet propulsion [6–8], but not for conventional jet fuels. This is because the
relatively high carbon number of these compared to that of petroleum-derived fuels tremendously
increases their low-temperature viscosity, which limits the suitability of using dimeric products alone
for transport fuel [9]. Thus, the partial coupling of monoterpene hydrocarbons was suggested as one
possible solution [10]. This agrees with the results reported by Harvey et al., who suggested blending
dimeric products with monoterpene hydrocarbons such as α-pinene, thereby resolving the viscosity
problem of dimeric products [6].

Coupling of monoterpene hydrocarbons has been studied using various types of heterogeneous
acid catalysts, such as Nafion, Nafion SAC-13, montmorillonite K10, Al-incorporated MCM-41,
Pd-Al-incorporated MCM-41, phosphotungstic acid supported on MCM-41, phosphotungstic acid
supported on SiO2, Zeolite Hβ, and silica-alumina aerosol [6–8,11–14]. Given that the isomerization
of monoterpene hydrocarbons is usually attributed to Brønsted acid activity and that Brønsted acids
can also assist in their coupling reactions undertaken in harsh conditions, it has been thought that the
catalytic activities of the above catalysts are caused by Brønsted acid sites and the role of Lewis acid
sites is less significant.

Herein, we used sulfated tin(IV) oxide (SO4
2−/SnO2) as a solid superacid catalyst to carry out

partial coupling of α-pinene for the production of less viscous high-density fuel molecules. SO4
2−/SnO2

catalysts have been used in various types of organic reactions, such as dehydration of sorbitol
and xylose to isosorbide and furfural, respectively, esterification of free fatty acids, the Penchmann
condensation reaction, and deprotection of silyl ether groups [15–19]. Successive chemical precipitation
and immersion in diluted sulfuric acid yielded this catalyst from tin chloride pentahydrate in a facile
procedure. In this study, the catalyst successfully furnished dimeric products from α-pinene with
its isomers in solventless conditions. On the basis of the results, a plausible mechanism for the
isomerization and coupling reaction, in which Brønsted acid catalysis plays a central role, was also
suggested. To our knowledge, no attempt has been made so far to propose a mechanism considering
both reactions together.

2. Materials and Methods

2.1. Catalyst Preparation

To prepare the catalysts, tin oxide powder obtained from tin (IV) chloride pentahydrate
(SnCl4·5H2O) by chemical precipitation, followed by drying, was used as a precursor. Briefly,
a transparent 0.1 M tin chloride solution was prepared by dissolving SnCl4·5H2O in distilled water.
To hydrolyze the tin chloride complex, a 28 wt% aqueous ammonia solution was added dropwise
under vigorous stirring. The addition was stopped when the pH of the solution reached approx. 8.
After a precipitate was separated from clear supernatant liquid, thorough washing was carried out
with a 4 wt% ammonium acetate solution by centrifugation. The white product was then dried in
an oven at 105 ◦C for 24 h and ground into a fine powder. The prepared tin oxide (SnO2) powder
(10 g) was placed in a round flask containing 3 g of sulfuric acid diluted with 20 mL of distilled water.
After sufficient stirring at 80 ◦C, water was removed in vacuo and sulfuric acid-treated SnO2 was
dried and stored in an oven at 65 ◦C. This precatalyst was dried further at 120 ◦C for 12 h, followed by
calcination at 450, 550, 600, and 650 ◦C for 4 h.

2.2. Catalyst Characterization

To understand the properties of the prepared catalysts and elucidate their catalytic activity, we
conducted X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM),
thermogravimetric analysis (TGA), and temperature-programmed desorption of ammonia (NH3-TPD).
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The XRD patterns of the catalysts were collected to compare the crystal structures. The surface
morphology of the catalysts was investigated using FE-SEM. Energy dispersive X-ray spectroscopy
(EDS) and elemental mapping were also performed as part of the SEM investigation. To study the
thermal properties of the catalysts, TGA was carried out. NH3-TPD was performed to characterize
the improvement in the catalyst acidity. The detailed analysis conditions are described in the
Supplementary Materials.

2.3. Catalytic Tests

In a typical experiment, turpentine (5 g), tridecane (2 g, GC internal standard), and catalysts (0.1 g)
were added without any solvent to a 50 mL glass flask equipped with a magnetic Teflon-coated stirrer
and a reflux condenser. The reactor was then loaded on a preheated aluminum heating block and
stirred vigorously. Upon completion of the reaction, the reactor was removed from the heating block
and immediately cooled to room temperature using a cold-water bath. After cooling, the crude reaction
mixture was diluted with n-hexane (100 mL) and filtered over a Celite pad. To estimate the product
composition by the internal standard method, a diluted reaction mixture was analyzed using a gas
chromatograph (7890B) equipped with a DB-5ms column (30 m × 250 µm, 0.25 µm thickness), a mass
spectrometer detector (5977A), and a flame ionization detector (Agilent Technologies, Santa Clara,
CA, USA). The yield of the products and the conversion rate of α-pinene were calculated using the
following equations:

Yield of product i (%) =
Weight of product i

Weight of crude reaction mixture
×100, (1)

Conversion rate of α− pinene (%) =
Consumed weight of α− pinene

Initial weight of α− pinene
×100. (2)

3. Results and Discussion

3.1. Catalyst Characteristics

3.1.1. Catalyst Surface Morphology

To investigate the surface morphological properties of intact tin oxide (SnO2) and sulfated tin
oxide (SO4

2−/SnO2), field emission-scanning electron microscopy (FE-SEM) observation was carried
out. The SEM images in Figure 1a,b show that intact SnO2 has a rough surface, whereas SO4

2−/SnO2

exhibits a smooth one because, although both surfaces consist of globular nanoparticles, the size of the
nanoparticles in SO4

2−/SnO2 was much smaller than that of the nanoparticles in intact SnO2. Energy
dispersive spectroscopy (EDS) analysis confirmed the presence of sulfur-containing groups on the
surface of SO4

2−/SnO2 (Figure S1a–d). In addition, elemental mapping images clearly show a uniform
distribution of sulfur atoms on the surface (Figure 1c and Figure S1e).

3.1.2. Catalyst Crystal Structure

The crystal structures of tin oxide (SnO2) and sulfated tin oxide (SO4
2−/SnO2) calcined at 550 ◦C

was characterized using powder X-ray diffraction, as shown in Figure 2. There were obvious differences
in the diffraction peaks for the species. The diffractogram of intact SnO2 shows a good match to the
ICDD powder diffraction file of cassiterite SnO2 (PDF 00-041-1445), which means that it has a tetragonal
crystal structure similar to that of cassiterite SnO2 (P42/mnm space group). Major diffraction peaks
observed at 2θ = 27◦, 34◦, and 52◦ could be indexed to the (110), (101), and (211) planes of cassiterite
SnO2, respectively. Immersion in diluted sulfuric acid before calcination significantly influenced the
crystal structure. Even though the characteristic diffraction peaks of cassiterite SnO2 were detected in
the diffractogram of SO4

2−/SnO2, the intensities of the peaks decreased significantly and their breadth
broadened considerably. Because this weakening and broadening denotes diminished crystallinity
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and crystallite size [16,20], Figure 2 suggests an amorphous structure and small-sized crystallites of
SO4

2−/SnO2. In accordance with the results presented in previous studies related to sulfated metal
oxides such as SnO2 and ZrO2, sulfate groups on the surface of sulfuric acid immersed SnO2 seem
to hamper both aggregation and crystallization themselves during calcination [17,21,22]. This result
also coincides with the FE-SEM images shown in Figure 1, which shows the difference in the size of
globular nanoparticles making up the surfaces.
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Figure 1. Field-emission scanning electron microscopy (FE-SEM) images of the surface of (a) intact
SnO2; and (b) SO4

2−/SnO2; (c) SEM-energy dispersive X-ray spectroscopy (EDS) elemental mapping
images of SO4

2−/SnO2. The samples were prepared by calcination at 550 ◦C for 4 h. In the overlay
image of SEM and sulfur atom mapping, the gray color represents an area in shadow or surface facing
away from the EDS detector.
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Figure 2. X-ray diffraction patterns of intact SnO2 (black line) and SO4
2−/SnO2 (red dashed line).

The samples were calcined at 550 ◦C. On the basis of the ICDD powder diffraction file (PDF 00-041-1445),
the peaks were indexed as tetragonal crystal structure as cassiterite SnO2 (P42/mnm space group).

3.1.3. Catalyst Thermostability

The catalyst was designed to be applied to the coupling of α-pinene under somewhat harsh
reaction conditions (≥100 ◦C). Our query was whether the catalytic activity over sulfated tin oxide
(SO4

2−/SnO2) could be sustained during the reaction. Because sulfate groups introduced on the
surface of the SO4

2−/SnO2 support by immersion in diluted sulfuric acid are responsible for the
catalytic activity [23], the thermal decomposition behavior of sulfate groups was investigated by
thermogravimetric analysis (TGA). Figure S2 shows the TGA graph of intact SnO2 and SO4

2−/SnO2

calcined at 550 ◦C. SO4
2−/SnO2 displayed two distinguishable weight loss sections, whereas intact SnO2

presented gradual weight reduction throughout the temperature range. The weight reduction of intact
SnO2 and the first weight loss of SO4

2−/SnO2 from 120 to 550 ◦C can be explained by the desorption
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of chemisorbed water molecules and dehydroxylation on the surface of the SnO2 support [20,22].
The difference between the extents of the weight reduction experienced by them may be attributed
to the differences in the surface functional groups, especially sulfate groups, on which water can
interact [23]. In addition, significant weight loss was observed at temperatures higher than 600 ◦C in
the case of SO4

2−/SnO2, which is attributed to the decomposition of sulfate groups on the surface of
the SnO2 support [20,22].

3.1.4. Catalyst Acidity

To qualitatively evaluate the acidities of the intact tin oxide (SnO2) and sulfated tin oxide
(SO4

2−/SnO2) catalysts, we carried out temperature programmed desorption of ammonia (NH3-TPD).
The TPD profiles of desorbed ammonia clearly show an improvement in the acid strength of the catalysts
when SnO2 was immersed in diluted sulfuric acid before calcination (Figure 3a). Peak deconvolution
can help us interpret the meaning of the overlapped peaks. As can be seen in Figure 3b, the profile of
intact SnO2 calcined at 550 ◦C consisted mainly of two peaks centered at approx. 372 ◦C (dark yellow)
and 513 ◦C (dark cyan), which are attributed to weak and strong chemisorption of ammonia. On the
other hand, the SO4

2−/SnO2 calcined at 550 ◦C had four kinds of acid sites which present four peaks
centered at approx. 240 ◦C (magenta), 353 ◦C (blue), 531 ◦C (purple), and 736 ◦C (orange) (Figure 3c).
In particular, the strongest acid sites were attributed to the desorption of ammonia from sulfate groups
on the surface of SO4

2−/SnO2 [24]. This interpretation coincided with the TGA results for SO4
2−/SnO2

shown in Figure S2, which displays a significant weight loss at temperatures higher than 600 ◦C due
to the decomposition of sulfate groups on the surface. In addition to the obvious differences in the
peak number and overall peak intensities in the TPD profiles, the amount of NH3-uptake by the
catalysts also suggests that immersion in diluted sulfuric acid generates much more acid sites than
those developed in intact SnO2 (Table 1).
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Figure 3. (a) Temperature programmed desorption of ammonia (NH3–TPD) profiles of intact SnO2

(black line) and SO4
2−/SnO2 (red dashed line); (b–c) Deconvolution of overlapped peaks in the profiles.

The samples were prepared by calcination at 550 ◦C for 4 h; (d) NH3–TPD profiles of SO4
2−/SnO2

calcined at 550 ◦C (red dashed line), 600 ◦C (blue dotted line), and 650 ◦C (orange line).

The effect of the calcination temperature on the acidity of the sulfated catalyst was evaluated based
on the amount of NH3 uptake (Table 1). Generally, increasing the calcination temperature reduces the
total acid sites of sulfated or phosphated solid acid catalysts [25,26]. Our results coincide with those
reported. However, one difference was found above the 600 ◦C calcination temperature, with a new
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peak centered at approx. 696 ◦C appearing and the disappearance of the peak centered at approx.
736 ◦C in the TPD profiles (Figure 3d).

Table 1. NH3 uptake of intact SnO2 and SO4
2−/SnO2 calcined at different temperatures.

Catalyst Intact SnO2
1

SO42−/SnO2

450 ◦C 2 550 ◦C 600 ◦C 650 ◦C

NH3 uptake (µmol g−1) 171.1 3 1161.8 760.2 400.1 425.0
1 Intact SnO2 was calcined at 550 ◦C. 2 Calcination temperature. 3 Calculated based on the NH3–TPD results.

3.2. Catalytic Tests and Reaction Mechanism

3.2.1. Effect of Catalyst Calcination Temperature on Partial Coupling Reaction of α-Pinene

When it comes to preparing a sulfated metal oxide catalyst using sulfuric acid treatment, a sintering
process is important because the promotion of sulfate groups on the surface of metal oxide occurs
during calcination and the acid sites generated by these sulfate groups offer the essential catalytic
activity [23]. Figure 4 shows stark differences in the effect of the calcination temperature on the catalytic
activity of sulfated tin oxide (SO4

2−/SnO2). The yield of dimeric products from α-pinene (1) was the
largest for the catalyst calcined at 550 ◦C (48.9 ± 1.2%), while almost no conversion to dimeric products
and significantly lowered production were observed below and above this temperature, respectively.
When we tried to correlate the yield of dimeric products with the amount of the total acid sites of
catalysts, unlike previous papers [25,26], there was a large discrepancy in the calcination temperature
range from 450 to 550 ◦C (Table 1 and Figure 4). Although the catalyst calcined at 450 ◦C showed
the highest NH3 uptake, it was not able to furnish dimeric products at all. Since a large amount of
sulfuric acid can hinder the growth of SnO2 crystals (Figure 2), thereby leading to poor promotion
of sulfate groups on the surface of SO4

2−/SnO2, the negligible catalytic activity of catalyst calcined at
450 ◦C (α-pinene conversion rate <20%) was attributed to sulfuric acid remaining in large quantities
during the calcination process. Zhang et al. reported that increasing the calcination temperature from
150 to 550 ◦C made sulfate groups of SO4

2−/CeO2 transition from surface sulfate states to bulk sulfate
states; the catalyst mainly possessing sulfate groups as surface sulfate states worked well in catalytic
reduction of NO by NH3. According to the Raman spectra in which only the catalyst calcined at 550 ◦C
presented the peaks denoting bulk sulfate states, this transition seems to occur abruptly when the
calcination temperature increased from 450 ◦C to 550 ◦C [27]. In this respect, the discrepancy between
the yield of dimeric products and the amount of the total acid sites of catalysts can be understood by
considering that the catalyst possessing sulfate groups as bulk sulfate states is effective in the coupling
reaction of α-pinene. On the other hand, calcination temperatures higher than 550 ◦C caused significant
decomposition of sulfuric acid and even sulfate groups on the surface of SO4

2−/SnO2 (Figure S2).
Therefore, when the same amount of sulfuric acid was treated, a much higher calcination temperature
made the catalyst lose sulfate groups. In this regard, the less effective catalytic activity of catalysts
calcined at 600 and 650 ◦C can be understood. Finally, to compare the effect of the promotion of sulfate
groups on the catalytic activity, we conducted the reaction with intact SnO2 calcined at 550 ◦C, which
showed negligible α-pinene conversion (data not shown).

In contrast to dimeric products, catalysts prepared at higher calcination temperatures (600 and
650 ◦C) more readily furnished camphene (6) from α-pinene (1) and the catalyst calcined at 550 ◦C
also yielded a considerable amount of compound 6 (Figure 4). In other words, the conversion to
compound 6 competed with the production of dimeric products from compound 1, and once formed,
compound 6 was thought to be indifferent to the homocoupling reaction with these catalysts. This is
supported by the fact that several catalysts lack the ability to catalyze homocoupling of compound 6 to
form dimeric hydrocarbon products [11].
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Figure 4. Effect of catalyst calcination temperature on the yields of dimeric products (�) and camphene
(•) and the conversion rate of α-pinene (�). All the other reaction conditions were maintained for 3 h
at 120 ◦C.

3.2.2. Effect of Reaction Time and Temperature on Partial Coupling Reaction of α-Pinene

To investigate the effects of reaction time and temperature on the yield of dimeric products,
we selected the sulfated tin oxide (SO4

2−/SnO2) catalyst calcined at 550 ◦C based on the results shown
in Figure 4. As one can see in Figure 5, the conversion of α-pinene (1) was almost 100 ± 0% only after
30 min except for the reaction at 100 ◦C. This consumption furnished dimeric products almost entirely
at the beginning of the reaction (Figure 5a). The additional increase in the yield continued up to 3 h
at all reaction temperatures. A quite interesting feature was that after 3 h, there was no significant
difference among the yields of dimeric products at 100, 110, and 130 ◦C, although the increase in the
yield of dimeric products during the reaction was the highest at 100 ◦C (from 13.6 ± 3.2% to 45.0 ± 0.7%).
A significant difference after 3 h was only observed at 120 ◦C, which produced the highest yield of
all (48.9 ± 1.2%). However, when we carried out the reaction further in these conditions, there was a
poor improvement (from 48.9 ± 1.2% to 49.6 ± 0.7%). In other words, only around half of compound 1
yielded dimeric products and therefore our catalyst did not seem suitable for the coupling reaction.
However, considering the low-temperature viscosity of dimeric products [9], this partial coupling will
be even more appropriate for fuel applications [10].
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100 ◦C condition; (+) for α-pinene conversion rate at 100 ◦C condition. The used catalyst was prepared
by calcination at 550 ◦C for 4 h.

Figure 5b shows that the yields of camphene (6) decreased depending on the reaction temperature
and time. Given compound 6 seems to be less reactive to homocoupling with our catalyst, its decrease
during the reaction time implies the possibility of heterocoupling of compound 6 with other species,
even including dimeric products. Because such heterocoupling can consume dimeric products and
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furnish oligomeric products, reaction temperatures higher than 120 ◦C produced a lower yield of
dimeric products.

In order to investigate why the yields of both dimeric products and camphene did not show major
changes after 3 h, we conducted a reusable test of the catalyst to prove whether or not the deactivation
of the catalyst occurred during the reaction. Unfortunately, the used catalyst did not furnish dimeric
products (data not shown). We thought that this was due to the sludge generated by the condensation
of various substrates covering the acid sites of the catalyst. An interesting result was that thorough
washing with acetone also cannot restore the activity of the used catalyst, but rather eliminated the
activity. This is because the acetone washing removed not only the sludge but also the sulfate groups
of bulk sulfate states [27]. As mentioned before, sulfate groups as bulk sulfate states of catalysts seem
to have key role in the coupling of α-pinene (1).

3.2.3. Mechanism of Isomerization of α-Pinene over Sulfated Tin Oxide

Finally, the mechanism of isomerization and coupling reaction of α-pinene (1) over the sulfated
tin oxide (SO4

2−/SnO2) catalyst was considered. The generally accepted mechanism of acid-catalyzed
isomerization of compound 1 includes two distinct pathways [28]: ring enlargement rearrangement
(path A), wherein tri- or bicyclic compounds are produced; and ring opening rearrangement (path B),
in which monocyclic compounds are formed (Scheme 1). Both pathways are initiated by protonation
of olefin in compound 1 generating pinanyl cation (2). If the highly strained 4-membered ring in
carbocation 2 suffers from ring enlargement by Wagner–Meerwein rearrangement, bornanyl cation (3)
is formed. This carbocation 3 can produce tricyclene (4) via direct deprotonation or camphene (6) via
deprotonation of isocamphanyl cation (5) resulting from 1,2-sigmatropic rearrangement of carbocation 3.
Alternatively, carbocation 2 can be stabilized by the opening of the four-membered ring, which results
in p-mentha-1-en-8-yl cation (7). In light of the similarity in structure and stability between carbocation
7 and p-mentha-1-en-4-yl cation (8), the 1,2-hydride shift between them is considered reversible. These
carbocations (7 and 8) can be deprotonated to furnish monocyclic compounds (9–12).

In the above mechanism, the selectivities of camphene (6) from path A and limonene (9) from
path B are of interest, and it is undeniable that the selectivities depend on what catalyst is used. Because
compound 9 can further isomerize to other monocyclic compounds, catalysts showing the higher
(but not by much) selectivity for compound 6 compared to that for compound 9 have been reported more
commonly. Kitano et al. reported isomerization ofα-pinene (1) over an Al2O3-supported MoO3 catalyst,
which presented a slightly higher selectivity toward compound 6 than for compound 9, although the
conversion of compound 1 was not good enough [29]. SiO2- or MCM-41-supported H3PW12O40 and
MSU-S BEA or Y catalysts showed over 90% conversion of compound 1 and a slightly higher selectivity
for compound 6 [12,30,31]. Furthermore, very powerful catalysts such as Fe3+-exchanged clinoptilolite,
sulfated zirconia, SBA-15 supported TiO2, and sulfuric acid-treated montmorillonite clay have been
suggested for the production of compound 6 with prominent selectivity [28,32–35]. However, catalysts
that showed the higher selectivity for compound 9 compared to compound 6 have been reported
much less frequently. Yamamoto et al. developed a SiO2-supported Pr2O3 catalyst, which showed
very high selectivity for compound 9 although the conversion of compound 1 was notably low [36].
In addition to this catalyst, a SiO2-supported AlCl3 catalyst showed higher (but not by much) selectivity
for compound 9 with the varying conversion of compound 1. In this study, SO4

2−/SnO2 showed
much higher selectivity for compound 6 than for compound 9 with 100% conversion of compound 1
(Figure 5b and Figure S3). This tendency can be justified by the difference between compounds 6
and 9 in reactivity for further isomerization as mentioned previously. It has also been reported that
Al-MCM-41 lacks the ability to catalyze homocoupling of compound 6 formed by the isomerization
of compound 1 [11]. Given the significant amount of compound 6 still remaining after the coupling
reaction was over, not only further isomerization but also homocoupling of compound 6 seems to be
difficult with our catalyst, as mentioned in the previous section.
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1,2-hydride shift can do the same. However, this suggestion has been controversial considering 
various isoterpinolene/terpinolene concentration ratios, either higher or lower than 1 [37]. A second 
possible mechanism is initiated by protonation of α-terpinene (11) or γ-terpinene (12), which gives 
allylic carbocation III (18) and p-mentha-3-en-1-yl cation (19). This proposal was supported by 
Salacinski’s results which showed the chemical equilibria of p-menthadiene species under sulfuric 
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3,8-diene (20), where stabilization by the formation of a conjugated diene was considered the driving 

Scheme 1. Plausible mechanism of isomerization of α-pinene over sulfated tin oxide catalyst: α-pinene
(1); pinanyl cation (2); bornanyl cation (3); tricyclene (4); isocamphanyl cation (5); camphene (6);
p-mentha-1-en-8-yl cation (7); p-mentha-1-en-4-yl cation (8); limonene (9); terpinolene (10); α-terpinene
(11); γ-terpinene (12); p-mentha-4(8)-en-2-yl cation (13); allylic carbocation I (14); isoterpinolene (15);
allylic carbocation II (16); p-mentha-2-en-8-yl cation (17); allylic carbocation III (18); p-mentha-3-en-1-yl
cation (19); p-mentha-3,8-diene (20); p-cymene (21); p-menthene isomers (22a–c).

In some papers, isoterpinolene (15) has been also suggested as a co-product. One plausible
mechanism for the formation of compound 15 starts from protonation of terpinolene (10), resulting in
p-mentha-4(8)-en-2-yl cation (13) [28]. Not only can direct deprotonation of carbocation 13 generate
compound 15, but also deprotonation of allylic carbocation I (14) resulting from carbocation 13 via
1,2-hydride shift can do the same. However, this suggestion has been controversial considering various
isoterpinolene/terpinolene concentration ratios, either higher or lower than 1 [37]. A second possible
mechanism is initiated by protonation of α-terpinene (11) or γ-terpinene (12), which gives allylic
carbocation III (18) and p-mentha-3-en-1-yl cation (19). This proposal was supported by Salacinski’s
results which showed the chemical equilibria of p-menthadiene species under sulfuric acid at 67 ◦C [38].
When compound 11 or 12 reacted under this condition as a sole starting material, the chemical
equilibrium consisted of only compounds 11, 12, 15, and a small amount of p-mentha-3,8-diene
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(20), where stabilization by the formation of a conjugated diene was considered the driving force.
In addition, the author described reaction coordinate diagrams with allylic carbocations (14 and 18) as
reaction intermediates. The presence of compound 20 in our results, even though the quantity of it was
relatively small, also seems to indicate this mechanism. Additionally, the successive transformation
of p-mentha-1-en-8-yl cation (7) into allylic carbocation II (16) and p-mentha-2-en-8-yl cation (14) via
1,3- and 1,5-hydride shifts, respectively, was suggested as the other possible route for the formation
of compound 15 [39]. Behr and Wintzer also reported that compound 15 was formed as a major side
product when the hydroaminomethylation of compound 9 was carried out with a [Rh(cod)Cl]2/TPPTS
catalyst [40], which means that compound 9 can be a linchpin when it comes to the production of
compound 15. As seen in Figure S3, the yield of compound 15 seems to follow the same trend as that
of 9 along the reaction time. This also suggests that the third suggested pathway chiefly occurs during
the isomerization of α-pinene (1) in the case of our catalyst.

In addition to the above-isomerized products, p-cymene (21) and p-menthene isomers (22a–c)
were detected in the reaction mixture. The simultaneous formation of compounds 21 and 22a–c can
be explained by disproportionation between α-terpinene (11) and γ-terpinene (12) [6,11]. Moreover,
dehydrogenation of compounds 11 and 12 was suggested to justify the production of compound
21 with the generation of hydrogen gas [41,42]. Given the para position of methyl and isopropyl
groups therein, compound 21 was generally reported as the target product not only when α-pinene
(1) was used in neat form [41,43] or as a major constituent of crude sulfate turpentine [44], but also
when limonene (9) was used as a sole starting material [42,45]. The concentration of compound 21
in the reaction mixture gradually increased with reaction time (Figure S3). This is because it did not
participate in further reactions, including both the isomerization and coupling reaction in our catalytic
system [7,12].

3.2.4. Mechanism of Coupling of α-Pinene over Sulfated Tin Oxide

The lack of knowledge about the molecular structure of dimeric products obtained from
monoterpene is attributed to the simultaneous homo- and heterocoupling that occurs for the starting
materials and the isomers therein [6,11,12]. Furthermore, it being hard to isolate only one dimeric
product from a product mixture, the study of their molecular structure has proven difficult. These
phenomena were also observed in our results; although the reaction started with α-pinene (1) as
a sole substance, besides isomerization, a variety of dimeric products were concurrently produced
(Figure S4). Nevertheless, some reports have suggested several possible molecular structures without
an understanding of the complicated reaction system [7,11,46].

Acid-catalyzed coupling reactions of monoterpene hydrocarbons generally involve three steps:
first, the protonation of olefin in monoterpene giving carbocations; next, the attack of olefin (nucleophile)
in another monoterpene on the previous carbocation (electrophile) furnishing a dimeric carbocation
with the formation of a new C–C bond between the nucleophile and the electrophile; and, finally,
the deprotonation of this carbocation giving dimeric products. Of course, dimeric carbocations formed
by nucleophilic attack on monomeric carbocations, or even by the re-protonation of dimeric products,
can suffer from isomerization and further coupling reactions, which is one reason for the complexity of
the reaction mechanism. In addition to coupling reactions that involve protonation/deprotonation, the
Diels–Alder reaction between monoterpenes, especially α-terpinene (11), has also been suggested as a
possible mechanism for the coupling reaction of monoterpenes [47].

In light of the results obtained for a reaction at a relatively low temperature (100 ◦C, Figure S3a),
although the concentration of α-pinene (1) in the reaction mixture precipitously decreased with reaction
time, considering almost all of the dimeric products were yielded in just 30 min, compound dimeric
structure (PD1). We can also imagine that further isomerization of this possible dimeric product gives,
for example, PD1a and PD1b via ring enlargement and ring opening, respectively.

The isomers of α-pinene (1), such as camphene (6), limonene (9), terpinolene (10), α-terpinene
(11), γ-terpinene (12), and isoterpinolene (15), and p-mentha-3,8-diene (20), all of which have olefin
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in their structure, can partake in coupling reactions as compound 1 does. As electrophiles, stable
allylic carbocations (14, 16, and 18) derived from these monocyclic isomers were thought to play a
pivotal role in the coupling reaction [38,39]. This type of coupling can occur from the beginning to
the end of a reaction, particularly in a predominant coupling reaction that occurs after compound 1 is
completely consumed. In Scheme 2, we suggest some possible dimeric structures (PD2–4), showing
that the isomers react as nucleophiles and electrophiles (carbocations).
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Scheme 2. Examples of possible dimeric products of the coupling reaction of α-pinene catalyzed using
sulfated tin oxide: (A) coupling of bornanyl cation (3) and α-pinene (1) giving possible dimeric product
(PD1) and its isomers (PD1a–b); (B) coupling of allylic carbocation III (18) and α-terpinene (11) giving
PD2; (C) coupling of allylic carbocation I (14) and limonene (9) giving PD3; (D) coupling of allylic
carbocation II (16) and camphene (6) giving PD4.

Although we are not sure whether camphene (6) reacts as a nucleophile or electrophile
(as isocamphanyl cation (5)) during the coupling reaction, it is clear that compound 6 predominantly
participates in a heterocoupling (Scheme 2, PD4) rather than a homocoupling reaction considering that
a significant amount of compound 6 still remained after the reaction. This is in agreement with the
results obtained using Al-incorporated MCM-41 [11]. Meylemans et al. asserted that this phenomenon
is attributed to the low basicity of compound 6, which causes poor interactions between the external
olefin and the acid sites of the catalyst, thereby making the protonation of compound 6 difficult [7].

4. Conclusions

In summary, a sulfated tin(IV) oxide catalyst prepared using a facile procedure was applied to
the partial coupling reaction of α-pinene to furnish a renewable and less viscous high-density fuel.
To evaluate the catalytic activity of the catalyst, we considered the effect of the calcination temperature,
reaction time, and reaction temperature, and attempted to rationalize the results using the catalyst
characteristics. The catalyst calcination temperature had an enormous influence on the production
of dimeric hydrocarbon products, while reaction times and temperatures exceeding 1 h and 100 ◦C
affected the reaction to a lesser extent. The highest yield of dimeric products (49.6%) was obtained
when the catalyst was calcined at 550 ◦C and the reaction was carried out at 120 ◦C for 4 h. Although
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the yield was less than half, we think this value is enough to consider utilizing the reaction products
as renewable fuels, because it is not known that the dimeric products alone have a low-temperature
viscosity too high for use as a fuel in transportation engines. In other words, the mixture with the
isomers of α-pinene can drag down the low-temperature viscosity to the range of transportation fuels.
Finally, we described the possible mechanism of the coinstantaneous isomerization and coupling
reaction of α-pinene owing to our catalyst acting as a Brønsted acid.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/10/1905/s1,
Figure S1: (a,b) Energy dispersive spectroscopy (EDS) spectra, (c,d) elemental quantitative data obtained from
intact SnO2 and SO4

2−/SnO2 and (e) higher resolution of elemental mapping image of SO4
2−/SnO2, Figure S2:

TGA curves of intact SnO2 (black line) and SO4
2−/SnO2 (red dashed line), Figure S3: The yields of the monomeric

products along the reaction time at (a) 100 ◦C and (b) 110 ◦C, Figure S4: General chromatogram of dimeric products
extracted from GC/FID result.
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