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Abstract: This paper deals with efficient operation method for the electromechanical brake (EMB).
A three-phase interior permanent magnet synchronous motor (IPMSM) is applied to the EMB operation.
A current controller, speed controller, and position controller based on proportional-integral (PI)
control are used to drive the IPMSM. Maximum torque per ampere (MTPA) control is applied to the
current controller to perform efficient control. For MTPA control, the angle β is calculated from total
input current, and the synchronous frame d–q axis current reference is determined by the angle β.
The IPMSM is designed and analyzed with finite element analysis (FEA) software and current control
is simulated by Matlab/Simulink using a motor model designed by FEA software. The simulation
results were verified to compare with experimental results that are input current and clamping force
of caliper. In addition, the experimental results showed that the energy consumption is reduced
by MTPA.

Keywords: Brake-by-Wire (BBW); Electromechanical Brake (EMB); Interior Permanent Magnet
Synchronous Motor (IPMSM); Maximum Torque Per Ampere (MTPA); efficient operation method

1. Introduction

The electromechanical brake (EMB) uses the rotational motion of the motor to move the caliper to
exert clamping force on the brake disc. The development of the initial EMB was actively carried out in
the automotive field to replace the hydraulic brake [1,2].

Due to the development of the manufacturing technology of the motor and inverter, many
researches are being carried out to improve the performance of EMB. EMB control methods have been
studied: clamping force control by cascade connection of position, velocity, and current controller based
on PID control [3,4]; clamping force control using sliding mode controller [5]; adaptive sliding mode
control using neural network to estimate disturbance [6]; estimation of clamping force considering
gear friction [7]; predictive control of clamping force by rotor position due to limitation of force sensor
space [8]; and observer-based sensor-less robust force control method [9]. Despite the number of
studies, improving energy saving using efficient control methods remains to be explored.

In the field of railroads, applying the EMB to the brake system has attracted attention as an
alternative to the existing pneumatic braking system. The EMB minimizes the total volume of the
brake system by up to 50%, eliminating unnecessary space-consuming equipment such as the air
compressor, brake air container, pipeline for air, and valves, and can perform high-precision braking
control and shorten the latency time by fast-response control. The brake system is considered as a
safety device for train components. Even though the power supply is disconnected from external
causes, the EMB must continue to be powered. Therefore, since the power input of inverter for EMB
operation is connected to the battery system of the train, EMB requires efficient control to achieve
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energy savings. There are many studies that apply maximum torque per ampere (MTPA) control
when the three-phase interior permanent magnet synchronous motor (IPMSM) is operating in normal
rotation. However, experimental results on the motor stall condition have not been introduced. In this
paper, three-phase IPMSM and a MTPA control scheme are suggested for EMB system. The experiment
evaluation results, in terms of efficient driving when MTPA control is applied in the stall condition of
IPMSM, are presented.

This research study includes simulation and experimental results of the EMB system. The IPMSM
was designed and analyzed as electromechanical design software JMAG(Ver. 17.0, JSOL, Corporation,
JAPAN). The IPMSM model was created in JMAG-RT and a cosimulation method was performed with
the JMAG motor model using Matlab/Simulink(R2018a, MathWorks, Inc., Natick, MA, USA). This
cosimulation method can consider harmonics from material, slot shape, magnet position etc., as well
as motor torque output. In order to reduce the input current, the MTPA control method was applied to
EMB operation. The simulation results were verified to compare with experimental results that are
input current and clamping force of caliper. In addition, the experimental results showed that the
energy consumption is reduced by the proposed control method.

2. Structure of EMB and IPMSM Specification

Figure 1 shows the EMB structure. When the brake is activated, the motor generates rotational
torque that is transmitted to the camshaft at a reduction gear ratio. The rotational motion of the motor
is changed from camshaft to linear motion and lever 1 and lever 2 pushed in the opposite direction. The
disc pads connected to levers move toward the brake disc and clamping force are generated between
the pads and brake disc. At this time, the motor is continuously stalled.
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Figure 1. Electromechanical brake (EMB) structure using the three-phase interior permanent magnet
synchronous motor (IPMSM).

The motor type to rotate driving shaft that is applied is the IPMSM. Depending on the control
method, the IPMSM can be used magnet torque and reluctance torque together because of the position
of the permanent magnet installed in the rotor. The IPMSM provides a smaller volume and higher
efficiency compared to the same size induction motor and SPMSM.

To design the IPMSM, the maximum clamping force target was selected 54 kN, which is the
emergency braking reference of Korea’s high-speed train (HST). The reduction gear ratio of the motor
shown in Figure 1 is ~290:1 and, in order to satisfy clamping force reference, the IPMSM output torque
must be ~2 Nm. According to the EMB braking time specification, the camshaft rotational angular
velocity should be 54 deg/s. At the reduction ratio, the angular velocity of motor is 263 rad/s. Therefore,
the motor output needed to satisfy the clamping force reference value can be expressed as

Poutput = Te × ω = 2.0× 263 = 526 W (1)

where Poutput is the IPMSM power output, Te is torque output, and ω is angular velocity.
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The purpose of the IPMSM design process is to create an IPMSM model block and show the results
of cosimulation of MTPA control using a FEM tool and Matlab/Simulink. The IPMSM is designed with
a distributed winding of four poles and 15 slots. The torque output is met within the allowable size of
the IPMSM, and the permanent magnet width and angular position have been adjusted to improve
torque ripple. Figures 2 and 3 show the motor torque output, current, and an efficiency map of IPMSM
according to the JMAG finite element analysis (FEA) results.
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The torque output average is 3.27 Nm at 15 A input current. Compared to the 2 Nm mentioned
above, the output torque margin is over 60% and the ripple rate is ± 0.03 Nm.

Figure 3 shows the motor torque output and efficiency map according to motor speed and input
current. The end point speed of the constant torque is ~3600 rpm, and shows that the input current
and output torque are linear in constant torque range. Since the output torque is required to be 2 Nm
at 2500 rpm, as per Equation (1), the motor torque specification is satisfied with sufficient margin as
shown in Figure 3a. Figure 3b shows the efficiency map according to the maximum power control on
JMAG. The efficiency is greater than 95% near 2500 rpm. However since the EMB mainly operates
in the low speed range when the brake is operated, the IPMSM operates in the low efficiency region.
In addition, the efficiency of the reduction gear has to be considered. Therefore, it is necessary to
design the IPMSM considering the sufficient output margin.

Table 1 shows the specifications of IPMSM mentioned in the above equation and design procedure.
Compared to the calculation of Equation (1), the motor output power is ~1000 W, which is twice the
minimum required motor power output.



Energies 2019, 12, 1869 4 of 13

Table 1. IPMSM specifications.

Motor Specification

Output Power 1000 W
Rated Speed 3000 rpm
Resistance Rs 0.19492 Ω
Inductance Ld 2.8 mH
Inductance Lq 5.4 mH
Rated Current 15 A
Rated Torque 3.2 Nm

Number of Phase 3
Input Voltage 100 V

3. Current Control of IPMSM

An IPMSM mathematical model is required for vector control. The voltage equation of the
synchronous d–q axis frame for IPMSM can be expressed as [10]

υr
ds = Rsirds + Lds

d irds
dt
− ωrLqsirqs (2)

υr
ds = Rsirqs + Lqs

d irqs

dt
+ ωr(Ldsirds + φ f ) (3)

where ωr is angular velocity, Rs is resistance of stator, Lds and Lqs represent the d–q axis inductance of
the stator, irds and irqs are synchronous d–q axis current of stator, and φ f is flux linkage.

From Equations (2) and (3) the output torque of IPMSM is expressed the sum of the magnet torque
and the reluctance torque as

Te =
P
2

3
2
[φ f irqs + (Lds − Lqs) irds irqs] (4)

where P is the number of poles.
Due to the insertion structure of the magnet, the inductance of the q-axis is larger than that of

the d-axis. If IPMSM is controlled with irds < 0, additional reluctance torque can be obtained from
Equation (4).

Figure 4 shows the angle β relationship according to the control current of irds and irqs. β is the angle
between Is and irds. The output torque of Equation (4) is expressed in terms of Is and β as in Equation
(5). Equation (6) is the derivative with respect to the angle β of the Equation (5). The maximum torque
point occurs when Equation (6) is zero. Therefore, the angle β is expressed in terms of the input current
Is as shown in Equation (7) [11].

Te =
P
2

3
2
[φ f Is sin β +

(Lds − Lqs)

2
I2
s sin 2β] (5)

∂Te

∂β
=

P
2

3
2
[φ f Is cos β +

(Lds − Lqs)

2
I2
s cos 2β] (6)

β = cos−1(
− φ f +

√
φ2

f + 8(Lds − Lqs)
2I2

s

4 (Lds − Lqs) Is
) (7)

From the relationship between irds and irqs, as shown in Figure 4, the synchronous d–q axis current
irds and irqs of stator can be calculated for the MTPA control as follows

irds = Is cos β , irqs = Is sin β (8)
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Figure 5 shows the IPMSM control scheme for the EMB. In this paper, the clamping force controller
for EMB consists of three PI controllers, which are position, speed and current controllers. The
three-phase current and angular displacement (θ) can receive feedback from the IPMSM installed
in the calipers. The synchronous frame d–q axis current can be calculated by the current output of
IPMSM. Angular displacement from the resolver is converted to clamping force feedback (Fb) using a
simple first-order equation force estimator. The MTPA algorithm block uses the total input reference
current of the stator Isre f , which is the output of speed controller. According to Equations (5)–(8), irds_re f
and irqs_re f are calculated. The current controller gain can be selected generally as follows

Kpd = Lds ·ωc

Kpq = Lqs ·ωc

Ki = Rs ·ωc (9)

where Kpd and Kpq are d–q axis proportional gain, Ki is integral gain, and ωc is bandwidth of controller.
Based on the output voltage reference of the current controller, EMB system is generated at the
MTPA output.Energies 2018, 11, x FOR PEER REVIEW  6 of 13 
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Figure 6 shows an example of the maximum torque trajectory based on synchronous frame d–q
axis current reference. From the Table 1, when input stator current Is is 10 A and 20 A, the angle β is
calculated as ~114◦ and 122◦. From Equations (7) and (8), according to the angle β, the points can be
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produced and connected with one red color curve like as Figure 6. This curve can produce maximum
torque depending on the input stator current [12].
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Figure 6. Example of d–q axis current control reference.

Table 2 shows the maximum torque points according to the input stator current Is. For maximum
torque output to occur, angle β must be within the range of 90◦ and 180◦, as shown in Figure 6.

Table 2. Maximum torque points according to the input stator current Is.

Is (A) ir
ds_ref (A) ir

qs_ref (A) β (deg)

5 −1.30 4.84 105.0
7 −2.31 6.61 109.3

10 −4.05 9.14 113.9
12 −5.29 10.77 116.2
14 −6.58 12.36 118.0
16 −7.90 13.91 119.6
18 −9.23 15.45 120.9
20 −10.59 16.97 122.0

4. Simulation Results of the Current Control for IPMSM

Simulation results were performed to verify the current control and output torque of the IPMSM
according to MTPA. In this paper, the IPMSM model designed in the previous section was used instead
of the Matlab/Simulink model to account for FEA results. In addition, Matlab/Simulink is used for
current control of the MTPA algorithm. As mention above, the cosimulation method can consider loss
and harmonics from material, slot shape, magnet position, etc., as well as motor torque output.

Figure 7 shows the IPMSM model and brake model for the Matlab/Simulink simulation. The
IPMSM model is applied to three-phase voltage and generated output signals such as torque, stationary
d–q axis current/voltage, and angular displacement.

Figure 8 shows the simulation result of synchronous frame d–q axis current control without
MTPA [13]. The bandwidth to calculate PI controller gain in Equation (9) is 2500 rad/s. To produce the
target clamping force of ~54 kN, the d–q axis reference currents are commanded to be 0 A and 14 A,
respectively. In the motor model of Figure 7, the q-axis current ripple occurred about ± 4 A and the
d-axis current ripple occurred about 5 A in the transient response state. However the d–q axis current
is settled within 50 ms.
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Figure 9 shows the simulation result of IPMSM torque and clamping force output with current 
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Figure 9 shows the simulation result of IPMSM torque and clamping force output with current
control as shown in Figure 8. The overshoot of torque does not occur in the initial transient response
and the torque ripple is ~0.15 Nm. Figure 9b shows the output of the clamping force through the
reduction gear ratio and moving distance. Caliper clamping force can be calculated as follows

CFcaliper = Te ×Gratio/D (10)

where, CFcaliper is caliper clamping force, Te is motor output torque, Gratio is gear ratio, and D is caliper
moving distance.

Figure 10 shows the simulation result of synchronous frame d–q axis current control with MTPA
applied. To compare it with the current control result without MTPA, the d–q axis current control
reference is commanded to be 10.77 A and −5.29 A, respectively, as shown in Table 2, and the same PI
gain is applied to the current control. The d–q axis current ripple occurred at ~1.3 A and 4 A in the
transient response state, respectively. As shown in Figure 8, the transient response has different types
of waveform depending on the input reference current.

Figure 11 shows the simulation result of IPMSM torque and clamping force output according
to the current control, as shown in Figure 10. Although torque output is obtained, the same value
compared with Figure 9, the input current can be reduced about 2 A(14.3 %) when the MTPA control
is applied.
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In order to compare torque changes when MTPA control is applied or not, the d axis reference
current is commanded from 0A to −5.29 A at 0.2s and the q axis reference current is commanded from
12 A to 10.77 A at 0.2 s, as shown in Figure 12. The input current Is before and after 0.2 s is the same.
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5. Experimental Results of the EMB System

Figure 14 shows the EMB performance test rig with the same structure as a train installation. The
sensor (Loadcell) is installed inside the brake disc unit to reduce the impact of caliper brake operation.

Figure 14b shows the setting to control the caliper clamping force. The microprocessor control
unit (MCU) used is the TMS320F28062 and the PWM switching frequency is 10 kHz. The input voltage
is applied 100 Vdc, which is the reference value of the battery voltage in the train.
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Figure 15 shows experimental results of the current controller block according to the control
concept of Figure 5. The clamping force reference is 54 kN, which is the emergency brake reference of
high speed train(HST) in Korea. Figure 15a shows only the q axis current and Figure 16b shows the
d–q axis current commanded according to Equations (7) and (8). Two kind of control methods are
satisfied for clamping force reference 54 ± 2 kN. However, when the MTPA method is not applied,
input current is 15 A, and when the MTPA method is applied, input current is about 12 A.Energies 2018, 11, x FOR PEER REVIEW  11 of 13 
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Figure 16 shows the experimental results of the speed controller block. The bandwidth to calculate
the PI controller gain in Equation (9) is ~500 rad/s and inductance used the average values of Ld and Lq.
When the EMB is braking, IPMSM is rotated within 0.28 s at a maximum speed of 2000 rpm. When the
clamping force reaches 54 kN within 0.48 ms, IPMSM decelerates to 0 rpm and continues motor stall
condition. The speed control result is same as whether MTPA method is applied or not.

Figure 17 shows the experimental results of the position control block—the outermost controller
in Figure 5. The bandwidth to calculate PI controller gain in Equation (9) is ~100 rad/s. To make the
maximum clamping force of ~54 kN, the IPMSM moved ~230 radians. Regardless of whether MTPA
method is applied or not, there is no difference in position control result.
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To verify the effectiveness of the MTPA control method, Figure 18 shows the DC input current
waveform when the brake is activated with maximum clamping force. Maximum peak currents
during the initial transient response are 5.5 A and 5 A, respectively. When the EMB reaches the motor
stall condition, DC input currents are 1 A (100 W) and 0.6 A (60 W) at the maximum clamping force
output, respectively. Therefore, when the MTPA scheme is applied, the EMB system reduces current
consumption and the efficiency is improved ~40%.
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6. Conclusions

This paper deals with efficient operation scheme for Electromechanical Brake (EMB). A current
controller, speed controller, and position controller based on proportional integral control are used to
drive the IPMSM. The angle β, which is between the synchronous frame d–q axis currents irds and irqs is
calculated for MTPA control. The simulation results show that when the MTPA control is applied, the
input current is reduced by 14.3% and, at the same time, the clamping force reference and clamping
force are improved by 19% at the same input current. In addition, experimental results show that
when the MTPA control is applied, the EMB system reduces current consumption and the total input
power is reduced ~40% at the same clamping force. In future works, in order to preserve the compact,
lightweight, and high reliability of the EMB system, optimal design of the EMB system is required and
the losses of the driving system must be accurately measured under motor stall conditions.
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