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Abstract: In microgrids, forecasting solar power output is crucial for optimizing operation and
reducing the impact of uncertainty. To forecast solar power output, it is essential to forecast solar
irradiance, which typically requires historical solar irradiance data. These data are often unavailable
for residential and commercial microgrids that incorporate solar photovoltaic. In this study, we
propose an hourly day-ahead solar irradiance forecasting model that does not depend on the historical
solar irradiance data; it uses only widely available weather data, namely, dry-bulb temperature,
dew-point temperature, and relative humidity. The model was developed using a deep, long
short-term memory recurrent neural network (LSTM-RNN). We compare this approach with a
feedforward neural network (FFNN), which is a method with a proven record of accomplishment in
solar irradiance forecasting. To provide a comprehensive evaluation of this approach, we performed
six experiments using measurement data from weather stations in Germany, U.S.A, Switzerland,
and South Korea, which all have distinct climate types. Experiment results show that the proposed
approach is more accurate than FFNN, and achieves the accuracy of up to 60.31 W/m2 in terms
of root-mean-square error (RMSE). Moreover, compared with the persistence model, the proposed
model achieves average forecast skill of 50.90% and up to 68.89% in some datasets. In addition, to
demonstrate the effect of using a particular forecasting model on the microgrid operation optimization,
we simulate a one-year operation of a commercial building microgrid. Results show that the proposed
approach is more accurate, and leads to a 2% rise in annual energy savings compared with FFNN.

Keywords: microgrid; solar irradiance; forecasting; recurrent neural network; long short-term
memory; deep learning

1. Introduction

Around the world, countries are taking unprecedented steps to support renewable energy adoption.
Currently, the number of photovoltaic (PV) installations is growing faster than any other renewable
energy resource, driven mainly by sharp cost reductions and policy support [1]. In the United States,
utility-scale photovoltaic capacity is projected to grow by 127 GW [2]. South Korea plans to increase
its solar power generation fivefold by 2030 [3]. China, the world’s leading installer of PV, has a goal
to reach 1300 GW of solar capacity by 2050 [4]. This increasing PV adoption is leading to increasing
integration of PV into microgrids. To operate PV-based microgrids optimally, an accurate forecast
of day-ahead solar power is necessary. However, solar PV power output is calculated from solar
irradiance, resulting in a growing interest in solar irradiance forecasting. Some of the applications of
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solar irradiance forecasting in microgrids include economic dispatch, peak shaving, energy arbitrage,
participation in the energy market, and uncertainty impact reduction.

Solar irradiance forecasting has been extensively studied in the literature. Generally, it can be
broadly classified in terms of forecast horizons and model types. For the forecast horizon, forecasting
can be categorized as very short-term [5], short-term [6], and medium-term [7,8]. Very short-term
forecasting (a few minutes to 1 h) is used for real-time optimization, an important component of an
energy management system. Short-term forecasting (3–4 h) is used for intraday market participation.
Medium-term forecasting (typically a day ahead) is useful for day-ahead operation optimization and
market participation.

Model types can be categorized as either data-driven or physical. Data-driven models use historical
time series data. They can be further sub-categorized into statistical or machine learning models.
Statistical models include autoregressive integrated moving average (ARIMA) [9], auto-regressive
moving average (ARMA) [10], coupled autoregressive and dynamic system (CARD) [11], Lasso [12], and
Markov models [13–15]. Machine learning models [16] include support vector machine (SVM) [17,18],
feedforward neural network (FFNN) [19], and recurrent neural network (RNN) [20]. Data-driven
models can be further subdivided according to the type of input features they use to train the model.
A forecasting model that uses only a target time-series (solar irradiance in this case) as an input feature
is referred to as a nonlinear autoregressive (NAR) model. On the other hand, if a model uses additional
exogenous inputs, such as temperature and humidity, it is referred to as a nonlinear autoregressive with
exogenous inputs (NARX) model. Physical models use numerical weather prediction (NWP) [21–23],
which shows good performance for forecast horizons from several hours up to six days.

Until recently, the forecasting domain has been largely influenced by statistical models. There is an
increasing shift to machine learning models, due in part to the increasing availability of historical data.
These models have come into serious contention with classical statistical models in the forecasting
community [24]. Machine learning models use historical data to learn the stochastic dependency
between the past and the future. A wealth of studies conclude that these models outperform statistical
models in solar irradiance forecasting.

Table 1 tabulates the previous studies on day-ahead solar irradiance forecasting. We report the
study location, dataset size (number of examples, which correspond to a day measurement), and the
machine learning model used. The models include FFNN, RNN, and SVM, among others. FFNN
is by far the most widely applied algorithm in the literature. Kemmoku et al. [25] used multi-stage
FFNN to forecast a day-ahead solar irradiance in Omaezaki, Japan. The results showed that the
mean error reduces from about 30% (by single-stage FFNN) to about 20% (by multi-stage FFNN).
Yona et al. [26] proposed a method for forecasting day-ahead solar irradiance using RNN and a radial
basis function neural network (RBFNN). They found that both RNN and RBFNN outperform FFNN.
In [27], Mellit et al. used FFNN with two hidden layers to forecast solar irradiance for day-ahead in
Trieste, Italy. The inputs to their model were mean daily solar irradiance, mean daily temperature,
and time of day. Paoli et al. [28] used 19 years of data from Corsica Island, France, to fit an FFNN
model to forecast a day-ahead solar irradiance. The study compared the performance of FFNN and
Markov chains, Bayesian inference, k-nearest neighbor (KNN), and autoregressive (AR) models, and
found that FFNN outperforms all these models. In [29], Linares et al. used FFNN to generate daily
solar irradiance in locations without ground measurement. The model was developed using 10 years
of data from 83 ground stations in Andalusia, Spain. In [30], they applied three models to predict
day-ahead solar irradiance over Spain. The models are Bristow–Campbell, FFNN, and Kernel Ridge
Regression. They concluded that FFNN produces the most accurate result. In [31], they used predicted
meteorological variables from the US National Weather Service database to predict day-ahead solar
irradiance using FFNN. Long et al. [32] used four different machine learning methods, including
FFNN, to forecast day-ahead solar irradiance. They concluded that none of the models can outperform
others in all scenarios. In [33], Voyant et al. applied FFNN to forecast day-ahead solar irradiance.
They reported interesting analyses, such as the effects of using endogenous and exogenous data, and
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the performance of three different FFNN architectures. The findings indicated that using exogenous
data improves the model accuracy and that multi-output FFNN has better accuracy than the two other
architectures. Other authors that used FFNN and achieved satisfactory results include [34,35].

Other machine learning models besides FFNN have been seen in the literature. In [36], the authors
forecasted day-ahead solar irradiance by applying Coral Reefs Optimization (CRO) and trained their
neural network using an extreme learning machine (ELM) approach. The ELM was used to solve the
forecasting problem, and then CRO was applied to evolve the weights of the neural network in order
to improve the solution. In [37], the authors used a partial function linear regression model to forecast
a daily solar power output. In this model, the intra-day time-varying pattern of output power was
incorporated into the forecasting framework. In [38], Chen et al. used RBFNN to forecast solar power
output by first training a self-organized map to classify the local weather type for 24-h ahead.

In [39], Ahmad et al. used an autoregressive RNN with exogenous inputs and weather variables
to provide a day-ahead forecast of hourly solar irradiance in New Zealand. In [40], Cao and Lin
combined RNN with a wavelet neural network, forming a diagonal recurrent wavelet neural network
to perform day-ahead solar irradiance forecasting. They demonstrated improvement in accuracy using
data from Shanghai and Macau. In [20], a comparative study of long short term memory (LSTM) in
forecasting day-ahead solar irradiance was performed. The results suggest that LSTM outperforms
many alternative models (including FFNN) by a substantial margin.

In this paper, we propose a deep LSTM-RNN using only exogenous inputs (i.e., without using
solar irradiance as an input feature to the model) to forecast day-ahead solar irradiance. We note that
we are not the first to use only exogenous inputs, as it was reported in [29], that exogenous inputs
were used exclusively to train FFNN for day-ahead solar irradiance forecasting. However, we found
that using this approach with LSTM is more accurate than with FFNN. Notably, the studies in Table 1
were trained and evaluated using data from a single country (with the exception of [20]); this makes
their findings difficult to generalize because it does not take into account the changing spatial and
climatic conditions across different locations. It is also important to point out that none of these studies
experimented with a deep learning approach, even though that approach was found to be successful
in electricity load forecasting [41], wind speed forecasting [42,43], and electricity price forecasting [44].
Finally, all the studies reviewed focused on forecasting accuracy without demonstrating the usefulness
of the forecast. In this work, we used a microgrid design and analysis model developed in [45],
to simulate a one-year optimal operation of a commercial building microgrid using the actual and
forecasted solar irradiance.

Table 1. Previous studies on a day-ahead solar irradiance forecasting.

Location
Dataset Size

Model
Publication

Reference
Train Set Test Set Year

Japan 1827 365 FFNN 1999 [25]
Japan 333 4 RNN, RBFN 2007 [26]
China 7992 744 DRWNN 2008 [40]
Italy Unknown Unknown FFNN 2010 [27]

France 6574 547 FFNN 2010 [28]
Spain 219,439 60,768 FFNN 2011 [29]
China 670 74 RBFN 2011 [38]
Spain 1241 219 FFNN 2011 [30]
USA 237 158 FFNN 2011 [31]

Turkey 1096 365 SVM 2014 [17]
Spain 292 73 ELM 2014 [36]
Macau 723 38 FFNN, SVM, KNN, MLR 2014 [32]
France Unknown Unknown FFNN 2014 [34]
France 2920 730 FFNN 2014 [33]

New Zealand Unknown Unknown RNN 2015 [39]
Italy 876 584 FFNN 2015 [46]
Italy 120 30 FFNN 2017 [35]

Seven countries 164,350 365 LSTM 2018 [20]
Four countries 16,973 2190 LSTM 2019 This study
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In summary, the contributions of this work to the literature are threefold. First, we develop a
model to predict solar irradiance using only exogenous inputs; this means the model can generate solar
irradiance for a given location without past measurement of solar irradiance at the location. Second,
we demonstrate that by using a deep learning approach, LSTM-RNN can achieve higher accuracy than
other models; the model achieved higher accuracy in term of forecast skill than the results obtained
from the previous studies cited. We demonstrate the performance of our approach using six datasets.
Finally, we simulate a one-year operation of a microgrid, thereby demonstrating the usefulness of the
forecasting model.

The rest of the paper is organized as follows: The theoretical background of deep learning,
LSTM-RNNs, and FFNN are discussed in Section 2. In Section 3, we provide the details of the
end-to-end problem formulation of an LSTM-RNN model for solving the solar irradiance forecasting
problem. The results, analysis, and discussion are presented in Section 4. Section 5 provides the
conclusion and describes future research work.

2. Deep Learning, FFNN, and LSTM; Theoretical Background

This section provides a theoretical background of the models used in this work. We start with an
overview of deep learning. We then introduce FFNN and LSTM-RNN.

2.1. Deep Learning

Deep learning is part of a broader family of machine learning techniques that use multiple
processing layers to learn a representation of data with multiple levels of abstraction [47]. It discovers
intricate structures in large datasets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the
representation in the previous layer [48]. Deep learning architectures include FFNN, RNN, deep belief
networks (DBN), and restricted Boltzmann machine (RBM). Among these architectures, the most widely
used are FFNN and RNN. Deep convolution neural networks (CNN), which are a family of FFNN, are
remarkably good at processing images, video, and audio. Deep LSTMs, which are a family of RNN, are
good with sequential data, such as text, speech, and time series. Deep learning is making major advances
in many domains. It has outperformed other machine learning techniques in image recognition [49,50],
speech recognition [51,52], natural language understanding [53], language translation [54,55], particle
accelerator data analysis [56], potential drug molecule activity prediction [57], and brain circuit
reconstruction [58]. However, its application in the solar irradiance forecasting is limited [59].

2.2. Feedforward Neural Network (FFNN)

An FFNN defines a mapping y = f (x, W) and learns the value of the parameters W that result in
the best function approximation. These networks are called FFNN because information flows through
the function being evaluated from x, through the intermediate computations used to define f, and
finally to the output y [60]. An FFNN consists of an input layer, an output layer, and one or more hidden
layers between the input and output layer. As shown in Figure 1, the first hidden layer is connected to
the input layer; its output is then passed to the next hidden layer or output layer. The output layer
makes a prediction or classification decision using the value computed in the hidden layers. For the
FFNN in Figure 1, we can construct M linear combinations of the input variables x1, . . . , xD in the form:

a j =
D∑

i=1

w(1)
ji · xi + b(1)j (1)

where j = 1, . . . , M. The superscript (1) in Equation (1) indicates that corresponding parameters are
in the first layer of the network; w(1)

ji and b(1)j are the weights and biases; j and M are the index and
total number of linear combination of the input variables, respectively; i and D are the index and total
number of the input variables, respectively; a j is the activation, which can be transformed using a
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differentiable, nonlinear activation function. The nonlinear activation functions can be logistic sigmoid,
tanh, rectified linear unit (ReLu), etc. as in

a j =
D∑

i=1

w(1)
ji · xi + b(1)j (2)

The quantity zj is called hidden unit and σ is the logistic sigmoid. Following (1), these values are
again linearly combined to give output unit activations:

ak =
M∑

j=1

w(2)
kj · z j + b(2)k (3)

where k = 1, . . . , K, and K is the total number of outputs, w(2)
kj and b(2)k are the weights and biases.

This transformation corresponds to the second layer of the network. Finally, the output unit activations
are transformed using an appropriate activation function to give a set of network outputs yk.

yk(X, W) = σ

 M∑
j=1

w(2)
kj h

 D∑
i=1

w(1)
ji · xi + b(1)j

+ b(2)k

 (4)

In summary, the FFNN model is a nonlinear function from a set of input variables {xi}s to set of
output variables {yk} controlled by a vector W of adjustable parameters [61].

FFNN learns by computing the error of the output of the neural network for a given sample,
propagating the error back through the network while updating the weight vectors in an attempt
to reduce the error. FFNNs are very powerful and are applied to many challenging problems in
many fields.
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Figure 1. Feedforward neural network (FFNN). The circles represent network layers and the solid lines
represent weighted connections. Note that bias weights are not shown in the figure for clarification.
The arrows show the direction of forward propagation.

2.3. Long Short Term Memory Recurrent Neural Network (LSTM-RNN)

RNNs are members of a class of artificial neural network (ANN) where a connection between
nodes forms a directed graph along a sequence, enabling the network to exhibit temporal dynamic
behavior for a time sequence. Given an input sequence x = (x1, . . . , xT), standard RNNs compute
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the hidden vector sequence h = (h1, . . . , hT) and output vector sequence y = (y1, . . . , yT) by iterating
Equations (5) and (6) from t = 1 to T:

ht = H(Wxh · xt + Whh · ht−1 + bh) (5)

yt = Why · ht + by (6)

where Wxh, Whh, Why terms respectively denote input-hidden, hidden-hidden, and hidden-output
weight matrices. The bh and by terms denote hidden and output bias vectors, respectively. The termH
is the hidden layer activation function. It is usually an elementwise application of the sigmoid function.
Figure 2 shows an RNN network and the unfolding in time of its forward computation. The artificial
neurons get inputs from other neurons at previous time steps.
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represent weighted connections. The arrows show the direction of forward propagation.

RNNs, in contrast to FFNNs, have a feedback connection. Their output depends on the current
input to the network, and the previous inputs, outputs, and/or hidden states of the network. RNNs
are very powerful dynamic systems, but training them has proved to be difficult because the back
propagated gradients either grow or shrink at each time step, so they typically explode or vanish over
several time steps [62]. To solve this problem, one idea is to provide an explicit memory to the network.
The first proposal of this kind is LSTM.

LSTM units are building units for layers of RNNs. They were proposed in 1997 by Hochreiter
and Schmidhuber [63] and improved by Gers et al. [64]. They were developed to solve the problem of
vanishing gradient that occurs while training conventional RNNs. A typical LSTM unit is composed of
an input gate, forget gate, output gate, and a cell unit. Figure 3 illustrates a single LSTM unit. It is a
version of the LSTM discussed in [64]. The cell serves as a memory and remembers values over an
arbitrary time interval. The input gate, forget gate, and output gate controls the flow of information
into and out of the cell. The basic operations of the LSTM can be described as follows: (1) When the
input gate is activated, new input information accumulates in the memory cell. (2) When the forget
gate is activated, the cell forgets past status. (3) When the output gate is activated, the latest cell output
propagates to the ultimate state.

The forward propagation equations of LSTM are given in Equations (7)–(11). The most important
component is the cell unit ct It has a linear self-loop that is controlled by a forget gate unit ft, which sets
the forward contribution of ct−1 to a value between 0 and 1:

ft = σ(Wx f · xt + Wh f · ht−1 + b f ) (7)

The LSTM cell internal state is thus updated as follows, but with a conditional self-loop weight ft:

ct = ft · ct−1 + it · tanh(Wxc · xt + Whc · ht−1 + bc) (8)
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The external input unit it is calculated similarly to the forget gate, but with its own parameters:

it = σ(Wxi · xt + Whi · ht−1 + bi) (9)

The output ht of the LSTM cell can also be shut off, via the output gate ot, which also uses a
sigmoid unit for gating:

ht = ot · tanh(ct) (10)

ot = σ(Wxo · xt + Who · ht−1 + bo) (11)

where i, f, o, and c are the input gate, forget gate, output gate, and cell, all of which are the same size as the
hidden vector h, and W is the weight matrix. The bias terms (bi, bf, bc, and bo) are omitted for clarity.
An RNN composed of LSTM units is called an LSTM network. LSTM networks have proven to be more
effective than conventional RNNs, especially when they have several layers for each time step [65].
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3. Problem Formulation

In this section, we develop the model for forecasting the 24-h global horizontal irradiance (GHI).
Since GHI is the irradiance falling on a horizontal surface, and PV arrays are usually installed inclined to
the horizontal plane, we need to account for this inclination when calculating solar irradiance incident
on the PV array. Many models of varying complexity have been developed for calculating incident
solar irradiance. Among these models, the HDKR model [66] is the most widely used. Its results are
calculated as shown in Equation (12) below:

Ginc = (Gb + Gd ·Ai) ·Rb + Gd(1−Ai) ·

(
1 + cos β

2

)
·

(
1 + f · sin3

(
β

2

))
+ G · ρg

(
1− cos β

2

)
(12)

where G is the GHI, Gb is the beam radiation, Gd is the diffuse radiation, β is the slope of the surface in
degrees, ρg is the ground reflectance, Rb is the ratio of the beam radiation on the tilted surface to beam
radiation on the horizontal surface, Ai is the anisotropy index which is a function of the transmittance
of the atmosphere for beam radiation, and f is the factor used to account for cloudiness. The power
produced by the PV modules can be calculated from the incident irradiance calculated in Equation (12)
as follows [67,68]:

Ppv = Ppv,STC ·
Ginc

Ginc,STC
[1 + kT · (Tcell − Tcell,STC)] (13)

where Ppv,STC is the rated PV power at standard test conditions (kW), kT is the temperature coefficient
of power (%/◦C), Tcell is the PV cell temperature (◦C), Tcell,STC is the PV cell temperature at standard
test conditions (25 ◦C), Ginc,STC is the incident solar irradiance at standard test conditions (1 kW/m2),
and Ginc is the incident solar irradiance on the plane of the PV array (kW/m2). The cell temperature,
Tcell, is calculated in Equation (14):
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Tcell = Tamb +
Ginc
800
· [NOCT − 20] (14)

where Tamb is the ambient temperature and NOCT is an acronym for the nominal operating cell
temperature, a constant that is defined under the ambient temperature of 20 ◦C, incident solar
irradiance of 800 W/m2, and wind speed of 1 m/s.

3.1. Framing the Problem

Solving a forecasting problem by using historical data has a strong theoretical background.
Two approaches to this type of problem come from statistical forecasting theory and dynamic system
theory. Statistical forecasting theory assumes that an observed sequence is a specific realization of a
random process, where the randomness arises from many independent degrees of freedom interacting
linearly [69]. In dynamic system theory, the view is that apparently random behavior may be generated
by deterministic systems interacting nonlinearly with only a small number of degrees of freedom [70].
The problem of time series forecasting can be framed as a supervised learning problem, which follows
from dynamic system theory. Supervised learning is a machine learning algorithm that learns an input
to output mapping function from example input-output pairs [71].

3.1.1. Problem Definition

Given historical weather data together with categorical features such as the hour of day and month
of the year, we can forecast a day-ahead solar irradiance. To define the problem formally, we let i ∈ NM

represents an example in the dataset where M is the total number of examples in the dataset, t ∈ NT

represents the time step, where T represents the prediction horizon (24 h for day-ahead forecasting),
W represents the length of the lookback window, and d denotes feature dimension. Given a dataset
S= {x(i); y(i)

}
M
i=1, where x(i) ⊆ Rd×(t−W:t−1) is an input matrix, {t−W : t− 1} is a temporal window,

y(i)
⊆ Rd is a multidimensional output vector over the space of real-valued outputs; determine

p(y
∣∣∣x; Θ), where y ⊆ m×Rd and x ⊆ m×Rd×(t−W:t−1) are the concatenation of all outputs and inputs,

respectively, and Θ represents model parameters, such that:

Distance(pmodel(y
∣∣∣x; Θ)

∣∣∣∣∣∣pempirical(y
∣∣∣x)) (15)

is minimized.

3.1.2. Performance Metrics

In order to evaluate the model’s performance, we need to choose a metric to measure the prediction
accuracy. There are many issues that arise when choosing a metric as noted in [72,73]. Those authors
observed that many metrics are not generally applicable, can be infinite or undefined in some cases,
and can produce misleading results. Nevertheless, root mean square error (RMSE) and mean absolute
error (MAE) are widely used in the literature. The equations for calculating RMSE and MAE are given
respectively in Equations (16) and (17).

RMSE =

√√√
1

T ·M

M∑
i=1

T∑
t=1

(h(x(i)t ) − y(i)t )
2

(16)

MAE =
1

T ·M

M∑
i=1

T∑
t=1

∣∣∣∣(h(x(i)t ) − y(i)t )
∣∣∣∣ (17)

where M is the number of examples in the dataset, x(i) is a vector of feature values of the ith example in the
dataset, y(i) is the desired output value of the ith example, h is the system prediction function. Note that
using only RMSE and MAE as a measure of forecast accuracy can be misleading because they do not
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convey a measure of variability in the time series data. A metric that tries to address this issue is the
forecast skill, proposed in [74]. Forecast skill gives the relative measure of improvement in prediction
over the persistence model, which is also known as the naive model. It is given by Equation (18).

s =
(
1−

U
V

)
· 100 (18)

A typical forecast model should have a value of s between 0–100, with a value of 100 indicating
perfect forecast, and a value of 0 indicating the model has an equal skill to persistence model. U and V are
calculated over the same dataset, where U ∈ {MAPE, RMSE} and V ∈

{
MAPEpersistence, RMSEpersistence

}
.

Even though we used RMSE to evaluate the models in this paper, our motivation for also computing
the MAE metric is for comparison with previous works, and to allow comparison with future works.
For a comprehensive treatment of various performance metrics used in solar irradiance forecasting,
interested readers can refer to [72,73].

We use a day-ahead persistence model as a reference, which is a standard approach in the
irradiance forecasting literature. This model assumes that the current conditions will repeat for the
specified time horizon. In particular, the persistence model sets the irradiance value of the previous
day to be the day-ahead predicted values.

3.2. Data Engineering

3.2.1. Data Description

A comprehensive evaluation of solar irradiance forecasting method should include multi-location
based experiments, as this will increase confidence in the results. With this in mind, in this work, six
datasets from four different countries were used. The countries selected have diverse climatic conditions
and topographical features. These datasets are from Saaleaue Weather Station at the Max Planck
Institute of Biochemistry in Jena, Germany [75]; Solar Radiation Research Laboratory (SRRL) in Golden,
Colorado, USA [76]; Weather Station in Basel, Switzerland [77]; Korea Meteorological Administration
(KMA) Weather Stations in Jeju, Busan, and Incheon [78]. Table 2 summarizes information about
latitude, longitude, elevation above sea level, climate type according to the Koppen classification
system, and the sizes of the datasets for all the six locations.

The weather variables collected in each location and their Pearson correlation coefficient (PCC)
with solar irradiance is shown in Table 3. PCC is a measure of the correlation between two variables.
It has a value between +1 and −1, where 1 is total positive linear correlation and −1 is total negative
linear correlation. Given two variables (X, G), the formula for computing PCC is given below:

PCC(X, G) =
1

N − 1

N∑
i=1

Xi − µX

σX

(Gi − µG

σG

)
(19)

where µ and σ are the mean and standard deviation of the variables (X, G), and N is the number
of observations in each variable. The boxplots of solar irradiance for the six datasets are shown in
Figure 4.

Table 2. Datasets locations and climate types.

Location Latitude (◦) Longitude (◦) Elevation (m) Climate Type (Koppen
Classification) Size (Years)

Jena, Germany 50.9288 11.5899 149 Oceanic 7
Golden, U.S.A. 39.7329 −105.2389 1733 Semiarid 12

Basel, Switzerland 47.5584 7.5733 279 Temperate Atlantic 12
Jeju, South Korea 33.4890 126.4983 19 Humid subtropical 9

Busan, South Korea 35.1796 127.7669 20 Humid subtropical 9
Incheon, South Korea 37.4563 126.7052 45 Humid subtropical 9
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Table 3. Meteorological parameters and their Pearson Correlation Coefficient (PCC) with solar irradiance.

Variable
PCC

Jena Golden Basel Jeju Busan Incheon

Solar irradiance 1 1 1 1 1 1
Dry bulb temperature 0.5411 0.4084 0.4857 0.3087 0.2938 0.2595

Dew point temperature 0.2483 0.1188 0.1211 0.1305 0.0671 0.0634
Relative humidity −0.6671 −0.3176 −0.5788 −0.3030 −0.2915 −0.3801

Wind speed x 0.0342 0.0632 0.1651 0.1842 0.1463
Wind direction x x 0.0354 −0.0036 0.0376 0.1871
Precipitation x −0.016 −0.1000 −0.0662 −0.0687 −0.0625

Total cloud cover x 0.2255 −0.2569 0.0991 −0.0229 −0.0251
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3.2.2. Data Division

We divided the data into three subsets: A training set, a validation set, and a test set. We used
the training set to train the models and the validation set for hyperparameter optimization, feature
selection, and regularization. The test set, which is the out-of-sample data, was used for final evaluation
to select the best model. Table 4 shows the data division and the number of examples in each subset.
Note that in South Korea there are three datasets from Jeju, Busan, and Incheon, which are all divided
in the same way.

3.2.3. Feature Selection

One of the central problems of time series supervised learning is identifying and selecting the
relevant features for accurate forecasting. Feature selection improves the performance of a prediction
by eliminating irrelevant features, reducing the dimension of the data, and increasing training efficiency.
For solar irradiance forecasting, previous studies have discussed feature selection extensively [79–82].
In this study, the goal is to select the subset of features that are both easily obtainable for any location
and that correlate with the solar irradiance. We did not rank the importance of features based on their
PCC values because a feature can be irrelevant by itself but can provide a significant performance
improvement when taken with other features [83]. There are two widely used approaches to the
feature selection problem [84]: The wrapper and the filter approach. The wrapper approach consists
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of using an evaluation metric (in this paper, RMSE) of the machine learning algorithm to assess the
space of all possible variable subsets. In the filter approach, heuristic measures are used to compute the
relevance of a feature in a preprocessing stage without actually using the machine learning algorithm.
In this paper, we used the former approach [85] since we have a small number of features to select
from. We found that the subset of dry-bulb temperature, dew point temperature, and relative humidity
comprise the most relevant set of features. This implies that to forecast day-ahead solar irradiance, we
do not need previous days solar irradiance as an input feature to our forecasting model. Finally, we
added two categorical features, the hour of the day (1–24) and the month of the year (1–12), which
improved the prediction accuracy of the models.

Table 4. Training, validation and test sets.

Datasets Periods Number of Examples

Jena

Training set 1 January 2003–31 December 2008 2190
Validation set 1 January 2009–31 December 2009 365

Test set 1 January 2010–31 December 2010 365

Golden

Training set 1 January 2006–31 December 2015 3650
Validation set 1 January 2016–31 December 2016 366

Test set 1 January 2017–31 December 2017 365

Basel

Training set 1 January 2007–31 December 2016 3651
Validation set 1 January 2017–31 December 2017 365

Test set 1 January 2018–31 December 2018 365

South Korea

Training set 1 January 2009–31 December 2015 2554
Validation set 1 January 2016–31 December 2016 366

Test set 1 January 2017–31 December 2017 365

3.2.4. Data Preparation

Before applying data to a machine learning algorithm, it is necessary to clean the data to fix or
remove outliers and fill in any missing values. There are no missing values in the Golden and Basel
datasets. In the Jena, Jeju, Busan, and Incheon datasets, there are a few missing values representing less
than 1% of the entire dataset. We replaced the missing values using linear regression fit. We note that
more sophisticated techniques such as Kalman filters could be used to replace the missing values [86];
however, considering there are just a few values to replace, this simple method will suffice.

Other data preparation steps in machine learning are feature scaling and encoding. Machine
learning algorithms often perform poorly when the input numerical features have very different scales,
so we rescaled the data to have a zero mean and unit variance. We encoded categorical features (the
hour of the day and the month of the year) with 1-hot encoding. The one-hot encoder maps the original
element from the categorical feature vector with M cardinality into a new vector with M elements,
where only the corresponding new element is one while the rest of new elements are zeros.

3.3. Implementation Details: Training the LSTM Model

We used the Matlab Deep Learning Toolbox [87] to develop a forecasting framework used in this
paper. The framework, shown in Figure 5, consists of an input layer, LSTM hidden layers, a fully
connected layer, and an output layer. The input layer inputs the time series data into the network.
The hidden layers learn long-term dependencies between time steps in the time series data. To make a
prediction, the network ends with a fully connected layer and an output layer.
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Figure 5. The proposed deep learning framework. In this figure, h denotes the output, c denotes the
cell state, and N denotes the number of layers.

Each dashed-box in Figure 5 represents a training example that will be fed to the LSTM network.
Note that d ∈ D is the number of features (number of rows in the dashed-boxes), t ∈ T is the number
of time steps in the prediction horizon (number of columns in the dashed-boxes), and m ∈ M is the
number of training examples (total number of dashed-boxes). In summary, the input to the LSTM has
three dimensions: D, T, and M.

For our proposed model, there are three exogenous features (dry bulb temperature, dew point
temperature, and relative humidity), and two additional categorical features (the hour of the day and
the month of the year), bringing the total number of features, D, to five. For the NARX model, there
are two additional endogenous features (the solar irradiance for the previous two days), bringing the
number of features, D, to seven. The number of columns, T, is the length of the prediction horizon,
which is 24 for day-ahead forecasting. Finally, the third dimension, M, is the total number of the
training examples in the dataset. The total dimension of the entire training set is (D× T ×M).

The first LSTM unit takes the initial state of the network and the first time step of the training
example x1, and computes the first output h1 and the updated cell state c1. At time step t, the unit
takes the current state of the network (ct−1, ht−1) and the next time step of the training example xt,
and computes the output ht and the updated cell state ct. The final outputs are the day-ahead solar
irradiance predictions, g1, . . . gT.

3.4. Hyperparameter Optimization

Achieving good performance with LSTM networks requires the optimization of many
hyperparameters. These parameters affect the performance and time/memory cost of running
the algorithm. The selection of hyperparameters often makes the difference between a mediocre
and state-of-the-art performance for machine learning algorithms [88]. Even though there are some
rules of thumb in the research community about the suitable values of these hyperparameters [89],
optimization is necessary because the optimal values will depend on the type of data used in
the comparisons, the particular data sets used, the performance criteria and various other factors.



Energies 2019, 12, 1856 13 of 21

The hyperparameters that we optimized are tabulated in Table 5. The learning rate is perhaps the
most important hyperparameter [60]. The number of hidden layers in the network is what gives the
network its depth. To avoid over tuning the model, we optimized the hyperparameters using only
Golden dataset and applied these same parameters to other datasets. We found the optimal number of
hidden layers to be three. We tried adam [90], rmsprop [91], and sgdm [92] as optimization solvers, and
found that adam performed better than the other two. We found a standard scaler to be best in all the
locations and used a full batch gradient descent. A deep neural network having a large number of
parameters is prone to overfitting, so we applied dropout for regularization. Dropout [93] works by
randomly dropping units (with their connection) from the neural network during training.

The hyperparameters used for FFNN are 0.001 learning rate, 10 hidden units, 2 hidden layers,
full-batch gradient descent, L2 regularization, standard scaler, and 1000 epochs. These are found to be
good parameters in previous studies, and the results we obtained are comparable in accuracy with
these previous studies. For this reason, we did not optimize the parameters of FFNN in this paper.

Table 5. Hyperparameter optimization for LSTM model.

Hyperparameter Value Search Range

Learning rate 0.005 0.1, 0.01, 0.005, 0.001, 0.0005
Optimization solver Adam adam, sgdm, rmsprop

Feature scaling Standard Min-Max and Standard scaler
Number of layers 3 1, 3, 5, 7

Hidden units/layer 24 12, 24, 48, 96, 192
Number of epochs 1250 500–2000

Dropout rate 0.5 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

4. Results and Discussion

4.1. Forecasting Results

Table 6 summarizes the forecasting results for our proposed model, which uses only exogenous
variables as inputs. On average, the RMSE of LSTM and FFNN is 80.07 and 98.83, respectively.
The results in all locations indicate the superiority of LSTM in forecasting day-ahead solar irradiance.
In Golden, Colorado, the LSTM model achieves the highest accuracy among the datasets, with an
RMSE of 60.31 W/m2. The result is consistent in terms of MAE, which is 36.90 W/m2 for LSTM and
72.45 W/m2 for FFNN. The forecast skills displayed in Table 6 show consistently higher scores for the
LSTM model over the FFNN model. The persistence model, as expected, performs worse than both
LSTM and FFNN, nevertheless, it provides a reference for evaluating other models. It is important to
note that RMSE of Golden is more accurate in part because the data from this location is used to find
the optimal values of hyperparameters, which are then used to train the models for the remaining
datasets. Therefore, we can improve accuracy by performing hyperparameters optimization on each
of the datasets. However, we suggest that doing that will offer LSTM-RNN an unfair advantage in
empirical comparison with other models.

Table 6. Performance evaluation of the proposed model.

Location
RMSE (W/m2) MAE (W/m2) Forecast Skill (%)

LSTM FFNN Persis. LSTM FFNN Persis. LSTM FFNN

Jena 65.76 84.54 142.75 38.65 54.23 80.61 53.93 40.77
Golden 60.31 108.08 193.92 36.90 72.45 108.11 68.89 44.26
Basel 71.17 91.88 144.25 42.52 49.79 75.81 50.66 36.30
Jeju 108.52 113.83 194.66 64.36 70.54 111.86 44.24 41.51
Busan 82.52 86.76 171.96 47.87 51.74 93.33 52.01 49.54
Incheon 92.15 107.91 143.25 54.54 64.13 76.73 35.67 24.67
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Figure 6 shows the measured and predicted solar irradiance values for the proposed approach
using LSTM, FFNN, and persistence models for partially cloudy days in all the six locations. Notice from
the figure how persistence model consistently performs poorly in all the locations. The implication of
this is that previous day’s solar irradiance has a negligible correlation with a day-ahead solar irradiance,
and hence is not a good predictor. This helps to explain why our approach of not using the previous
day’s solar irradiance produce satisfactory results.
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Figure 6. Measured and predicted solar irradiance for the proposed approach using LSTM, FFNN, and
persistence model.

Figure 7 shows the scatter plots of measured and predicted solar irradiance for the proposed
model. The solid lines in the plots indicate a perfect forecast and the star marks indicate an instance of
prediction. The closer a mark is to the solid blue line, the more accurate its prediction.

Figure 8 shows bar charts of RMSE for LSTM, FFNN, and persistence models in different seasons.
The figure reveals that the RMSE for all the models in spring and summer is higher than in fall and
winter. This finding is important because grid-connected microgrids derive their value from utility
charge savings. These charges are usually higher in the summer months. It is possible, depending
on the utility and other factors, that a less accurate forecasting model, which is more accurate in the
summer months, might be more suitable than a model that is less accurate in the summer but more
accurate during the entire year.
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4.2. Comparison with the NARX Approach

We compare our approach with the NARX model, which is the conventional approach in solar
irradiance forecasting. Table 7 summarizes the forecasting results for the NARX model. This model uses
prior solar irradiance in addition to exogenous features (dry bulb temperature, wet bulb temperature,
and relative humidity) as inputs. As with our proposed model, the results in all locations indicate the
superiority of LSTM in forecasting day-ahead solar irradiance. The LSTM MAE and skill performance
figures of Table 7 are also better than both the FFNN and persistence models as they were for our
proposed model.

Comparing the results of LSTM in our approach to the NARX approach, we observe that they
have comparable accuracy. Even though the results from our approach suggest that it is more accurate
than the NARX approach, NARX performs better in Golden dataset. Indeed, our goal is not to show
that our approach will always be more accurate than the NARX in all scenarios, but rather to prove
that the LSTM, when trained using the deep learning approach, can achieve an equal or better accuracy
than the NARX model, thereby making the use of historical solar irradiance data unnecessary. This will
save both time and cost (of measuring equipment) of acquiring the historical data of solar irradiance.

Table 7. Performance evaluation of NARX model.

Location
RMSE (W/m2) MAE (W/m2) Forecast Skill (%)

LSTM FFNN Persis. LSTM FFNN Persis. LSTM FFNN

Jena 70.06 79.60 142.75 40.57 49.41 80.16 50.92 44.23
Golden 60.18 82.06 193.92 36.55 50.66 108.11 68.96 57.67
Basel 74.39 94.30 144.25 41.66 55.10 75.81 48.43 34.62
Jeju 115.22 117.05 194.66 66.30 72.88 111.86 40.80 39.86
Busan 84.01 86.62 171.96 48.91 51.60 93.33 51.14 49.62
Incheon 90.07 102.66 143.25 52.22 60.16 76.73 37.12 28.33

4.3. Simulating Annual Operation of the Microgrid

Forecasting solar irradiance is usually not the end goal. In microgrids, the forecasted solar
irradiance is used as an input for calculating PV power output (see Equation (13)), which is then used
for planning optimal operation. To investigate the effects of using different forecasting models on
microgrid operation optimization, we simulate a one-year optimal operation of a commercial building
microgrid using a perfect forecast, persistence model, LSTM model, and FFNN model. We took as a
case study an office building microgrid in Golden, Colorado. The microgrid contains a 225 kW PV
and a 1200 kWh lithium-ion battery energy storage. The building has 12 floors with a total area of
46,320 m2. The electricity load profile of the building was obtained from Open Energy Information [94],
a database of the US Department of Energy (DOE). The peak load is 1463 kW, which occurs in August.
We simulated the optimal operation of this microgrid for a complete year using solar irradiance from
the perfect, persistent, LSTM, and FFNN model.

The aim of operation optimization in a microgrid is to minimize operating cost while satisfying
various system constraints. This saving establishes the business case for a grid-connected microgrid.
The annual operating and energy savings were computed using each forecasting model as shown in
Table 8. The results show that the greatest savings are obtained using the perfect forecast, followed by
the LSTM, FFNN, and persistence models. Most of the savings come from monthly demand charges
rather than from TOU demand charges. This is expected because it is easier to forecast monthly peak
demand than to forecast the exact hour that the peak will occur.

The annual energy savings when the microgrid is operated using LSTM-RNN and FFNN
forecasting model is 12.94% and 10.97%, respectively. Therefore, there is a 2% increase in the annual
energy savings if LSTM-RNN model is used, as against FFNN model. This difference will results in
substantial savings as the microgrid size is increasing. Remarkably, there are no studies in the literature
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that investigate the effect of using various forecasting models on the operation of the microgrid.
We believe more research needs to be done in this area.

Table 8. Optimal operation results.

Costs

Perfect Forecast Persistence Model LSTM Model FFNN Model

Operating
Costs
($/yr.)

Energy
Savings

(%)

Operating
Costs
($/yr.)

Energy
Savings

(%)

Operating
Costs
($/yr.)

Energy
Savings

(%)

Operating
Costs
($/yr.)

Energy
Savings

(%)

TOU energy
charges 1,005,562 13.25 1,007,980 11.05 1,007,980 13.04 1,018,255 12.15

TOU demand
charges 160,205 19.62 159,742 16.52 159,742 17.85 162,500 16.46

Monthly
demand charges 19,743 11.72 19,699 9.84 19,699 11.92 20,056 10.33

Monthly fixed
charges 6707 0 6707 0 6707 0 6707 0

Total utility
charges 1,192,216 14.07 1,194,129 10.21 1,194,129 12.94 1,207,518 10.97

4.4. Discussion

When comparing the accuracy of different forecasting algorithms, many researchers report
conflicting results. In [32], Long et al. applied FFNN, SVM, and KNN to solar power forecasting.
They ran many scenarios and found that no machine learning model is superior in all scenarios.
Moreover, some studies found statistical methods to be more accurate than machine learning methods [9].
Nevertheless, there are many studies in the literature, including this paper, that find some models
to be superior. We trace this disparity to a number of factors. First, the use of different sets of
assumptions such as forecasting horizon, lookback window, size of the dataset, the time step of the
dataset, performance metric, and input features all combine to make comparison difficult. For example,
in terms of feature selection, many researchers report contradictory results about which feature is the
most relevant. In [32], they found that historical irradiance and temperature are the most important,
but other studies report different conclusions [31]. The second factor is the variability in the dataset, as
some data are more random than others; this will affect the accuracy of the prediction. Finally, the
authors in [95] argue that many sophisticated prediction methods may be over-tuned to give them an
undeserved advantage over simpler methods in empirical comparison.

This paper attempts to address the above issues. First, we report the details of our assumption
and all the hyperparameters used to train the model. Second, we use six datasets from four different
countries, all publicly available, so the results can be easily reproduced. In addition, we report the
forecast skill value since it takes into account the variability in the data set. Finally, the observation
made in [95] motivates our decision to divide the datasets into three subsets: training, validation, and
test. The model is trained using the training set, hyperparameter optimization and feature selection
are evaluated on the validation set, and finally, the model is trained on the test set. Furthermore, we
optimize hyperparameters using a single dataset and applied the same hyperparameters to other
locations. This approach helps to reduce overfitting the model to the test set and prevent over tuning
the hyperparameters.

Finally, the present work has some limitations as follows:

1. In practical application, both the proposed and NARX model will use forecasted meteorological
data as inputs. Therefore, the real forecast accuracy might likely be lower due to the added
errors from the forecasted meteorological data. This is a limitation of any data-driven forecasting
method that uses exogenous variables but is rarely acknowledged in the literature.

2. The results presented in this work are based on 24-h day-ahead forecasting. LSTM may not be
superior to other models when using a different prediction horizon. Kostylev and Pavlovski [95]
have done an analysis of the best performing models with different prediction horizons.
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5. Conclusions

With the increasing deployment of solar-powered microgrids, solar irradiance forecasting has
become increasingly important in these systems. In this study, we used a deep, long short-term memory
recurrent neural network that uses only exogenous features to tackle this problem. The model uses
dry bulb temperature, dew point temperature, and relative humidity as input features. This approach
obviates the need for historical solar irradiance, which is expensive to measure. To demonstrate
the effectiveness of this approach, we used data from six locations. With proper regularization and
hyperparameter tuning, we achieved an average root mean square error of 80.07 W/m2 across the six
datasets. The highest accuracy of 60.31 W/m2 was achieved in Golden dataset. We found that LSTM
outperforms FFNN for data from all locations. In addition, we simulated a one-year operation of a
commercial building microgrid using the actual and forecasted solar irradiance. The results showed that
using our forecasting approach increases the annual energy savings by 2% compared to using FFNN.
In future work, we will investigate the effects of added errors from forecasted meteorological data.
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