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Abstract: In simulation studies, the precision of fuel cell models has a vital role in the quality of
results. Unfortunately, due to the shortage of manufacturer data given in the datasheets, several
unknown parameters should be defined to establish the fuel cell model for further precise analysis.
This research addresses a novel application of the atom search optimization (ASO) algorithm to
generate these unknown parameters of the fuel cell model and in particular of the polymer exchange
membrane (PEM) type. The objective of this study is to establish an accurate model of the PEM fuel
cells, which will provide accurate results of modeling and simulation in a steady-state condition.
Simulations and further demonstrations were performed under MATLAB/SIMULINK. The viability
of the proposed models was appraised by comparing its simulation results with the experimental
results of number of commercial PEM fuel cells. In the same context, the obtained numerical results by
the proposed ASO-based method were compared to other challenging optimization methods-based
results. Finally, parametric tests were made which indicated the robustness of the ASO results as
well. It can be stated here that ASO performs well and has a good capability to extract the unknown
parameters with lesser errors.

Keywords: fuel cells; parameter identifications; simulation and modeling; atom search optimizer

1. Introduction

Unlike conventional power sources, renewable energy sources as clean energy have received much
attention worldwide due to many key reasons, such as the depletion of fossil fuels, price inflations,
and other environmental issues. One of the fastest growing and promising renewable energy storage
apparatuses is the fuel cell, which can convert fuel chemical energy into electric energy via chemical
reactions [1–4]. Today, many assortments of fuel cells are commercialized, such as the polymer
exchange membrane (PEM) type for low-operating temperatures [3], and solid-oxide fuel cells for
high-operating temperatures [4,5]. PEM fuel cell stays as an incomparable alternative of importance;
specifically, in transportation applications, it plays a role in portable electronic implementations and
distributed generators. Moreover, its discriminate properties, such as no dissipated generation, high
power density, high efficiency, and low operating pressure and temperature, make PEM fuel cell
unequaled [3]. The standard efficiency of PEM fuel cell varies between 30% and 60% dependent on
loading condition, and the operating temperatures range from 30 ◦C to 100 ◦C [3–6].

Modeling is highly crucial for better comprehension, analysis, design, simulation, and
advancement of high efficiency fuel cells. However, the lack of data, number of obscure parameters,
and complication in modeling favor the utilization of optimization algorithms [3]. The majority of
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deterministic optimization algorithms have their respective limits, like sensitivity to initial values, and
fail to provide dependable results. To ameliorate the accuracy of the PEM fuel cells model parameter
estimation, many global optimization algorithms have been used. The results obtained using these
algorithms are better than those obtained using traditional methods [6].

Many researchers have endeavored to model PEM fuel cell characteristics using many heuristic
based optimization algorithms [7–18]—in particular, the salp swarm optimizer [7], adaptive ribonucleic
acid genetic algorithm (ARNA-GA) [8], genetic algorithm [9–11], particle swarm optimizer [12], Taguchi
method and genetic algorithm neural networks [13], bird mating optimization algorithm [14], seeker
optimizer [15], eclectic hybrid stochastic plan [16], adaptive differential evolution (ADE) algorithm [17],
and innovated global harmony search (IGHS) algorithm [18].

Other recent similar optimizers, such as biogeography accompanied by mutation (BBO-M) [19],
the simplified teaching-learning based optimizer (STLBO) [20], transmitted adapting differential
evolution (TRADE) algorithm [21], hybrid adapting differential evolution (HADE) algorithm [22],
nonlinear globally linearizing controller based on an estimator [23], multiverse optimizer (MVO) [24],
grasshopper optimization algorithm (GOA) [25], and grey wolf optimizer (GWO) [26], are applied to
define the model unknown parameters. In [27], a novel bio-inspired P systems-based optimization
algorithm (BIPOA) was introduced to generate the obscure parameters of PEM fuel cells models.

Recently, atom search optimization (ASO), which was developed in 2019, has been utilized in
hydro-geologic coefficient estimation [28] and dispersion parameter estimation [29]. In agreement
with the no-free lunch theorem, several optimization techniques should be assessed to solve specific
problems with attempts to get near/close to optimal solutions. Therefore, ASO is quoted in this current
research because its reported results are promising and prove that ASO is superior to other algorithms
in parameter estimation [28,29].

In this paper, ASO was used to generate the obscure parameters of two commercial PEM fuel
cells. Further validations and comparisons were made to indicate the performance of the proposed
ASO-based methodology. The crucial contributions of this research include execution of a novel
algorithm, namely ASO, to generate the obscure parameters of the PEM fuel cell model in comparison
to other competing methods recently reported in the literature, as well as proving the possibility of
benefiting from ASO to optimize several complicated problems in engineering.

The paper is organized as follows: Section 1 gives a brief introduction and survey in this regard.
Section 2 illustrates the mathematical modeling of PEM fuel cells. In Section 3, the adapted objective
function and constraints are revealed. The ASO procedures are explained in Section 4. Section 5
discusses the obtained results, along with necessary validations. Conclusions are drawn in Section 6.
Finally, acknowledgements, conflicts of interest, and authors’ contributions are presented.

2. Mathematical Modeling of PEM Fuel Cell

The model of a PEM fuel cell stack was intensively demonstrated in the literature. For a stack
consisting of ncells series connected cells, the stack’s terminal voltage Vstack can be evaluated by the
following equation [9,25]:

Vstack = ncells·(E−Vact −VΩ −Vcon). (1)

By assuming that the H2 flow rate is controllable with regard to the loading condition, it can be
revealed that the utilization factor is constant and has a typical value of 95% [25]. Emax is the maximum
voltage that can be generated by the PEM fuel cell at a higher heating value of H2, which typically
equals 1.48 V/cell [25]. It is of value to emphasize that the theoretical voltage with respect to the lower
heating value is 1.23 V/cell (See (2)). The aforementioned variables indicated in (1) are stated as follows:

E = 1.299− 0.85·10−3(Tfc − 298.15) + 4.3085·10−5Tfc ln
(
PH2

√
PO2

)
, (2)
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PH2 =
RHa·PH2O

2

1/

RHa·PH2O

Pa
·e

1.635ifc/A

T1.334
fc

− 1

, (3)

PO2 =
RHc·PH2O

2

1/

RHc·PH2O

PC
·e

4.192ifc/A

T1.334
fc

− 1

, (4)

PH2O = 2.95·10−2Tc − 9.18·10−5T2
c + 1.44·10−7T3

c − 2.18,
Tc = Tfc − 273.15,

(5)

Vact = −
[
ξ1 + ξ2Tfc + ξ3Tfc ln

(
CO2

)
+ ξ4Tfc ln(Ifc)

]
, (6)

CO2 =
PO2

5.08·106 ·e
−

498
Tfc , (7)

VΩ = Ifc(Rm + RC); Rm =
ρml
A ,

ρm =
181.6

[
1+0.03

(
Ifc
A

)
+0.062

(
Tfc
303

)2( Ifc
A

)2.5
]

[
Ψ−0.634−3

(
Ifc
A

)]
e

4.18·
Tfc−303

Tfc

,
(8)

Vcon = −b· ln
(

Jmax − J
Jmax

)
. (9)

The power of the PEM fuel cell stack (Pstack) is stated as defined in (10):

Pstack = Vstack·Ifc. (10)

According to Equations (1) to (9), it is obvious that seven coefficients (ξ1, ξ2, ξ3, ξ4, Ψ, RC, and b)
need to be identified. These parameters are not predetermined in the manufacturer's datasheet. ASO
is utilized in optimizing the seven coefficients to own finest values inside their higher and lower limits.
Optimization is performed to ensure a precise modeling of PEM fuel cell under study and simulation.

3. Formulating the Objective Function and Constraints

Minimizing the sum of the squared error (SSE) between the computed voltage (Vcom) and
measured voltage (Vmeas) is the objective function (OF) for the modeling of PEM fuel cell, as revealed
in (11).

OF = min (SSE) = min

 M∑
k=1

[Vcom(k) −Vmeas(k)]
2

 (11)

The OF is subjected to constraints that are determined by the lower and upper limits of
(ξ1, ξ2, ξ3, ξ4, Ψ, RC, and b).

Minimizing the mean squared error (MSE) represents the OF in some previous studies. To compare
the obtained numerical results by ASO with other challenging optimization methods-based results,
MSE can be computed as depicted in (12):

MSE =
SSE
M

. (12)

4. Atom Search Optimizer (ASO)

Atoms, basic building blocks of all materials, are moving continuously, and their motions are
governed by the classical mechanics [30]. Assume that force of interaction is Fi and force of constraint
is Gi, and they are applied together on the atom i inside an atom arrangement. Subsequently, the
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relationship between acceleration ai and mass mi of atom is derived by the second law of Newton’s
laws as shown in (13) [29,30]:

ai =
Fi + Gi

mi
. (13)

At iteration t, the atom i is exposed to interaction force by the atom j in the dimension d and is
written using the Lennard–Jones (L–J) potential as [29,30]:

Fd
ij (t) =

24ε(t)
σ(t)

( σ(t)rij(t)

)13

−

(
σ(t)
rij(t)

)7 rij(t)

rd
ij (t)

, (14)

and:

F′ij(t) =
24ε(t)
σ(t)

( σ(t)rij(t)

)13

−

(
σ(t)
rij(t)

)7. (15)

Figure 1 shows the interaction force of atoms against the spacing between atoms. The repulsion is
positive, and the attraction is negative; therefore, atoms would not be converging to a certain location.
Equation (15) cannot be utilized straightway in optimization, so it can be adapted as:

F′ij(t) = −η(t)
[
2
(
hij(t)

)13
−

(
hij(t)

)7
]
, (16)

hij(t) =
σ(t)
rij(t)

. (17)
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The deepness function is used to set the attraction zone or the repulsion zone that is stated as [28]:

η(t) = α

(
1−

t− 1
T

)3
e−

20t
T . (18)

Figure 2 demonstrates F′ against ηwhen h varies between 0.9 and 2. The attraction happens while
h is varying from 1.12 to 2, the repulsion happens while h is varying between 0.9 and 1.12, and the
equilibrium happens while h equals 1.12. Consequently, in ASO, to ameliorate the reconnaissance,
repulsion has a lower limit while F′ has a lesser value at which h = 1.1, and attraction has an upper
limit while F′ has a bigger value at which h = 1.24; thus, h is stated as:
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hij(t) =


hmin
rij(t)
σ(t)

hmax

rij(t)
σ(t) < hmin

hmin ≤
rij(t)
σ(t) ≤ hmax

rij(t)
σ(t) > hmax

, (19)

σ(t) is stated as:

σ(t) = ‖xij(t),

∑
j∈Kbest xij(t)

K(t)
‖2, (20)

and: {
hmin = g0 + g(t)

hmax = u
. (21)
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Consequently, u and g0 are equal to 1.24 and 1.1, consecutively. g symbolizes the drift factor that
may transport the procedure from the reconnaissance to the profiteering, which is stated as:

g(t) = 0.1× sin
(
π

2
×

t
T

)
. (22)
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Afterwards, total force applied on the atom i by other atoms is the summation of weighted
components in the d-th dimension that is depicted in (23):

Fd
i (t) =

∑
j∈Kbest

randj.Fd
ij (t). (23)

From the third law of Newton’s laws:

Fij = −Fji. (24)

Molecular dynamics put a geometric constraint that acts a serious task in the atom movement.
In ASO, assume that the best atom owns a covalence bond with each atom; therefore, a constraint force
is exerted on each atom by the best atom. Hence, the atom i constraint is modified as:

θi(t) =
[∣∣∣xi(t) − xbest(t)

∣∣∣2 − b2
i,best

]
. (25)

Therefore, the force of constraint is stated as [29,30]:

Gd
i (t) = −λ(t)∇θ

d
i (t) = −2λ(t)

(
xd

i (t) − xd
best(t)

)
. (26)

By replacement of 2λwith λ:

Gd
i (t) = λ(t)

(
xd

best(t) − xd
i (t)

)
. (27)

The Lagrange multiplier is stated as:

λ(t) = β.exp
(
−

20t
T

)
. (28)

Consequently, the atom i acceleration at iteration t
(
ad

i (t)
)

is stated as:

ad
i (t) =

Fd
i (t)

md
i (t)

+
Gd

i (t)

md
i (t)

= −α
(
1− t−1

T

)3
e−

20t
T ,

∑
j∈Kbest

randj

[
2×(hij(t))

13
−(hij(t))

7
]

mi(t)
,(

xd
i (t)−xd

j (t)
)

‖xi(t)−xj(t)‖2
+ βe−

20t
T

xd
best(t)−xd

i (t)
mi(t)

.

(29)

If the population of atoms is NP, the mass of atom i (mi(t)) is computed using (30)–(31):

Mi(t) = exp
(
−

Fiti(t) − Fitbest(t)
Fitworst(t) − Fitbest(t)

)
, (30)

mi(t) =
Mi(t)∑NP

j=1 Mj(t)
. (31)

In case of minimization, Fitworst(t) and Fitbest(t) are the maximum and the minimum fitness values
of atoms at the iteration t, consecutively. Fiti(t) is the function fitness value of the atom i at the iteration
t. Fitworst(t) and Fitbest(t) are expressed in (32) and (33), respectively:

Fitworst(t) = maxi∈{1,2,....,NP}Fiti(t), (32)

Fitbest(t) = mini∈{1,2,....,NP}Fiti(t). (33)
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For simplification, the velocity and the position of the atom i in the iteration t + 1 is signified as:

υd
i (t + 1) = randd

i υ
d
i (t) + ad

i (t), (34)

xd
i (t + 1) = xd

i (t) + υ
d
i (t + 1). (35)

In the ASO algorithm, to ameliorate the reconnaissance in earlier iterations, every atom reacts
with atoms owning as many better values of fitness as possible. To ameliorate the profiteering in later
iterations, every atom reacts with atoms owning as few better values of fitness as possible. K piecemeal
decreases as the iterations elapse, and it is computed using the formula stated in (36):

K(t) = NP − (NP − 2) ×
√

t/T. (36)

Figure 3 displays the forces in an atom arrangement. The atoms A1, A2, A3, and A4 have the best
values of fitness, so they are considered as the Kbest. Each atom in the arrangement repels or attracts
each other. Each atom in the arrangement, excluding A1 (Xbest), owns a force of constraint via the best
atom A1.
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The computational procedure of the ASO algorithm is as follows:

Step 1: Randomly initialize a set of atoms X (solutions) and their velocity υ, and set Fitbest =∞, t = 1, i = 1.
Step 2: Increment t = t + 1.
Step 3: Increment i = i + 1.
Step 4: Calculate the fitness value Fiti.
Step 5: If Fiti > Fitbest, set Fitbest = Fiti and Xbest = Xi.
Step 6: Calculate the mass mi(t) using Equations (30) and (31).
Step 7: Determine its K neighbors using Equation (36).
Step 8: Calculate the force of interaction Fi and the force of constraint is Gi using Equations (23) and (27),

respectively.
Step 9: Update the velocity and the position using Equations (34) and (35), respectively.
Step 10: If i ≤ Np go to Step 3.
Step 11: If t ≤ T, go to Step 2.
Step 12: Find the best solution so far, Xbest.
Step 13: Stop.
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5. Demonstrated Results, Discussions and Validations

In this section, ASO is utilized to estimate the PEM fuel cell model parameters
(ξ1, ξ2, ξ3, ξ4, Ψ, RC, b). In this study, two models of marketable PEM fuel cells are tested to
legalize the proposed ASO-based methodology in a steady-state condition. The lower and upper limits
of (ξ1, ξ2, ξ3, ξ4, Ψ, RC, b) exist in literature as follows [20,25,26]:

−1.1997 ≤ ξ1 ≤ −0.8532
0.001 ≤ ξ2 ≤ 0.005

3.6·10−5
≤ ξ3 ≤ 9.8·10−5

−2.6·10−4
≤ ξ4 ≤ −9.54·10−5

13 ≤ Ψ ≤ 23
10−4

≤ RC ≤ 8·10−4

0.0136 ≤ b ≤ 0.5

(37)

The parameters’ bounds are the same in all test cases to ensure fair comparisons with other
challenging optimization methods.

Both RHc and RHa are 1. Both Pc and Pa are 1 atm. The maximum iterations are 3000. ASO
parameters (NP, α, β) are determined by means of trial and error as other challenging heuristic-based
optimization methods as shown in Table 1. The finest values of obscure parameters are yielded after
executing ASO for some independent runs because of the high haphazardness of such algorithms.

Table 1. Atom search optimization (ASO) adapted controlling parameters.

ASO Parameters SR-12 Modular 250 W Stack

NP 25 10
α 40 50
β 0.2 0.2

5.1. Test Case 1

In this case, a model of SR-12 500 W modular PEM fuel cell was tested to regularize the performance
of ASO. The datasheet was taken from [17,18,21,25,26] as follows: ncells = 48, A = 62.5 cm2,
l = 0.025 mm, Jmax = 0.672 A/cm2, Tfc = 323 K, PH2 = 1.47628 atm, PO2 = 0.2095 atm. Twenty
measurements in I–V characteristics of the fuel cell (M = 20) were utilized in optimization using ASO.

The finest estimated parameters of the PEM fuel cell model by ASO are displayed in Table 2.
The convergence tendency of the SSE diagram is illustrated in Figure 4, which indicates that SSE
obtained by ASO is 0.00203. MSE can be computed by (12) to result in (MSE = 0.0001015). These SSE and
MSE are the smallest values compared to other challenging optimization methods, as shown in Table 3.

Table 2. Estimated parameters by ASO for SR-12 modular.

Parameter ξ1 ξ2 ξ3 ξ4 Ψ RC b

Optimized Value −0.9217 0.0033 0.0001 −0.0001 13.7608 0.0001 0.1497

Table 3. SR-12 modular.

Algorithm ADE [17] IGHS [18] TRADE [21] ASO

MSE 0.11885 0.1039 0.247013 0.0001015
Algorithm GOA [25] GWO [26] ASO

SSE 0.0478 1.517 0.00203
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Figure 5. Characteristics of SR-12.

The power of the SR-12 modular PEM fuel cell stack was computed using (10) and utilized to
characterize the I–P relationship in Figure 5b accompanying the experimentation data. Closeness
between the experimental powers and computed powers resulted due to closeness between
corresponding voltages.

The I–V and I–P relationships of the SR-12 fuel cell stack needed to be characterized at different
operating pressures and temperatures to illustrate ASO functioning at different conditions. In Figure 6,
PH2 /PO2 are 1.5/1 atm and 3.5/1.5 atm, consecutively, at a fixed temperature of 323 K. It can be noticed
that increasing PH2 /PO2 results in increasing the output voltage and power of the fuel cell stack.
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Subsequently, the influence of temperature alterations is depicted in Figure 7, where Tfc is 313 K
and 353 K, consecutively (under a fixed PH2 /PO2 of 1/1 atm). It is clear that increasing temperature
causes augmentation of the output voltage and power of the fuel cell stack.
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5.2. Test Case 2

In this case, the model of the 250 W PEM fuel cell stack was tested to assure regularity of
the performance of ASO. The datasheet was taken from [8,19,20,22,24,27] as follows: ncells = 24,
A = 27 cm2, l = 0.178 mm, Jmax = 0.86 A/cm2, Tfc = 338.15 K, PH2 = 1 atm, and PO2 = 1 atm. Fifteen
measurements in I–V characteristics of the fuel cell (M = 15) were utilized in optimization using the
ASO-based proposed method.

The finest estimated parameters of the PEM fuel cell model by ASO are presented in Table 4.
The convergence leaning of SSE diagram is displayed in Figure 8, which illustrates that the SSE received
from ASO is 0.7346. This SSE is the lowest value compared to those of other challenging optimization
methods, as shown in Table 5. MSE can be computed by (12), resulting in MSE = 0.04897.

Table 4. Estimated parameters by the ASO for the 250 W stack.

Parameter ξ1 ξ2 ξ3 ξ4 Ψ RC b

Optimized Value −1.1132 0.0036 0.0001 −0.0002 22.1763 0.0001 0.0248
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Table 5. 250 W PEM fuel cell stack.

Algorithm ARNA-GA [8] BBO-M [19] STLBO [20] HADE [22] MVO [24] BIPOA [27] ASO

SSE 8.1039 7.6165 7.6266 7.9908 3.5846 7.9416 0.7346
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The obtained finest results for the I–V characteristics of the 250 W PEM fuel cell stack that were
estimated by ASO accompanying the experimentation data are displayed in Figure 9a. Closeness
between the experimental voltages and computed voltages by ASO-based methodology ensures
precision of the got optimized values of the obscure seven parameters.
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temperature results in increasing the output voltage and power of the fuel cell stack. 

Finally, performance measures using parametric tests to testify the robustness of the ASO 
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The power of the 250 W PEM fuel cell stack is computed using (10) and utilized to characterize
the I–P relationship in Figure 9b accompanying the experimentation data. Nearness between the
experimental voltages and computed voltages causes nearness between corresponding powers.

To verify ASO functioning at different conditions, the I–V and I–P relationships of the 250 W fuel
cell stack needed to be characterized at different operating pressures and temperatures. In Figure 10,
PH2 /PO2 are 1.5/1.5 atm and 3/2.5 atm, consecutively, at a fixed temperature of 338 K. It can be observed
that increasing PH2 /PO2 causes an increase in the output voltage and power of the fuel cell stack.
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Afterwards, the influence of the changing temperature is displayed in Figure 11, where Tfc is
313 K and 353 K, consecutively (under a fixed PH2 /PO2 of 1/1 atm). It is obvious that augmentation of
temperature results in increasing the output voltage and power of the fuel cell stack.

Finally, performance measures using parametric tests to testify the robustness of the ASO results
were made. Table 6 summarizes the ASO executions over 100 independent runs and associated
indicators in terms of Best, Worst, standard deviation (STD), Mean, and Variance of SSE values to
check the robustness and consistency. It can be said here that the smaller values of STD and variance
prove the robustness of the obtained results and indicate that the adapted ASO control parameters
were carefully selected.
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Table 6. ASO-adapted controlling parameters.

Factor SR-12 Modular 250 W Stack

Best value of SSE 0.00203 0.7346
Worst value of SSE 0.00304 1.0903
Mean value of SSE 0.00251 0.9156
STD value of SSE 2.94× 10−4 0.0945
Variance of SSE 8.71× 10−8 0.0089
Average processing time per run (s) 25.50 20.10

6. Conclusions

ASO-based methodology has been introduced for estimating the PEM fuel cell model parameters
to assure precise modeling and simulation. The finest values of obscure parameters are generated
by the ASO, for two real commercial PEM fuel cell models. The computed results of two models are
compared with measured results to illustrate ASO proper functioning. Good fittings between the
measured and computed voltages were evidenced through various plots and insignificant values of
SSE. Comparisons between the obtained results by the ASO and other recent challenging optimization
method-based results indicate the viability and qualification of the proposed ASO-based methodology.
Finally, performance measures were made which reprove the good performance and robustness of the
ASO-realized results. Therefore, the authors can recommend ASO as a new optimization tool for other
engineering complicated problems, which really still needs further verifications.
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Nomenclature

E open circuit potential
Vact activation over-voltage apiece cell
VΩ ohmic voltage drop apiece cell
Vcon concentration over-voltage apiece cell



Energies 2019, 12, 1884 13 of 14

Tfc temperature of cell (K)

PO2 and PH2 partial pressures of O2 and H2(atm); correspondingly
PH2O saturation pressure of H2O (atm)

RHc and RHa relative humidity of vapor at cathode and anode; correspondingly
Ifc operating current (A) of the fuel cell
Pc and Pa inlet pressures (atm) at cathode and anode; correspondingly
A area of membrane (cm2)

CO2 concentration of O2(mol/cm3)

ξi(i ∈ {1, 2, 3, 4}) experiential parameters
Rm and RC resistances (Ω) of membrane and connections; correspondingly
l membrane’s thickness (cm)

ρm membrane’s resistivity (Ω·cm)

Ψ adjustable coefficient
b parametric factor (V)

J and Jmax actual and maximum density of current
(
A/cm2

)
; respectively

M quantity of point measurements in I–V characteristics
k summation counter
ε potential hollow deepness
σ distance where the potential is zero and considered as the length scale
r spacing among two atoms
η(t) deepness function
α weight of deepness
hmax and hmin upper and lower bounds of h; consecutively
xij vector among the atom i and the atom j
Kbest part of a larger group of K atoms
K the foremost atoms that have the best values of function fitness
T iterations’ maximum number
randi weight randomly exists among 1 and 0
xbest(t) best atom position at the iteration t
bi,best length of fixed bond from the atom i to the best atom
λ(t) Lagrange multiplier
β weight of multiplier
mi(t) mass of atom i at the iteration t

References

1. Alshehri, F.; Suarez, V.G.; Torres, J.L.R.; Perilla, A.; Van Der Meijdena, M.A.M.M. Modelling and Evaluation
of PEM Hydrogen Technologies for Frequency Ancillary Services in Future Multi-Energy Sustainable Power
Systems. Heliyon 2019, 5, e01396. [CrossRef]

2. Satpathy, S.; Padhee, S.; Bhuyan, K.C.; Ingale, G.B. Mathematical modelling and voltage control of fuel cell.
In Proceedings of the International Conference on Energy Efficient Technologies for Sustainability (ICEETS),
Nagercoil, India, 7–8 April 2016. [CrossRef]

3. Priya, K.; Sathishkumar, K.; Rajasekar, N. A comprehensive review on parameter estimation techniques for
Proton Exchange Membrane fuel cell modelling. Renew. Sustain. Energy Rev. 2018, 93, 121–144. [CrossRef]

4. Papurello, D.; Silvestri, S.; Tomasi, L.; Belcari, I.; Biasioli, F.; Santarelli, M. Biowaste for SOFCs. Energy Procedia
2016, 101, 424–431. [CrossRef]

5. Santarelli, M. Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC):
Analysis through a proof-of-concept. J. CO2 Util. 2017, 18, 206–221. [CrossRef]

6. Martin, I.S.; Ursua, A.; Sanchis, P. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic
Experimental Validation. Energies 2014, 7, 670–700. [CrossRef]

7. El-Fergany, A.A. Extracting optimal parameters of PEM fuel cells using salp swarm optimizer. Renew. Energy
2018, 119, 641–648. [CrossRef]

8. Zhang, L.; Wanga, N. An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel
cells. Int. J. Hydrogen Energy 2013, 38, 219–228. [CrossRef]

http://dx.doi.org/10.1016/j.heliyon.2019.e01396
http://dx.doi.org/10.1109/ICEETS.2016.7583853
http://dx.doi.org/10.1016/j.rser.2018.05.017
http://dx.doi.org/10.1016/j.egypro.2016.11.054
http://dx.doi.org/10.1016/j.jcou.2017.01.014
http://dx.doi.org/10.3390/en7020670
http://dx.doi.org/10.1016/j.renene.2017.12.051
http://dx.doi.org/10.1016/j.ijhydene.2012.10.026


Energies 2019, 12, 1884 14 of 14

9. Tafaoli-Masoule, M.; Bahrami, A.; Elsayed, E.M. Optimum design parameters and operating condition for
maximum power of a direct methanol fuel cell using analytical model and genetic algorithm. Energy 2014,
70, 643–652. [CrossRef]

10. Priya, K.; Babu, T.; Balasubramanian, K.; Kumar, K.; Rajaseka, N. A novel approach for fuel cell parameter
estimation using simple Genetic Algorithm. Sustain. Energy Technol. Assess. 2015, 12, 46–52. [CrossRef]

11. Rajaseka, N.; Jacob, B.; Balasubramanian, K.; Priya, K.; Sangeetha, K.; Babu, T.S. Comparative study of PEM
fuel cell parameter extraction using Genetic Algorithm. Ain Shams Eng. J. 2015, 6, 1187–1194. [CrossRef]

12. Salim, R.I.; Noura, H.; Fardoun, A. A Parameter identification approach of a PEM fuel cell stack using particle
swarm optimization. In Proceedings of the ASME 2013 11th International. Conference on Fuel Cell Science,
Engineering and Technolog, Minneapolis, MA, USA, 14–19 July 2013. [CrossRef]

13. Chang, K.Y. The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm
neural networks. Int. J. Hydrogen Energy 2011, 36, 13683–13694. [CrossRef]

14. Askarzadeh, A.; Rezazadeh, A. A new heuristic optimization algorithm for modeling of proton exchange
membrane fuel cell: Bird mating optimizer. Int. J. Energy Res. 2013, 37, 1196–1204. [CrossRef]

15. Dai, C.; Chen, W.; Cheng, Z.; Li, Q.; Jiang, Z.; Jia, J. Seeker optimization algorithm for global optimization: A
case study on optimal modelling of proton exchange membrane fuel cell. Int. J. Electr. Power Energy Syst.
2011, 33, 369–376. [CrossRef]

16. Guarnieri, M.; Negro, E.; Noto, V.; Alotto, P. A selective hybrid stochastic strategy for fuel-cell multi-parameter
identification. J. Power Sources 2016, 332, 249–264. [CrossRef]

17. Cheng, J.; Zhang, G. Parameter fitting of PEMFC models based on adaptive differential evolution. Int. J.
Electr. Power Energy Syst. 2014, 62, 189–198. [CrossRef]

18. Askarzadeh, A.; Rezazadeh, A. An innovative global harmony search algorithm for parameter identification
of a PEM fuel cell model. IEEE Trans. Ind. Electron. 2012, 59, 3473–3480. [CrossRef]

19. Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model
parameter estimation of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [CrossRef]

20. Niu, Q.; Zhang, H.; Li, K. An improved TLBO with elite strategy for parameters identification of PEM fuel
cell and solar cell models. Int. J. Hydrogen Energy 2014, 39, 3837–3854. [CrossRef]

21. Gong, W.; Yan, X.; Xiaobo, L.; Cai, Z. Parameter extraction of different fuel cell models with transferred
adaptive differential evolution. Energy 2015, 86, 139–151. [CrossRef]

22. Sun, Z.; Wang, N.; Bi, Y.; Srinivasan, D. Parameter identification of PEMFC model based on hybrid adaptive
differential evolution algorithm. Energy 2015, 90, 1334–1341. [CrossRef]

23. Sankar, K.; Jana, A.K. Dynamics and estimator-based nonlinear control of a PEM fuel cell. IEEE Trans. Control
Syst. Technol. 2018, 26, 1124–1131. [CrossRef]

24. Fathy, A.; Rezk, H. Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy
2018, 143, 634–644. [CrossRef]

25. El-Fergany, A.A. Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper
optimiser. IET Renew. Power Gener. 2018, 12, 9–17. [CrossRef]

26. Ali, M.; El-Hameed, M.A.; Farahat, M.A. Effective parameters’ identification for polymer electrolyte
membrane fuel cell models using grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [CrossRef]

27. Yang, S.; Wang, N. A novel P systems based optimization algorithm for parameter estimation of proton
exchange membrane fuel cell model. Int. J. Hydrogen Energy 2012, 37, 8465–8476. [CrossRef]

28. Zhao, W.; Wanga, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic
parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [CrossRef]

29. Zhao, W.; Wanga, L. A novel atom search optimization for dispersion coefficient estimation in groundwater.
Future Gener. Comput. Syst. 2019, 91, 601–610. [CrossRef]

30. Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, 3rd ed.; Addison Wesley: Boston, MA, USA, 2001.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.energy.2014.04.051
http://dx.doi.org/10.1016/j.seta.2015.09.001
http://dx.doi.org/10.1016/j.asej.2015.05.007
http://dx.doi.org/10.1115/FuelCell2013-18287
http://dx.doi.org/10.1016/j.ijhydene.2011.07.094
http://dx.doi.org/10.1002/er.2915
http://dx.doi.org/10.1016/j.ijepes.2010.08.032
http://dx.doi.org/10.1016/j.jpowsour.2016.09.131
http://dx.doi.org/10.1016/j.ijepes.2014.04.043
http://dx.doi.org/10.1109/TIE.2011.2172173
http://dx.doi.org/10.1016/j.enconman.2014.06.026
http://dx.doi.org/10.1016/j.ijhydene.2013.12.110
http://dx.doi.org/10.1016/j.energy.2015.03.117
http://dx.doi.org/10.1016/j.energy.2015.06.081
http://dx.doi.org/10.1109/TCST.2017.2695165
http://dx.doi.org/10.1016/j.energy.2017.11.014
http://dx.doi.org/10.1049/iet-rpg.2017.0232
http://dx.doi.org/10.1016/j.renene.2017.04.036
http://dx.doi.org/10.1016/j.ijhydene.2012.02.131
http://dx.doi.org/10.1016/j.knosys.2018.08.030
http://dx.doi.org/10.1016/j.future.2018.05.037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Modeling of PEM Fuel Cell 
	Formulating the Objective Function and Constraints 
	Atom Search Optimizer (ASO) 
	Demonstrated Results, Discussions and Validations 
	Test Case 1 
	Test Case 2 

	Conclusions 
	References

