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Abstract: Voltage sag is a serious power quality phenomenon that threatens industrial manufacturing
and residential electricity. A large-scale monitoring system has been established and continually
improved to detect and record voltage sag events. However, the inefficient process of data sampling
cannot provide valuable information early enough for governance of the system. Therefore, a novel
online recognition method for voltage sags is proposed. The main contributions of this paper
include: 1) The causes and waveform characters of voltage sags were analyzed; 2) according to the
characters of different sag waveforms, 10 voltage sag characteristic parameters were proposed and
proven to be effective; 3) a deep belief network (DBN) model was built using these parameters to
complete automatic recognition of the sag event types. Experiments were conducted using voltage
sag data from one month recorded by the 10 kV monitoring points in Suqian, Jiangsu Province, China.
The results showed good performance of the proposed method: Recognition accuracy was 96.92%.
The test results from the proposed method were compared to the results from support vector machine
(SVM) recognition methods. The proposed method was shown to outperform SVM.

Keywords: online recognition; voltage sag; deep belief network

1. Introduction

Voltage sags are the unavoidable short-term disturbances in the operation of a power system.
The root mean square (RMS) value of voltage suddenly drops and recovers after a short time.
The institute of electrical and electronics engineers (IEEE) definition for voltage sag is as follows:
the RMS voltage drops to 10%–90% of the rated value, and the duration is 10 ms–60 s [1,2]. Significant
negative impacts on society and tremendous economic losses in industrial production have been
caused by voltage sags [3–5]. In 2010, a production process was interrupted as a result of the abnormal
operation of the frequency converter because of voltage sag in a cigarette factory in Xuzhou, Jiangsu
Province, China. In 2014, power outages of electrical lines occurred as a result of the low voltage
trip of distribution switches because of voltage sag in the Nanjing south railway station, Jiangsu
Province. With the continual expansion of power systems and the increase in voltage levels, various
types of electronic and electrical equipment have become increasingly connected to the power grid.
Traditional equipment, including computers, frequency converters, programmable logic controllers
(PLCs), and alternating current (AC) contactors, as well as new equipment developed in recent years
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such as renewable energy generation systems with power electronics as the core, are sensitive to
voltage sag disturbances [6,7]. Therefore, the research and treatment of voltage sags are important in
improving the reliability of power systems and ensuring a power supply in industrial production and
daily life. At present, data collection, detection, classification, and identification of voltage sags are the
focus of research [8–12].

As an important part of the power quality index system, voltage sag is the key to a high-quality
power supply [13]. The monitoring and analysis of voltage sag events can provide an effective
scientific basis for power system operations management, accident investigation, fault location, and sag
management. In Jiangsu Province, a voltage sag online monitoring system and big data platform
have been established since 2016. At present, more than 17,000 monitoring points have been accessed.
The monitoring voltage level is 10–500 kV. This online monitoring system has been established in
strict accordance with the requirements of the international standard IEC 61000-4-30:2008. A large
amount of original sampling data collected by the monitoring system is stored in this big data platform.
These data completely record the transient waveforms of each detected sag event for further data
analysis and mining. However, the efficiency of this data analysis is low because of a lack of effective
data processing means. Therefore, two main problems must be addressed. On the one hand, voltage
sag events are manually identified and classified. Specifically, operation and maintenance engineers
analyze the RMS waveform of the voltage sag, assess the detriment, and confirm the type and reason.
The results heavily depend on the skills and experience of field engineers. On the other hand, it is
difficult for the big data platform to save a massive amount of data. Larger amounts of data that are
difficult to process in time may be discarded, or decrease in value, resulting in a waste of resources.
Thus, it is difficult for voltage sag data analysis and processing technology to keep pace with the
development of the monitoring system. Moreover, this gap will further widen with the expansion of
the monitoring system and improvements in sampling precision.

The pattern recognition of voltage sags is the premise for locating disturbance sources and the
basis of sag management. Many studies have been performed in this context. In general, there are
three methods: Physical modeling, signal processing, and data mining. Physical modeling is useful for
understanding the mechanism of voltage sags. In Reference [14], Thevenin’s equivalent circuit was
used to replace any power network. By determining the sign of the internal resistance in Thevenin’s
equivalent circuit, the origin of a voltage sag disturbance could be easily identified. Signal processing
achieves recognition by extracting the characteristics of a sag waveform. In Reference [15], a method
for voltage sag source identification that combined wavelet analysis and modified dynamic time
warping (DTW) distance was proposed. Reference [16] introduced a new voltage sag index, “S”, for
the joint characterization of voltage sags and swell conditions. In Reference [17], a statistical analysis of
variance (MANOVA) was directly proposed to extract the attributes of voltage events from the voltage
and current waveforms. The most relevant attributes have been used as the input for rule-extraction
algorithms to extract classification rules. In recent years, data mining and artificial intelligence have
been research hotspots and have proven to be an effective means in this respect. These areas represent
an important development direction for high-achieving efficiency and precision. K-means clustering
was used to identify voltage sag in Reference [18]. A support vector machine (SVM) and support vector
regression (SVR) were used to identify fault types and estimate fault resistance. The Euclidean distance
approach was used to identify the fault distance in Reference [19]. Reference [20] detected and classified
different power quality disturbances using the half- and one-cycle windowing technique (WT) based on
a continuous S-transform (CST) and neural network (NN). Reference [21] proposed a Kullback-Leibler
(KL) divergence measure and standard deviation for voltage sag and harmonics identification.

Data mining and artificial intelligence techniques offer three advantages in classifying and
identifying voltage sag events. First, effective information can be extracted from massive data, which
contributes to the in-depth understanding of the universal law of voltage sags. Second, scientific
and effective technical support can be provided for voltage sag management, power grid upgrading,
reconstruction, and access design of sensitive users. Third, the techniques can provide new ideas for
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solving other power quality problems. In this paper, a new index system, including 10 characteristic
parameters and a deep belief network (DBN)-based online voltage sag recognition model, are proposed,
which can provide a reliable solution for data processing and automatic recognition. First, the typical
transient waveforms of various voltage sags (including single-phase short circuit, two-phase short
circuit, three-phase short circuit, induction motor starting, and transformer energizing) were analyzed,
and the mechanism and differences between various voltage sags were clarified. Second, the 10 voltage
sag characteristic parameters were calculated using the formulas reported in this paper. Finally,
a DBN-based voltage sag recognition model was established with these characteristic parameters.
The characteristic parameters formed the basis for establishing the recognition model, and the
differentiation of parameters was beneficial in improving the recognition accuracy. In this paper,
the characteristic parameters were derived from the graphical features of the voltage sag waveform,
and the calculation method was simple. The DBN is a useful tool in the field of pattern recognition
and fault diagnosis [22–25]. As a type of deep learning neural network, compared to the traditional
artificial neural network (ANN), DBNs can be used for unsupervised learning [26,27]. Automatic
coding can be achieved through a large amount of data training, and the shortcoming of relying too
heavily on data labels is overcome. Moreover, the accuracy of a DBN classifier can be improved by
fine-tuning using a small number of tagged samples. The performance of the characteristic index
and DBN recognition model was verified using voltage sag data recorded by the 10 kV monitoring
points in Suqian, Jiangsu Province. The results demonstrated that first, the 10 voltage sag characteristic
parameters proposed in this paper were reasonable. They had good aggregation of identical category
features and decentralization of different category features. Second, the accuracy of the DBN model was
96.92%, which was higher than that of the traditional recognition model SVM, and the requirements
for sample labels were lower, which was more suitable for online recognition. Third, the DBN model
included offline and online modules. A large number of training processes were completed by the
off-line module, and the online module only performed identification of new samples. The efficiency
was high. The method proposed in this paper provides a new solution for the automatic recognition of
voltage sags. Accurate and efficient recognition results provide a reliable scientific basis in time for the
management of voltage sag.

The rest of this paper is organized as follows. In Section 2, waveforms and features of different
kinds of voltage sags are analyzed. The 10 voltage sag characteristic parameters and their calculation
methods are proposed in Section 3. In Section 4, the theory of DBN modeling and voltage sag
recognition methods are presented. In Section 5, some actual data are used to verify the effectiveness
of the characteristic parameters and DBN recognition model. Conclusions are drawn in Section 6.

2. Analysis of Voltage Sags

At present, voltage sag problems in power systems are derived from two main sources,
short-circuit faults and the starting or energizing of high-capacity electrical equipment. Short-circuit
faults include single-phase short circuits, two-phase short circuits, and three-phase short circuits.
High-capacity equipment includes high-capacity motor and capacitors. Different voltage sag sources
show distinct electrical characteristics. In general, the transient processes of short-circuit faults are
short, whereas those associated with starting or energizing electrical equipment are long. Finding
the relationship between voltage sag sources and electrical characteristics is the basis for establishing
a reasonable classification and recognition model. Analysis of the cause of the voltage sags and
the voltage waveform characteristics for each type of sag events are prerequisites for proposing
reasonable parameters.

2.1. Short-Circuit Faults

Short circuits represent a serious fault in a power system. Voltage sags are inevitably caused by
the spread of short-circuit currents in adjacent lines. Sag degree and sag time are directly related to the
fault type, fault location, monitoring point location, short-circuit impedance, and protection strategy.
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Finding the correlation between disturbance sources and the associated electrical characteristics is
the basis for establishing a scientific and rational recognition model. Figure 1a–c shows the typical
waveforms of the voltage RMS in the case of a single-phase short-circuit fault (A phase, B phase,
and C phase, respectively). Figure 2a–c shows typical waveforms of the voltage RMS in the case of
a two-phase short-circuit fault (A- and B-phases, B- and C-phases, and A- and C-phases). Figure 3
shows the typical waveforms of the voltage RMS in the case of a three-phase short-circuit fault.

The figures illustrate the following:

• The falling and rising parts of the curve are steep. Therefore, the generating process and recovery
process of voltage sags caused by a short-circuit fault are short, occurring at high speed.

• In the voltage sag interval, all waveform shapes are rectangular. Moreover, the sag amplitude
essentially remains stable.

• The depth of voltage sag is low relatively, and the duration is related to the operating time of
short-circuit protection.

• The voltage amplitude of the fault phase decreases significantly, whereas the non-fault phase
remains stable or slightly drops. In some cases, voltage swells appear in a non-fault phase.
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Figure 1. Typical waveforms of a single-phase short circuit. (a) Typical voltage root mean square (RMS)
waveform of an A-phase short circuit; (b) typical voltage RMS waveform of a B-phase short circuit;
(c) typical voltage RMS waveform of a C-phase short circuit.



Energies 2019, 12, 43 5 of 16

Energies 2018, 11, x FOR PEER REVIEW  4 of 16 

 

phase, B phase, and C phase, respectively). Figure 2a–c shows typical waveforms of the voltage RMS 
in the case of a two-phase short-circuit fault (A- and B-phases, B- and C-phases, and A- and 
C-phases). Figure 3 shows the typical waveforms of the voltage RMS in the case of a three-phase 
short-circuit fault. 

(a)

(b)

(c)  

Figure 1. Typical waveforms of a single-phase short circuit. (a) Typical voltage root mean square 
(RMS) waveform of an A-phase short circuit; (b) typical voltage RMS waveform of a B-phase short 
circuit; (c) typical voltage RMS waveform of a C-phase short circuit. 

(a)

(b)

(c)  
Figure 2. Typical waveforms of a two-phase short circuit. (a) Typical voltage RMS waveform of A- and
B-phase short circuits; (b) typical voltage RMS waveform of B- and C-phase short circuits; (c) typical
voltage RMS waveform of A- and C-phase short circuits.

Energies 2018, 11, x FOR PEER REVIEW  5 of 16 

 

Figure 2. Typical waveforms of a two-phase short circuit. (a) Typical voltage RMS waveform of A- 
and B-phase short circuits; (b) typical voltage RMS waveform of B- and C-phase short circuits; (c) 
typical voltage RMS waveform of A- and C-phase short circuits. 

 
Figure 3. Typical voltage RMS waveform of a three-phase short circuit. 

The figures illustrate the following:  

• The falling and rising parts of the curve are steep. Therefore, the generating process and 
recovery process of voltage sags caused by a short-circuit fault are short, occurring at high 
speed. 

• In the voltage sag interval, all waveform shapes are rectangular. Moreover, the sag amplitude 
essentially remains stable. 

• The depth of voltage sag is low relatively, and the duration is related to the operating time of 
short-circuit protection. 

• The voltage amplitude of the fault phase decreases significantly, whereas the non-fault phase 
remains stable or slightly drops. In some cases, voltage swells appear in a non-fault phase. 

2.2. The Starting or Energizing of High-Capacity Electrical Equipment 

Induction motors are important loads, and large transformers are key devices in the power grid. 
When a motor starts or a no-load transformer energizes, the excitation current can reach 5–7 times 
the working current. An obvious voltage sag can be observed at the point of common coupling 
(PCC) after the large current flow through system impedance. This type of voltage sag gradually 
recovers to normal when the starting or energizing process completes. Compared to that of the sag 
caused by a short-circuit fault, the excitation current is smaller. Moreover, the time required for the 
starting or energizing is longer. Therefore, the waveform characteristics between these two voltage 
sag sources are significantly different. Figures 4 and 5 show the typical waveforms of the voltage 
RMS in the cases of a motor starting and a transformer energizing. 

 
Figure 4. Typical voltage RMS waveform of a motor starting. 

 
Figure 5. Typical voltage RMS waveform of a transformer energizing. 

Figure 3. Typical voltage RMS waveform of a three-phase short circuit.

2.2. The Starting or Energizing of High-Capacity Electrical Equipment

Induction motors are important loads, and large transformers are key devices in the power grid.
When a motor starts or a no-load transformer energizes, the excitation current can reach 5–7 times the
working current. An obvious voltage sag can be observed at the point of common coupling (PCC)
after the large current flow through system impedance. This type of voltage sag gradually recovers
to normal when the starting or energizing process completes. Compared to that of the sag caused by
a short-circuit fault, the excitation current is smaller. Moreover, the time required for the starting or
energizing is longer. Therefore, the waveform characteristics between these two voltage sag sources
are significantly different. Figures 4 and 5 show the typical waveforms of the voltage RMS in the cases
of a motor starting and a transformer energizing.

The figures illustrate the following:

• The waveform shapes of voltage sags are not obviously rectangular. The voltage quickly drops at
the beginning of the sag and recovers slowly. The shape is closer to triangular.

• Since the excitation current is much smaller than the short-circuit current, the voltage sag depth
associated with starting or energizing a high-capacity electrical equipment is small. Moreover,
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the depth of motor starting is determined by the motor starting capacity and upper transformer
capacity. Furthermore, the depth of the transformer energizing is related to self-capacity.

• The recovery processes associated with a motor starting and a transformer energizing are
essentially identical, although there are differences at the beginning of the voltage sag.
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3. Characteristics of Voltage Sag

Data pertaining to characteristics of interest are the raw materials for data mining and machine
learning. Therefore, the features should contain as much effective information about a voltage sag
event as possible. The selection of features should follow three principles. First, features with the same
categories are concentrated. The features should be approximate if they belong to the same voltage
sag event. Second, features of different categories are decentralized. There should be significant
differences among the features of different voltage sag events. Third, the calculation process should be
relatively simple. Traditionally, voltage sag data are manually processed. The voltage RMS waveform
is important and can be analyzed for recognition and diagnosis of voltage sag events. This mode is
a reliable solution in the processing of a small number of data samples. Therefore, the processing
efficiency is low when one processes massive data samples.

Generally, the voltage RMS is expressed as follows [28]:

URMS(i) =

√√√√ 1
N

i+N/2

∑
i+1−N/2

u2(i) (1)

where URMS(i) is the voltage RMS of the discrete voltage signal u(i), i is the sampling point, and N is the
number of sampling points in one cycle. In this paper, a voltage sag feature system with 10 parameters
is proposed according to the waveform characteristic. These parameters were calculated using the
voltage RMS, which are described in detail as follows.

3.1. Descending or Ascending Velocities of Three-Phase Voltages VelA, VelB, and VelC

The velocity of the voltage decrease or increase is the slope of the falling or rising section of the
voltage RMS waveform, as shown in Figure 6a. The descending velocity of the motor starting is less
than that of other types of voltage sag. Therefore, these parameters can be used to distinguish the
motor starting voltage sag. Moreover, the decrease or increase in voltage can be used to confirm the
fault phase of a short circuit. For example, in Figure 1a, VelA is the velocity of the A-phase and is
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negative; and VelB and VelC are the velocities of the B- and C-phases, respectively, and are positive.
These results show that there is a short circuit in the A-phase.
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To eliminate interference and ensure the stability of data calculation, in this paper, the calculation
interval was set as the middle 80% part within the distance from the sag start point to the sag end
point. The calculation formula was as follows:

Vel =
0.1Usag − 0.9Usag

i′2 − i′1
(2)

where i′1 and i′2 are the times when the voltage dropped to 0.9 Usag and 0.1 Usag, respectively; Usag =

Umax −Umin; and Umax and Umin are the maximum and minimum voltages, respectively.

3.2. Recovery Velocities of Three-Phase Voltages ResA, ResB, and ResC

The recovery process is the inverse of voltage sag or swell. After a certain time, the voltage
RMS returns to normal because the short-circuit fault is eliminated and the high-capacity electrical
equipment finishes starting or energizing. However, the recovery procedure of different voltage sags
varies. In Figures 1–5, the recovery procedure of the short-circuit fault is short, and the voltage recovery
slopes ResA, ResB, and ResC are larger. The recovery procedure associated with starting or energizing
high-capacity electrical equipment is long, and the voltage recovery slope is small. These parameters
are important references for identifying short-circuit voltage sag events. Similarly, the recovery velocity
is defined as the average slope of the middle 80% part of the voltage recovery process, as shown in
Figure 6a:

Res =
0.9Usag − 0.1Usag

i′′2 − i′′1
(3)

where i′′1 and i′′2 are the times when the voltage recovered to 0.1 Usag and 0.9 Usag, respectively.

3.3. Non-Rectangular Coefficients RecA, RecB, and RecC

Because the process of sag occurrence and recovery is short, the speeds at which the voltage drops
and rises are large. Moreover, the voltage is essentially stable during the sag. Therefore, the voltage
RMS waveform is approximately rectangular in the short-circuit fault. However, the sag waveform
associated with the starting or energizing of high-capacity electrical equipment is more triangular
in shape. Hence, nonrectangular coefficients are also important parameters in the identification of
short-circuit faults. In this paper, the nonrectangular coefficient was defined as the ratio of the sum
of the deviation degrees of URMS(i) to the deviation degrees of Umin in the complete sag interval, as
shown in Figure 6b:

Rec =

i2
∑

i=i1
(0.9−URMS(i))

(0.9−Umin)(i2 − i1)
(4)
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where i1 and i2 are the starting time and ending time of the voltage sag interval, respectively. In other
words, i1 and i2 are the times when the voltage drops to 0.9 pu and recovers to 0.9 pu. An Rec value
close to 1 indicates a highly rectangular sag waveform.

3.4. Three-Phase Voltage Unbalance Ratio (PVUR)

The three-phase voltage unbalance ratio is an effective parameter for distinguishing among
different types of short-circuit faults and determining the short-circuit phase. Motor starting,
transformer energizing, and three-phase short-circuit faults have relatively low PVUR values, while
single-phase and two-phase short-circuit faults have higher PVUR values. The PVUR calculation
method defined in IEEE Std 112-2004 was adopted in this paper:

PVUR =
max

[
|Va −Vavg|, |Vb −Vavg|, |Vc −Vavg|

]
Vavg

× 100% (5)

where Va, Vb, and Vc are the phase voltage effective values and Vavg is the average value of the three
phase voltages.

4. Recognition Process of a Deep Belief Network

4.1. Modeling principle of DBNs

A DBN is composed of multilayer neurons, and the component is the restricted Boltzmann
machine (RBM). The RBM is a neural perceptron consisting of a visible layer and a hidden layer.
The neurons of the visible layer and hidden layer are bidirectionally connected, and there is no
connection among the neurons in the same layer. The visible layer is used as the data input, and the
hidden layer is used for feature extraction. The output data of the low-level RBM is used as the input
sample of the high-level RBM. The RBM overall energy of the visible layer variable ν and hidden layer
variable h is defined as [29]:

E(v, h|θ) = −vTWh− aTv− bTh = −
m

∑
i=1

n

∑
j=1

Wijhivj −
n

∑
j=1

ajvj −
m

∑
i=1

bihi (6)

where ν is the state vector of the visible layer node; h is the state vector of the hidden layer node; m
and n are the numbers of visible layer nodes and hidden layer nodes, respectively; W is the connection
weight of the visible layer node and hidden layer node; and θ = {W, a, b} are the parameters of the
RBM model, where a and b are the offset values of the visible layer nodes and hidden layer nodes,
respectively. Figure 7 is a typical DBN architecture.

According to the Boltzmann distribution function, if parameters θ = {W, a, b} are confirmed,
the joint probability distribution of (ν, h) can be calculated by the following equations, where Z is the
partition equation:

P(v, h|θ) = e−E(v,h|θ)

Z(θ)
(7)

Z(θ) = −∑
v,h

e−E(v,h|θ) (8)

The probability that the network assigns to a visible layer node is

p(v) =
1
Z ∑

h
e−E(v,h|θ) (9)
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If each node state of the visible layer and the hidden layer is known, the conditional probability
function of the hidden layer node or visible layer node can be separately obtained. The probability
that the binary state of the node is set to 1 is:

p(hi = 1|v) = σ

(
bi +

n

∑
j=1

wijvj

)
(10)

p(vi = 1|h) = σ

(
aj +

m

∑
i=1

wijhi

)
(11)

where σ(x) is the sigmoid function σ(x) = 1/(1 + e−x).
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In this paper, a contrastive divergence (CD-k) algorithm was used to determine the RBM
parameters θ = {W, a, b}. The layer-by-layer training mechanism was used to train the visible
layer and hidden layer of a certain RBM layer at a time, and the optimal parameters of this layer
could be obtained. Moreover, feature extraction was completed on the current layer. Subsequently,
the output data were continuously used as the input samples of the next RBM layer to be trained.
The entire DBN was greedily trained layer by layer. A back propagation (BP) algorithm was used for
parameter fine-tuning using some samples with category labels. Traditionally, the network weights
and offsets are initialized using random values. In this paper, the weights and offsets were replaced by
the weights obtained from the pre-training of the multilayer RBM. In this process, a BP network was
set as a classifier on the top layer of the DBN. The output data of the RBM were the input of the BP
network, and supervised training was executed to obtain the error. Then, the error was propagated
from the top layer to every RBM layer to adjust the network parameters.
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4.2. Voltage Sag Recognition Model Based on a DBN

In this paper, the training and testing data were collected by an online monitoring system. When
a voltage sag event occurred, the sampling data were recorded, and the characteristic parameters were
calculated. Then, the DBN model was automatically established for classification and recognition. This
model included two parts, an offline modeling module and an online recognition module. The offline
module used historical data, and the online module used real-time data. The offline modeling module
could realize the preprocessing and feature extraction of historical data and the training of the DBN.
These raw sampling data were transformed into a feature matrix as a training set for the DBN. Then,
the training of the DBN model was completed. In the online recognition module, new unrecognized
sag data from the online monitoring system were processed to obtain the characteristic parameters,
and these parameters were input into the DBN for recognition. The category labels of these new
voltage sag data were obtained, and the recognition process finished. Furthermore, these new sag
data were supplemented as the new training data for the DBN in the historical database, which was
confirmed without errors. The recognition range and accuracy of the DBN network were continuously
improved by repeated training. The basic modeling process is shown in Figure 8. The process is
described in detail as follows:

• Step 1: Voltage sag historical data are read from the database, and the RMSs are calculated.
The sampling data are discrete, which cannot be directly used, and the RMS of every sag historical
data must be calculated by Equation (1) for further feature extraction, because the 10 characteristic
parameters in Section 3 are defined based on an RMS waveform.

• Step 2: Voltage sag features are extracted, and the DBN training set is established.
The 10 characteristic parameters are calculated using the voltage RMS of historical data in step 1
by Equations (2)–(5). The feature matrix can be obtained as a DBN training set. The format of
feature vectors in this matrix is [VelA, VelB, VelC, ResA, ResB, ResC, RecA, RecB, RecC, PVUR].

• Step 3: These characteristic parameters in the training set are standardized by maximum-minimum
normalization as follows:

x̃i =
xi − xmin

xmax − xmin
(12)

where xi and x̃i are the features before and after standardization, respectively; and xmin and xmax

are the maximum and minimum of every characteristic parameter.
• Step 4: The DBN model is established, and the standardized feature matrix in step 3 is input into

the DBN for training. Then, a trained DBN model can be obtained.
• Step 5: Feature vectors of new unrecognized sag data from the online monitoring system are

needed. Therefore, voltage RMS and characteristic parameters should be calculated successively.
Then, these new feature vectors are input into the trained DBN model in step 4 after normalization,
and the recognition results are obtained.

In practical engineering applications, data samples in an historical database can be used as the
training set without obtaining all category labels in advance. Typical fault samples with category labels
can be used as standard data for fine tuning. The real-time voltage sag data, which were collected by
the online monitoring system, could be input into the DBN model after feature extraction. The offline
training and online recognition were completed step by step. Moreover, these new samples were the
effective complements for DBN training. The DBN model was retrained at set intervals. Through
continuous training and learning, recognition accuracy could improve.



Energies 2019, 12, 43 11 of 16

Energies 2018, 11, x FOR PEER REVIEW  10 of 16 

 

accuracy of the DBN network were continuously improved by repeated training. The basic modeling 
process is shown in Figure 8. The process is described in detail as follows: 
• Step 1: Voltage sag historical data are read from the database, and the RMSs are calculated. The 

sampling data are discrete, which cannot be directly used, and the RMS of every sag historical 
data must be calculated by Equation (1) for further feature extraction, because the 10 
characteristic parameters in Section 3 are defined based on an RMS waveform. 

• Step 2: Voltage sag features are extracted, and the DBN training set is established. The 10 
characteristic parameters are calculated using the voltage RMS of historical data in step 1 by 
Equations (2)–(5). The feature matrix can be obtained as a DBN training set. The format of 
feature vectors in this matrix is [ ], , , , , , , ,PVUR,A B C A B C A B CVel Vel Vel Res Res Res Rec Rec Rec . 

• Step 3: These characteristic parameters in the training set are standardized by 
maximum-minimum normalization as follows: 

min

max min

i
i

x xx
x x

−
=

−
  (12)

where ix  and ix  are the features before and after standardization, respectively; and minx  and 

maxx  are the maximum and minimum of every characteristic parameter. 

• Step 4: The DBN model is established, and the standardized feature matrix in step 3 is input into 
the DBN for training. Then, a trained DBN model can be obtained. 

• Step 5: Feature vectors of new unrecognized sag data from the online monitoring system are 
needed. Therefore, voltage RMS and characteristic parameters should be calculated 
successively. Then, these new feature vectors are input into the trained DBN model in step 4 
after normalization, and the recognition results are obtained. 

On-line Recognition

Characteristic Parameters 

 Historical Voltage 
Sag Data

Voltage RMS 

Normalized Feature 
Matrix

DBN Model

 New Voltage 
Sag Data

Recognition Results 
of  New Sag Data

Off-line Modeling

Voltage RMS 

Characteristic Parameters 

Normalized Feature 
Vectors 

supplement

 
Figure 8. Online voltage sag recognition process. 

In practical engineering applications, data samples in an historical database can be used as the 
training set without obtaining all category labels in advance. Typical fault samples with category 
labels can be used as standard data for fine tuning. The real-time voltage sag data, which were 
collected by the online monitoring system, could be input into the DBN model after feature 
extraction. The offline training and online recognition were completed step by step. Moreover, these 
new samples were the effective complements for DBN training. The DBN model was retrained at set 
intervals. Through continuous training and learning, recognition accuracy could improve. 

Figure 8. Online voltage sag recognition process.

5. Data Test and Result Analysis

To verify the effectiveness of the recognition method proposed in this paper, real data samples
from a voltage sag online monitoring system were selected to establish and test the DBN model. These
data recorded the voltage sag events that occurred in May 2017 in Suqian, Jiangsu Province. In total,
515 valid samples were retained after excluding invalid samples that did not satisfy the sag definition.
These samples belonged to nine types of sag events. The sag types and number of data samples
are shown in Table 1. These data samples were divided into two groups, the test set, composed of
130 samples, and the training set, composed of 385 samples. According to the process in Figure 8,
the voltage RMS values were first calculated. Then, the feature extraction was executed. All test and
training samples were standardized by the maximum-minimum normalization.

Table 1. Test and training samples and their types.

Type Number Training Test Type Number Training Test

A-phase short circuit 76 60 16 B- and C-phase short circuit 22 15 7
B-phase short circuit 134 100 34 Three-phase short circuit 93 70 23
C-phase short circuit 82 60 22 Motor starting 8 5 3

A- and B-phase short circuit 40 30 10 Transformer energizing 32 25 7
A- and C-phase short circuit 28 20 8

5.1. Separability Analysis of Voltage Sag Features

Separability connotes that, to achieve the classification objectives, the selection of features should
follow certain principles. The features of different categories should be decentralized, and the features
of the same categories should be congregated as far as possible. Features are the mathematical
language that describe an event. Therefore, the feature data should contain as much information as
possible about an event. Moreover, it is necessary to facilitate the establishment of a mathematical
model. For appropriate voltage sag features, there are small spatial distances between features in the
same categories and large spatial distances between features in different categories. In this paper,
principal component analysis (PCA) was used to reduce the training samples from ten dimensions to
three dimensions for display. Simultaneously, the average Euclidean distances of intraclass feature
samples and interclass feature samples were calculated. Figure 9a–d shows the voltage sag feature
distributions of A/B/C signal-phase short-circuit faults, AB/AC/BC two-phase short-circuit faults,
A/AB/ABC-phase short-circuit faults, and three-phase short-circuit/motor starting/transformer
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energizing. These voltage sag features were extracted from sag data in the training set by PCA, and D1,
D2, and D3 were three features of every sag sample. Table 2 shows the Euclidean distances of the
features for different types of voltage sags.Energies 2018, 11, x FOR PEER REVIEW  12 of 16 
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(d) voltage sag feature distribution of three-phase short circuit/motor starting/transformer energizing.

Table 2. Euclidean distances of the features for different types of voltage sags.

Type A B C AB AC BC ABC Motor Transformer

A 1.1191 2.0408 2.5008 2.3982 2.5290 2.7778 4.0343 2.0502 4.3169
B 2.0408 1.0767 2.0601 1.7949 2.0503 1,9248 3.4235 1.5793 3.2427
C 2.5008 2.0601 1.2672 2.3937 2.0669 2.1390 3.2183 1.9043 3.6703

AB 2.3982 1.7949 2.3937 1.4762 2.2754 2.3908 2.3836 2.2992 3.6218
AC 2.5290 2.0503 2.0669 2.2754 1.7498 2.3013 1.9764 2.4483 3.2359
BC 2.7778 1,9248 2.1390 2.3908 2.3013 1.4814 1.6136 2.1182 2.6700

ABC 4.0343 3.4235 3.2183 2.3836 1.9764 1.6136 1.3298 1.4589 2.2365
Motor 2.0502 1.5793 1.9043 2.2992 2.4483 2.1182 1.4589 1.9185 1.3246

Transformer 4.3169 3.2427 3.6703 3.6218 3.2359 2.6700 2.2365 1.3246 0.8121

The figures and table show that except for the voltage sag caused by motor starting,
the intraclass feature samples had smaller Euclidean distances than did the interclass feature samples.
The aggregation of identical category features and the decentralization of different category features
were obvious. Therefore, the features proposed in this paper were suitable. For the voltage sag caused
by motor starting, the intraclass features had larger Euclidean distances than did the transformer
energizing, three-phase short-circuit, and B-phase short-circuit cases. Hence, the data of these types
were mistakenly classified more easily in the recognition process of the DBN. The main reason was
that the probability of occurrence of the motor starting sag was small, and real samples collected by
an online monitoring system were inadequate. The feature distribution was more dispersive than
that of other types of sag. Nevertheless, with continuous operation of the monitoring system and
accumulation of historical data, this problem will be resolved, and the performance of these features
will improve.
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5.2. Training, Testing, and Comparison of the DBN network

In this paper, the deep learning model was built using the Deep Learn Toolbox master of MATLAB
(R2016a, MathWorks, Natick, MA, USA). Because there were few input features, one hidden layer
containing 100 neurons was established. There were 10 and 9 nodes in the first and last layer because
there were 10 characteristic parameters and 9 types of voltage sag. The number of DBN training
iterations was 50, the number of backpropagation neural network (BPNN) fine-tuning iterations was
1000, and the learning rate was 0.1. The input training samples of the DBN included 385 samples of
9 categories, and the sample format was [VelA, VelB, VelC, ResA, ResB, ResC, RecA, RecB, RecC, PVUR].
The output was the category labels. Figure 10 shows the global training error of the BPNN in
fine-tuning reconstruction. The observed training error was stable and small after multiple iterations.
Reconstructed error descended rapidly at the beginning of the iterations, which shows the satisfactory
training effect. Then, 130 test samples were input into the DBN model, and the category label of each
sample was obtained. The recognition results were shown in Table 3. There were four misclassified
samples, and the overall recognition accuracy was 96.92%. Thus, the proposed model had high
recognition accuracy in processing real voltage sag data.
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Table 3. Recognition results of the DBN model.

Actual Category

Type A
(16)

B
(34)

C
(22)

AB
(10)

AC
(8)

BC
(7)

ABC
(23)

Motor
(3)

Transformer
(7)

Recognition
Results

A 16
B 34
C 21 1

AB 9 1
AC 1 7
BC 7

ABC 22 1
Motor 3

Transformer 7

To compare the recognition accuracy of the DBN established in this paper with other
traditional pattern recognition models, the SVM model was built using the same training and
test data. This model was established using LIBSVM 3.1 of MATLAB. The input training
samples of SVM included 385 samples of nine categories, and the sample format was also
[VelA, VelB, VelC, ResA, ResB, ResC, RecA, RecB, RecC, PVUR]. The parameters of the SVM were
optimized by the cross-validation method, the penalty factor was c = 111.4305, and the kernel parameter
was g = 0.0017. Then, 130 test samples were input into the SVM model. The results are shown in
Table 4.
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Table 4. Comparison of the recognition accuracy results between the DBN and support vector machine
(SVM).

Model DBN SVM

Accuracy 96.92% 93.08%

Based on the abovementioned test results, the following conclusions were drawn:

• The calculation method of the characteristic parameters was simple. Therefore, efficiency was
high in processing online monitoring voltage sag data. However, the voltage sag parameters of
the motor starting were too close to those of other types of sag in the feature space because the
number of samples was too small and the spatial distribution was disperse. This problem will be
solved with the accumulation of motor starting data by the online monitoring system.

• The recognition accuracy of the DBN model was satisfactory. Moreover, as an unsupervised
modeling method, the model did not necessarily have to obtain the category labels of the training
samples in advance. Only a small amount of typical data with labels was required for the reversed
fine-tuning. For the online monitoring system, most of the data were unprocessed and had no
category labels. Therefore, this model was suitable for online data processing.

• The DBN had a simpler parameter setting and better recognition accuracy than did the traditional
SVM model. The SVM is suitable for data mining of small samples. However, the DBN is a better
choice for the massive data collected by online monitoring systems. Moreover, the DBN has
higher precision than SVM for voltage sag recognition, and the recognition accuracy will further
increase with the expansion of training samples.

6. Conclusions

As an important part of power quality, the monitoring, judgement, and governance of voltage sag
are consistently important issues that must be solved by power companies. A voltage sag monitoring
system is the essential basis for solving these problems. However, with the expansion of monitoring
scope and increases in sampling accuracy, the amount of voltage sag data will also dramatically
increase over time. Processing such large amounts of data is difficult using the traditional manual
methods. Therefore, valid information cannot be processed in time, and valuable information is
discarded. The intelligent method proposed in this paper is effective in solving this problem, and the
test results obtained based on actual data reflect the recognition accuracy of the approach.

• The proposed voltage sag parameters were well discriminated from one another. Parameters
in the same category showed distinct agglomeration, and those in different categories showed
distinct separability. This result demonstrated that the chosen parameters were reasonable.

• The recognition process, which was divided into offline training and online recognition, was
appropriate. Historical data processing, feature extraction, and DBN model training were
accomplished in offline processing. New sample data processing and recognition by the DBN
model were performed online. The processing efficiency was high.

With the expansion of the training set and increase in training cycle number, the accuracy of the
DBN model may be further improved. However, the recognition of voltage sag is only the first stage of
voltage sag governance. Identifying the sag source location will be the focus of future research.

Author Contributions: F.M. analyzed the data and wrote the paper. Y.R. and Q.W. performed the simulation
and modeling; C.Z. and Y.P. analyzed the results and reviewed the modeling and text; H.S. prepared the data;
J.Z. contributed analysis tools.

Funding: This research was funded by “the Fundamental Research Funds for the Central Universities, grant
number 2018B15814”.

Conflicts of Interest: The authors declare no conflicts of interest.



Energies 2019, 12, 43 15 of 16

References

1. López, M.A.; de Vicuña, J.L.; Miret, J.; Castilla, M.; Guzmán, R. Control Strategy for Grid-Connected
Three-Phase Inverters During Voltage Sags to Meet Grid Codes and to Maximize Power Delivery Capability.
IEEE Trans. Power Electron. 2018, 33, 9360–9374. [CrossRef]

2. Xiao, X.Y.; Chen, Y.Z.; Wang, Y.; Ma, Y.Q. Multi-attribute analysis on voltage sag insurance mechanisms and
their feasibility for sensitive customers. IET Gener. Transm. Distrib. 2018, 12, 3892–3899. [CrossRef]

3. Katic, V.A.; Stanisavljevic, A.M. Smart Detection of Voltage Dips Using Voltage Harmonics Footprint.
IEEE Trans. Ind. Appl. 2018, 54, 5331–5342. [CrossRef]

4. Florencias-Oliveros, O.; González-de-la-Rosa, J.J.; Agüera-Pérez, A.; Palomares-Salas, J.C. Power quality
event dynamics characterization via 2D trajectories using deviations of higher-order statistics. Measurement
2018, 125, 350–359. [CrossRef]
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