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Abstract: In this paper, a fault-tolerant control method is proposed for quadcopter unmanned aerial
vehicles (UAV) to account for system uncertainties and actuator faults. A mathematical model of the
quadcopter UAV is first introduced when faults occur in actuators. A normal adaptive sliding mode
control (NASMC) approach is proposed as a baseline controller to handle the chattering problem
and system uncertainties, which does not require information of the upper bound. To improve
the performance of the NASMC scheme, radial basis function neural networks are combined
with an adaptive scheme to make a quick compensation in presence of system uncertainties and
actuator faults. The Lyapunov theory is applied to verify the stability of the proposed methods.
The effectiveness of modified ASMC algorithm is compared with that of NASMC using numerical
examples under different faulty conditions.

Keywords: fault diagnosis; quadcopter UAV; fault tolerant control; radial basic function; adaptive
sliding mode control

1. Introduction

Quadcopter unmanned aerial vehicles (UAVs) are used in a wide range of applications and
research, oweing to their various benefits include agility, economical cost, small size, mechanical
simplicity, and ability to operate in dangerous environments, which has led them to be more popular
than other UAV systems. Therefore, they have been studied and tested in various technologies
including target tracking [1,2], fault diagnosis, and fault tolerant control [3–5], and formation
control [6,7].

In real applications, the translation movement of the quadcopter is controlled by an operator
with the support of a remote-control system, whereas rotation movement is operated automatically
via an onboard controller unit. To operate a quadcopter in the desired position the attitude controller
plays an important role, because it allows the quadcopter to maintain the desired rotation and prevents
crashing when the operator performs the desired translation movement [8]. One problem with
the attitude control of quadcopter UAVs is the uncertainties and unknown disturbances that the
quadcopter is subjected to during operation. This issue has been investigated previously based on
various control methods, such as adaptive control [9], sliding mode control [10,11], and backstepping
control [12,13]. If faults occur, control of the quadcopter becomes more challenging [14], which could
result in a failure during the mission. Therefore, fault-tolerant control (FTC) is a key factor that needs be
considered intensively in attitude-controller design. The topic of FTC has drawn attention in academic
communities owning to enhanced safety and reliability demands. In general, there are three type
of faults in FTC systems: Actuator, sensor, and process faults. Since the actuator is an important
component that can connect control signals and specific movements to achieve a particular objective,
actuator faults are addressed in this article. Passive FTC methods are used to accommodate this type
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of fault, which do not require fault detection and identification units as in active FTC methods [13].
Actuator faults are examined as uncertainties and they are treated using the passive FTC approach.
Sliding mode control (SMC) is a passive FTC method for designing control systems dealing with model
uncertainties and external disturbances. Studies by Kacimi et al. [13], Sharifi et al. [14], and Bouchoucha
et al. [15] show some acceptable results using SMC approaches. SMC has the advantage of insensitivity
to unknown disturbances and parametric uncertainties which makes it a promising method [16].
However, the bound of uncertainties needs to be designed in traditional SMCs. In several applications,
the magnitude of the actuator fault cannot be known, and it is difficult to achieve the bound of
uncertainty in advance. This motivates a new control method, which combines adaptive algorithms
with SMC to enhance the tracking performance and robustness of the system without knowledge
of the information of the uncertainty bound. Many existing studies have introduced the design
of adaptive SMC [17–23], which integrates the adaptive law into the normal SMC to enhance the
robustness of control performance. However, these studies have not investigated the actuator faults in
the quadcopter model.

There are minor studies using adaptive SMC approaches to handle actuator faults. In references [24–26],
the ASMC shows good results for the tracking performance with an actuator fault; however,
these control approaches may not have sufficient robustness because the accurate model needs to
be achieved in state space representation. Another complex method based on a fuzzy system is
proposed in reference [27]. A fuzzy compensator is used to handle disturbances, actuator faults, and to
avoid the high gain of adaption rate but this control law still requires the information of bound and
it is challenging to find the fuzzy rule through the trial and error method. The active FTC based
on adaptive SMC approach have been proposed in reference [28]. The results show good tracking
performance in presence of actuator faults but the fault identification unit is required in this approach.
Moreover, adaptive SMC based on the neural network have been investigated in reference [29–31].
These approaches show good responses without accurate model but actuator faults are not considered.
The most recent work [10] proposed a simple adaptive SMC to handle uncertainties and disturbances.
This method is simple to implement on quadcopter design and it shows good tracking performance.
However, when a large fault occurs, this method cannot compensate quickly because the adaption
rate is limited to ensure system stability. To solve this problem, radial basis function (RBF) neural
networks are integrated into adaptive SMC [10] for fault identification and reconstruction through
on-line approximation technique, which motivates our work in this paper.

In this article, we concentrate on developing an FTC method that can handle system uncertainties
and actuator faults. The proposed method has some advantages such as using structure of RBF neural
networks for fault identification and reconstruction, and using a simple adaptive scheme to avoid
system uncertainties, and the chattering phenomenon. Moreover, this approach does not require the
bound of uncertainty and fault detection unit which is different than the method in reference [32].
Finally, the control scheme in this paper is suitable for flight systems where the attitude control operates
at a higher frequency than position control, which is different to the previous paper [33]. Unlike the
paper [33], the radial basis function neural networks in this work are simpler than the fuzzy approach
for fault reconstruction because the limitation of the fuzzy method is a trial and error technique
for adjusting input variables. The contributions of this article can be summarized as follows. First,
a mathematical model of the quadcopter is introduced with parametric uncertainties and disturbances.
Second, a proportional-integral-derivative (PID) controller is used as position controller. Third, the RBF
neural network scheme is proposed for fault identification and accommodation, whereas the adaptive
scheme is used to handle the chattering phenomenon and uncertainties of system dynamics. Finally,
the stability of the system is verified using the Lyapunov theory.
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2. Quadcopter Modeling

2.1. Modeling of Quadcopter in Healthy Operation

The dynamics of the quadcopter UAV using Euler-Lagrange equations is described by Main and
Daobo [20]. Figure 1 shows the torques and forces acting on the quadcopter. Assume that the dynamics
of the quadcopter are considered in body-fixed coordinate B and earth-fixed coordinate E. The front
and rear (1 and 3) motors rotate in a counter-clockwise direction; the other motors (2 and 4) rotate in
a clockwise direction. The distance from the center to each rotor is denoted by L.
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The rotational and translation movement of the quadcopter can be described as follows [5,10]:

..
ϕ =

(
Uϕ + (Iy − Iz)

.
θ

.
ψ− JT

.
θΩ− Kϕ

.
ϕ
)

/Ix
..
θ =

(
Uθ + (Iz − Ix)

.
ϕ

.
ψ− JT

.
ϕΩ− Kθ

.
θ
)

/Iy
..
ψ =

(
Uψ + (Ix − Iy)

.
ϕ

.
θ − Kψ

.
ψ
)

/Iz
..
x =

{
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Uz(cos ϕ cos θ)− Kz
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(1)

where Ix, Iy, Iz represent the moments of inertia along the x, y, z directions, respectively;
Kϕ, Kθ , Kψ, Kx, Ky and Kz are drag coefficients which depend on flight conditions; JT is the moment
of inertia of each motor, and Ω = Ω3 + Ω4 −Ω1 −Ω2; m is the total mass; ϕ, θ, and ψ denote the
Euler angles; x, y, and z represent the position of the quadcopter; and the four control inputs can be
presented as 

Uz = F1 + F2 + F3 + F4

Uϕ = (F4 − F2)L
Uθ = (F3 − F1)L
Uψ = τ1 − τ2 + τ3 − τ4

(2)

where τi = dΩ2
i and Fi = bΩ2

i represents the torque and thrust force produced by the ith motor; b, d are
positive constants depending on the density of air, the radius of propeller, number of blades and
geometry [11]; Ωi represents the rotational speed of the ith motor. Uz is the total thrust; Uϕ, Uθ , Uψ are
the torques in the ϕ, θ, ψ directions, which correspond to the roll, pitch, and yaw Euler angles,
respectively.
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2.2. Modeling of Quadcopter in Faulty Operation

The dynamic model of the quadcopter in faulty operation can be presented by

..
ϕ =

(
Uϕ f + (Iy − Iz)

.
θ

.
ψ− JT

.
θΩ− Kϕ

.
ϕ
)

/Ix
..
θ =
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..
ψ =

(
Uψ f + (Ix − Iy)

.
ϕ

.
θ − Kψ

.
ψ
)

/Iz
..
x =

{
Uz f (cos ϕ sin θ cos ψ + sin ϕ sin ψ)− Kx

.
x
}

/m
..
y =

{
Uz f (cos ϕ sin θ sin ψ− sin ϕ sin ψ)− Ky

.
y
}

/m
..
z = −g +

{
Uz f (cos ϕ cos θ)− Kz

.
z
}

/m

(3)

where Uz f , Uϕ f , Uθ f and Uψ f are control inputs in faulty operation described by

Uz f = F1 f + F2 f + F3 f + F4 f

Uϕ f = L
(

F4 f − F2 f

)
Uθ f = L

(
F3 f − F1 f

)
Uψ f = d

(
F1 f − F2 f + F3 f − F4 f

)
/b

(4)

The fault model of the actuator can be presented by

Fi f = (1− γi)Fi (5)

where 0 < γi < 1 (i = 1 . . . 4) indicates that the ith actuator loses partial effectiveness; the ith actuator
is in healthy operation when γi = 0; the ith actuator loses effectiveness completely when γi = 1.

Substituting Equation (4) into Equation (3), we achieve

..
ϕ =

(
Uϕ + (Iy − Iz)

.
θ

.
ψ− JT

.
θΩ− Kϕ

.
ϕ
)

/Ix + δϕ
..
θ =

(
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..
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(
Uψ + (Ix − Iy)

.
ϕ
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.
ψ
)

/Iz + δψ
..
x =

{
Uz(cos ϕ sin θ cos ψ + sin ϕ sin ψ)− Kx

.
x
}

/m + δx
..
y =

{
Uz(cos ϕ sin θ sin ψ− sin ϕ sin ψ)− Ky

.
y
}

/m + δy
..
z = −g +

{
Uz(cos ϕ cos θ)− Kz

.
z
}

/m + δz

(6)

where the unknown terms are presented by

δϕ = −L(γ4F4 − γ2F2)/Ix

δθ = −L(γ3F3 − γ1F1)/Iy

δψ = −d(γ1F1 − γ2F2 + γ3F3 − γ4F4)/bIz

δx = −(cos ϕ sin θ cos ψ + sin ϕ sin ψ)(γ1F1 + γ2F2 + γ3F3 + γ4F4)/m
δy = −(cos ϕ sin θ sin ψ− sin ϕ sin ψ)(γ1F1 + γ2F2 + γ3F3 + γ4F4)/m
δz = − cos ϕ cos θ(γ1F1 + γ2F2 + γ3F3 + γ4F4)/m

(7)

3. Controller Design

The control strategy of the quadcopter is presented in Figure 2. The altitude of the quadcopter
is controlled by the total thrust (Uz). The desired angles of roll (ϕd) and pitch (θd) are used for the
rotational controller, which is achieved through the position controller. The desired yaw (ψd) is used to
control the heading through the yaw controller (heading controller). The actual positions X, Y, and Z
are achieved from the GPS unit, which is converted from the latitude and longitude signals. The actual
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angles ϕ, θ, and ψ are measured from the inertial measurement unit. The control inputs Uϕ, Uθ , and Uψ

are used to control the rotation movement of the quadcopter.
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3.1. Fault Tolerant Control for Attitude System Using Normal Adaptive Sliding Mode Approach

Define the state vector x =
[

ϕ
.
ϕ θ

.
θ ψ

.
ψ
]T

=
[

x1 x2 x3 x4 x5 x6

]T
and

control inputs U =
[

Uϕ Uθ Uψ

]
=
[

u1 u2 u3

]
. Then, the rotational movement equations of

the quadcopter have the following form:
Roll control system { .

x1 = x2
.
x2 = f1(x) + h1u1(t) + d1(x, t) + ξ1

(8)

where f1(x) = δϕ, h1 = 1/Ix, d1(x, t) = (Iy − Iz)/(Ix)(x4x6) − JTx4Ω; ξ1 = −Kx2 x2 is the
system uncertainty.

Pitch control system { .
x3 = x4
.
x4 = f2(x) + h2u2(t) + d2(x, t) + ξ2

(9)

where f2(x) = δθ , h2 = 1/Iy, d2(x, t) = (Iz − Ix)/(Iy)(x2x6) − JTx2Ω; ξ2 = −Kx4 x4 is the
system uncertainty.

Yaw control system { .
x5 = x6
.
x6 = f3(x) + h3u3(t) + d3(x, t) + ξ3

(10)

where f3(x) = δψ, h3 = 1/Iz, d3(x, t) = (Ix − Iy)/(Iz)(x2x4); ξ3 = −Kx6 x6 is the system uncertainty.
Based on these rotational movement equations, each subsystem can be derived in the

following form: { .
x2i−1 = x2i
.
x2i = fi(x) + hiui(t) + di(x, t) + ξi

(11)

Let us define the desired attitude xd
i . The control objective is to find the control law ui such that

the quadcopter can track the desired attitude xd
i , i.e., x2i−1(t)→ xd

i as t→ ∞ , i = 1, 2, 3.
Define the control error:

ei = x2i−1 − xd
i (12)
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The sliding surface equation can be expressed as

si =
.
ei + ciei (13)

where ci is the positive gain.
The derivative of the sliding surface can be described as

.
si =

..
ei + ci

.
ei (14)

From Equations (12) and (14),
.
si can be described as

.
si = fi(x) + hiui(t) + di(x, t) + ξi −

..
xd

i + ci
.
ei (15)

With the sliding surface in Equation (14), the fault tolerant control law can be expressed as

ui = (−di(x, t)− ci
.
ei +

..
xd

i − βisi − Γ̂isign(si))/hi (16)

and updated by [10]
.
Γ̂i = αi2|si| (17)

where βi and αi2 are positive numbers, and sign(.) denotes the sign function.

Theorem 1. If the sliding surface and control law are designed as Equations (14) and (16), then the nonlinear
system Equation (11) is stable and the control errors are forced to zero.

Proof. Choose the Lyapunov function as follows

V =
1
2

s2
i +

1
2

Γ̃
2
i

αi2
(18)

where Γ̃i = Γi − Γ̂i; Γ̂i is the estimate of Γi;
.
Γi = 0.

Take the first derivative of the Lyapunov function

.
V = si

.
si − Γ̃i

.
Γ̂i

αi2

= si( fi(x) + hiui(t) + di(x, t) + ξi −
..
xd

i + ci
.
ei)− Γ̃i

.
Γ̂i

αi2

(19)

Substituting Equations (16) and (17) into Equation (19), we obtain

.
V = fi(x, t)si + ξisi − βs2

i − Γi|si|
≤ −βs2

i − (Γi − | fi(x) + ξi|)|si|
(20)

�

Assumption 1. The uncertainty ξi and the resultant of actuator faults fi(x) are supposed to be bounded
by |ξi| ≤ ξd

i and | fi(x)| ≤ f t
i , where ξt

i and f t
i are unknown positive constants. There exists the unknown

parameter Γi > 0 such that | fi(x) + ξi| ≤ | fi(x)|+ |ξi| ≤ f T
i + ξT

i = Γi.

From Assumption 1, it is shown that
.

V ≤ 0. Assuming that si = 0, from Equation (14),
we can obtain

lim
t→∞

si = lim
t→∞

(
.
ei + ciei) = lim

t→∞

{
(

.
x2i−1 −

.
xd

i ) + ci(x2i−1 − xd
i )
}

(21)
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Because ci is a positive number, Equation (14) can be expressed as

lim
t→∞

(
.
x2i−1 −

.
xd

i ) = 0, lim
t→∞

(x2i−1 − xd
i ) = 0 (22)

Remark 1. Equation (22) shows that the NASMC designed as Equation (14) guarantees Lyapunov stability of
system Equation (12). If si → 0 , then the control errors are forced to zero, which ensures the stability of the
closed-loop system.

Remark 2. To avoid the chattering phenomenon due to sign function in control law Equation (16), a saturation
function is introduced as

sat(si) =

{
si if |si| ≤ 1
sign(si) if |si| > 1

, i = 1, 2, 3 (23)

Remark 3. In this method, only one parameter is designed to handle both system uncertainties and actuator
faults. In Section 3.2, an RBF network is combined with adaptive law to handle system uncertainties and the
actuator fault separately to ensure a quicker response during actuator faults.

3.2. Fault Tolerant Control for Attitude System Using Modified Adaptive Sliding Mode Approach

In this section, an RBF neural network is used to approximate function fi(x) to handle the actuator
fault while the adaptive law is used to handle chattering and system uncertainties. The approximation
method using the RBF network is presented in reference [34] as follows:

Vk = exp

(
‖x− ck‖2

2b2
k

)
, (24)

fi(x) = WT
fi

Vfi
(x) + ε fi

, (25)

where x =
[

ei
.
ei

]
is the input of the RBF neural network; k the number of hidden nodes, Vfi

is the

output of Gaussian function, WT
fi

is the approximation weight, ε fi
is the approximation error assumed

to be bounded by
∣∣∣ε fi

∣∣∣ ≤ ε∗f i, in which ε∗f i > 0 is a small positive constant.
The structure of the RBF network is shown in Figure 3. It consists of three layers: One input layer,

one hidden layer, and one output layer. The inputs of the network are ei and
.
ei.
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Assumption 2. There exists an unknown parameter Γi > 0 such that
∣∣∣ε fi

+ ξi

∣∣∣ ≤ Γi
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Theorem 2. Consider the actuator fault in the system Equation (6) and the sliding surface in Equation (13).
Suppose that the modified adaptive sliding mode control (MASMC) scheme for fault tolerant control is proposed as

ui = hi(−di(x, t)− ci
.
ei +

..
xd

i − ŴT
fi

Vfi
(x)− Γ̂isign(si)− βis) (26)

and updated by
.

Ŵ fi
= αi1siVfi

(27)
.
Γ̂i = αi2|si| (28)

where αi1, αi2 are positive gains. Then, it ensures that the stability of the closed-loop system and the control
errors are forced to zero.

Proof. Lyapunov function candidate V is chosen as follows

V =
1
2

s2
i +

1
2

W̃T
fi

W̃ fi

αi1
+

1
2

Γ̃
2
i

αi2
(29)

where W̃ fi
= W fi

− Ŵ fi
, Γ̃i = Γi − Γ̂i; Ŵ fi

, Γ̂i are the estimates of W fi
and Γi, respectively.

Taking the first derivative of Lyapunov function candidate Equation (29), we obtain

.
V = si

.
si −

W̃T
fi

.
Ŵ fi

αi1
− Γ̃i

.
Γ̂i

αi2

= si( fi(x)−WT
fi

Vfi
(x))− |si|Γi + siξi − βisi

2

= siε fi
+ siξi − |si|Γi − βisi

2

≤ |si|(|εi + ξi| − Γi)− βisi
2

≤ 0

(30)

From Assumption 2, it shows that lim
t→∞

si = lim
t→∞

(
.
ei + ciei) = lim

t→∞

{
(

.
x2i−1 −

.
xd

i ) + ci(x2i−1 − xd
i )
}

.

Because ci is a positive number, we obtain

lim
t→∞

(
.
x2i−1 −

.
xd

i ) = 0, lim
t→∞

(x2i−1 − xd
i ) = 0 (31)

�

3.3. Position Control

A PID controller is applied to control the translational movements of the quadcopter as follows

..
X =

..
Xd + Kdx(

.
X−

.
Xd) + Kpx(X− Xd) + Kix

∫
(X− Xd)dt

..
Y =

..
Yd + Kdy(

.
Y−

.
Yd) + Kpy(Y−Yd) + Kiy

∫
(Y−Yd)dt

..
Z =

..
Zd + Kdz(

.
Z−

.
Zd) + Kpz(Z− Zd) + Kiz

∫
(Z− Zd)dt

(32)

where Xd, Yd, and Zd are the desired positions in the x, y, and z directions, respectively; X, Y, and Z
are actual values; and Kpx, Kpy, Kpz, Kdx, Kdy, Kdz, Kix, Kiy, and Kiz are the controller gains.

Assume that the vehicle does not pass through singularities (ϕ 6= π/2 + kπ, θ 6= π/2 +

kπ, k ∈ Z, Uz 6= 0). From translational movement Equation (1), we obtain the desired roll, pitch,
and total thrust:

Uz = −m
√

..
X

2
+

..
Y

2
+ (

..
Z− g)

2

ϕd = sin−1
(

m
..
X

Uz
sin(ψ)− m

..
Y

Uz
cos(ψ)

)
θd = cos−1

(
m

..
Z−mg

Uz cos(ϕ)

) (33)
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4. Simulation and Evaluation

In this section, to show the effectiveness of the proposed method, the quadcopter parameter
in reference [10] is used for the simulation. The motion of the quadcopter is examined to track the
desired roll angle ϕd with an actuator fault. The quadcopter is assumed to hover in position-hold
mode. A filter is applied to generate the desired roll angles as follows [26]

..
ϕd + 3

.
ϕd + 4ϕd = 4ϕp (34)

where ϕp starts at 0
◦

and increases to 5
◦

at 5 s, and decrease to 0
◦

at 10 s; then, it changes from 0
◦

to−5
◦

at 15 s, and increases to 0
◦

at 20 s, finally, remains at 0
◦

for the remaining time. Four different actuator
faults are presented. The first case considers the 10% loss of control effectiveness (LoCE) in actuator 2
at 14s. In the second situation, the 50% LoCE in actuator 2 at 14 s and 20% uncertainty of inertia are
examined. In the third case, the quadcopter is commanded to track the desired trajectory with 50%
LoCE in both actuator 2 and 3 at 50 s and 70 s. In the final case, the quadcopter is commanded to track
the desired trajectory with 50% LoCE in both actuator 1 and 3 at 50 s and 70 s.

For NASMC, parameters were selected as ci = 5, βi = 50 and αi2 = 150. For comparison,
the same parameters of ci, βi, αi2 were chosen in the proposed MASMC, and the remaining parameter
αi1 was selected as 50. In position controller, Kpx = 6, Kpy = 6, Kpz = 6Kpx = 6, Kpy = 6, Kpz = 6,
Kdx = 2, Kdy = 2, Kdz = 2, Kix = 1, Kiy = 1, Kiz = 1 were chosen.

4.1. Case 1: 10% LoCE in Actuator 2

Figure 4 compares the tracking performance of the roll angle and error between the NASMC and
MASMC methods, with 10% LoCE in actuator 2. From the initial time to 14 s, both methods can make
a good tracking in roll angle and error with the same control input value shown in Figure 5a. In this
stage, the control input is increased abruptly to change the roll angle from 0

◦
to 5

◦
at 5 s, and then it is

decreased to change the roll angle from 5
◦

to 0
◦

at 10 s. After a small magnitude of fault is injected
into actuator 2 at 14 s, the MASMC compensates quickly to track the desired roll angle. Furthermore,
the MASMC demonstrates a quicker tracking error than the ASMC owning to it greater control effort
when a fault occurs. From 15 s to 30 s, there is a similar trend in control effort for both NASMC and
MASMC, which decreases the control effort at 15 s in order to change the roll angle from 0

◦
to −5

◦
,

and then increases the control effort at 20 s to change roll angle from −5
◦

to 0
◦
. It should be noted

that after fault occurs the MASMC can converge quickly to zero in tracking error. In all figures, ϕd, ϕ,
and ϕT represent the desired roll angle, actual roll angle using MASMC, and the actual roll angle
using NASMC, respectively. eϕ and eϕT represent the errors in roll angle using MASMC and NASMC.
U2ϕ and U2ϕT are the moments of roll determined from MASMC and NASMC through Equation (2).
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4.2. Case 2: 50% LoCE in Actuator 2 and 20% Uncertainties of the Inertia

To demonstrate the effectiveness of MASMC, a large fault is injected into actuator 2 with 50%
LoCE at 14 s and 20% uncertainties of inertia is examined in the model of a quadcopter. Similar to
case 1, from the initial time to 14 s, Figures 5b and 6 show that both methods can use the same control
torque value and make a good tracking in roll angle and error. When actuator fault is increased to 50%
LoCE at 14 s, the NASMC shows an oscillation response at the initial stage and a low compensation to
track the desired roll angle. In contrast, MASMC presents a very good tracking performance although
there is a small overshoot at the initial stage after fault occurs. MASMC uses more control effort
than ASMC when a fault occurs, and after 15 s there is a similar control effort for both NASMC and
MASMC. It should be noted that after 15 s, there is a slow response in tracking performance of NASMC
compared with MASMC shown in Figure 6.
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actuator 2: (a) Roll angle; (b) tracking error.

In both cases, by integrating the RBF neural networks into the NASMC approach the tracking
error in roll angle can converge quickly to zero after fault occurs. The MASMC in both cases can
detect and accommodate faults automatically through on-line approximation without using the fault
detection unit.

4.3. Case 3: Multiple Faults Occuring in Actuator 2 and 3

This section shows the performance of MASMC in the presence of multiple faults occurring in
actuator 2 and 3. Figure 7 presents the tracking performance in three positions (X, Y, Z) while
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Figures 8–10 show the corresponding Euler angles (ϕ, θ, ψ), sliding surface, and control inputs
(Uz, Uϕ, Uθ , Uψ). According to these figures, when faults occur in actuator 2 and 3 at 50 s and 70 s,
respectively, the altitude is decreased at 50 s and 70 s due to loss of thrust force, and then it can
compensate steadily through the PID controller. The actual trajectories in X, Y directions can converge
quickly to the desired ones in the presence of faults. It should be noted that when the attitude controller
can respond quickly to handle actuator faults through the fault tolerant controller, the responses of x,
y directions will be improved.
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Figure 7. Tracking performance in three positions: (a) x-direction; (b) y-direction; (c) z-direction;
(d) zoomed x-direction at 50 s; (e) zoomed y-direction at 70 s.
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4.4. Case 4: Multiple Faults Occuring in 1 and 3

In this situation, 50% LoCE in actuator 1 and 3 is considered at 50 s, and 70 s, respectively.
Figure 11 presents the tracking performance in three positions (X, Y, Z) while Figures 12–14 show the
corresponding Euler angles (ϕ, θ, ψ), sliding surface, and control inputs (Uz, Uϕ, Uθ , Uψ). According
these figures, when faults occur at 50 s and 70 s, the altitude is decreased at 50 s and 70 s due to
loss of thrust force and then altitude can compensate steadily through the PID controller. The actual
trajectories in X, Y directions can converge quickly to the desired ones in the presence of faults.
It should be noted that although faults occur on the same axis of the quadcopter, the system still
maintains the stability.
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Figure 11. Tracking performance in three positions: (a) x-direction; (b) y-direction; (c) z-direction;
(d) zoomed x-direction at 50 s; (e) zoomed x-direction at 70 s.
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Remark 4. In all cases, the computational complexity in MASMC depend on hidden nodes in RBF 

neural networks. Therefore, the user can choose the suitable hidden nodes for controller design. For 
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Remark 4. In all cases, the computational complexity in MASMC depend on hidden nodes in RBF neural
networks. Therefore, the user can choose the suitable hidden nodes for controller design. For simplicity, we used
seven hidden nodes in MASMC.

5. Conclusions

In this paper, a model of a quadcopter was examined in the presence of actuator faults and
uncertainties. An NASMC was designed as a baseline controller to handle actuator faults, uncertainties,
and chattering phenomenon. An MASMC which integrates RBF neural network into NASMC was
investigated to make a quick compensation when large faults occur. The proposed MASMC does not



Energies 2019, 12, 95 14 of 15

require a fault identification unit and bound of uncertainty. To verify the suggested method, the model
of the quadcopter along with the proposed controllers were simulated in different cases. The results
show that the MASMC can make a quick compensation and a good trajectory tracking compared
with NASMC. However, the limitation of this work is that the proposed MASMC does not consider
the complete loss of the actuator fault and does not verify through experiment. The future research
should concentrate on experimental results of the proposed method, and should examine complete
loss effectiveness in actuator using the fault identification technique.
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