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Abstract: This paper presents a new direct digital design method for discrete proportional integral
derivative PID + filter (PIDF) controllers employed in DC-DC buck converters. The considered
controller structure results in a proper transfer function which has the advantage of being directly
implementable by a microcontroller algorithm. Secondly, it can be written as an Infinite Impulse
Response (IIR) digital filter. Thirdly, the further degree of freedom introduced by the low pass filter
of the transfer function can be used to satisfy additional specifications. A new design procedure is
proposed, which consists of the conjunction of the pole-zero cancellation method with an analytical
design control methodology based on inversion formulae. These two methods are employed to
reduce the negative effects introduced by the complex poles in the transfer function of the buck
converter while exactly satisfying steady-state specifications on the tracking error and frequency
domain requirements on the phase margin and on the gain crossover frequency. The proposed
approach allows the designer to assign a closed-loop bandwidth without constraints imposed by the
resonance frequency of the buck converter. The response under step variation of the reference value,
and the disturbance rejection capability of the proposed control technique under load variations are
also evaluated in real-time implementation by using the Arduino DUE board, and compared with
other methods.

Keywords: buck converter; inversion formulae; phase margin; gain crossover frequency

1. Introduction

Many industrial applications need the transformation of a constant DC voltage source to a constant
value even under load variation, such as photovoltaic systems, mobile power supply equipment,
DC supply systems, etc. The buck converter is one of the most widely utilized DC-DC converters,
because of its simplicity, high efficiency, and low cost, see e.g., [1], and therefore each improvement
has potentially a major economic and commercial impact. However, the presence of its nonlinear
characteristics in the switching behavior and the saturation of the duty cycle render the output
voltage control a challenging task. Numerous control strategies have been proposed for the voltage
regulation of the buck converter. Each of them has advantages and disadvantages, and the selection
of the most appropriate one depends mainly on the design task at hand. A brief review of the
main digital control techniques can be found in [2]. Among these, the non-linear sliding mode
control, which leads to fast transient response under load variation and high robustness, is worth
mentioning [3,4]. However, the control performance is reduced by the introduction of high frequency
oscillations around the sliding surface, the so-called chattering. Another practical alternative for the
voltage regulation of the buck converter is the fuzzy logic control. This non-linear adaptive technique
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provides a robust performance under parameter variations and load disturbances, and can operate
with noise and disturbance of different natures. However, these controllers are traditionally designed
by trial-and-error, and this, combined with the rich architecture of the controller, constitutes a major
drawback in carrying out stability and performance analysis, as well as transfer function and small
signal analysis [5]. By contrast, classical linear proportional integral/proportional integral derivtive
(PI/PID) control techniques are widely used by industrial practitioners for their simplicity in the
design and implementation, and still by far play a major role. In fact, PID control is often taken
as a benchmark for comparison with new strategies since it provides a good compromise among
various types of performance indices, including voltage tracking and disturbance rejection, while
guaranteeing a satisfactory robustness to small variations of the parameters of the buck converter [1].
Many PID-based strategies have also been combined with non-linear techniques to improve the
closed-loop performance [2,3,6–10]. However, in the vast majority of the cases, the PID controller
is designed in the continuous-time and then, for its practical implementation, it is converted to the
discrete-time, see [10–12].

A common approach to the control feedback design involving PID controllers is to consider the
ideal (improper) PID transfer function, which is non-causal. By contrast, the discretization of the ideal
PID controller results in a casual, thus feasible, discrete transfer function. This explains why, in this
context, the discretization appears to be critical. Indeed, frequency domain specifications assigned in
the continuous-time domain can be affected by large undesired variations due to the discretization of
the controller. Another critical issue in the design of PID controllers for the buck converter is caused
by the presence of a resonance peak in the transfer function of the process. In fact, the resonance
usually constrains the assignability of the closed-loop bandwidth, which has to be either well below the
resonance frequency, or well above. The former solution is usually discarded since, for obvious reasons,
it leads to poor performance. However, the latter is typically associated to a very large bandwidth,
which is likely to induce severe saturation in the control variable.

This paper presents a new direct design technique for the discrete PID + filter (PIDF) controllers
with complex conjugate zeros. Our method hinges on the classical pole-zero cancellation method [10]
combined with the so-called discrete “inversion formulae” [13–18]. In the aforementioned design
procedure, two parameters of the PIDF controller are used to achieve pole/zero compensation,
as in [10], and the remaining two degrees of freedom are used to exactly meet specifications on
the phase margin and gain crossover frequency with the use of the inversion formulae. The design
approach based on these formulae was first presented for lead, lag and PID controllers in [13–18].
In this paper we introduce a new set of inversion formulae for the design of the time constant of the
discrete PIDF controller.

Thanks to the closed-form design of the filter, which guarantees sufficiently large stability margins
even in the presence of uncertainty, our method ensures a satisfactory performance in a neighborhood
of the operating point.

The approach based on the inversion formulae results in a proper discrete PIDF controller which
is directly implementable on a microcontroller, and which exactly satisfies the design requirements
in the discrete domain. Thus, unlike the other techniques described above, the specifications are
guaranteed to remain exactly satisfied even when considering the discrete implementation of the
controller. Note that we avoid indirect tuning procedures and the inherent trial-and-error nature of
graphical tuning techniques based on Bode, Nyquist and Nichols plots.

The procedure presented here is analytical in nature, and can be carried out in finite terms via
simple equations which are dependent upon the sampling time of the analog-to-digital converter.

The structure of the discrete PIDF controller is obtained from a continuous-time PIDF [19]
transfer function through the matched pole-zero mapping discretization method [20]. In this way,
the cancelation results in a discrete transfer function, and therefore the controller can be directly
designed in the z-domain.
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Simulations and comparisons with other methods show the effectiveness of this new control
strategy, which can accommodate plant uncertainties and also, importantly, load variations.
The proposed method has been first simulated in MATLAB Simulink® and then tested in a real-time
digital implementation using the Atmel SAM3X8E microcontroller based on the ARM® Cortex®

-M3 processor on an Arduino Due board. The experimental results have been analyzed and compared
with classical PID control solutions.

The paper is organized as follows. The digital control schemes and discrete buck converter model
are described in Section 2. In Section 3, we propose the discrete PIDF controller with complex conjugate
zeros. The control problem and the proposed design solution are presented in Section 4. We describe the
simulated and experimental results of the proposed DC-DC buck converter control and the performance
comparison with other methods in Section 5. Conclusions and remarks will end the paper.

2. Digital Control Schemes and Discrete Buck Converter Model

The DC-DC buck converter is a step-down switching converter extensively described, e.g., in [21].
The block scheme of the digital voltage mode control and the buck converter circuit considered in this paper
are shown in Figure 1. It is assumed that the converter operates in continuous-conduction mode (CCM).
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Figure 1. Switching DC-DC converter with digital voltage-mode control.

In the buck converter scheme, Vout is the output voltage, Vin is the input voltage, L is the
filter inductance, C is the filter capacitance, R is the load resistance, RL and RC denote, respectively,
the parasitic series resistances of the inductor and capacitor. Moreover, rn(z) represents the reference
digital signal, while yn(z) denotes the sampled output of the process. The sampled signal is obtained
by the analog-to-digital converter (ADC) with sampling period Ts. The tracking error signal en(z)
= rn(z)−yn(z) is processed by a discrete-time compensator C(z) to generate the control signal dn(z).
The Digital Pulse Width Modulator (DPWM) converts dn(z) into the corresponding analog duty cycle
with values between 0 and 1 according to the desired ratio of Vout/Vin, and modulates the PWM signal
to drive the buck converter switch.

The transfer function of the discrete plant model G(z) is the Z-transform of the product of the
continuous-time converter transfer function G(s) and the transfer function of the zero-order hold:

H0(s) =
1− e−sTs

s

with sampling period Ts:
G(z) = Z[H0(s)G(s)]. (1)

Notice that in the hardware device the output voltage of the buck converter is driven into the
admissible range of the ADC input voltage by a constant sensor gain H; the resulting output signal of
the ADC is then multiplied by the factor 1/H to be compared with the reference value rn. In (1) the
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factors H·(1/H) = 1 have been simplified and omitted. According to the buck converter averaged model
and Equation (2) of [21], the transfer function of the buck converter:

G(s) =
Vout(s)

d(s)
= Vin

(
1 + s

ωo

)
(

1 + 2ξ
ωn

s + s2

ωn2

) (2)

is a second-order low-pass filter, with a left-half complex plane zero introduced by the equivalent
series resistance of the filter capacitance.

The mathematical averaged model is obtained by the following input/state/output equations,
where the diode and transistor conduction losses have been neglected [22].[

diL
dt

dVC
dt

]
︸ ︷︷ ︸

.
x(t)

=

[ −RL
L −

RRC
L(R+RC)

−R
L(R+RC)

R
C(R+RC)

−1
C(R+RC)

]
︸ ︷︷ ︸

A

[
iL
VC

]
︸ ︷︷ ︸

x(t)

+

[
Vin
L
0

]
︸ ︷︷ ︸

B

d(t),

Vout(t) =
[

RRC
R+RC

R
R+RC

]
︸ ︷︷ ︸

C

[
iL
VC

]
︸ ︷︷ ︸

x(t)

,

where:

ωn =
1√

LC R+RC
R+RL

, ωo =
1

RCC
, ξ =

ωn

2

(
RCC +

RRLC + L
(R + RL)

)
. (3)

The discrete model of the buck converter is:

G(z) = Vin
(1− a− bc)z + e−2ξωnTs − a + bc

z2 − 2az + e−2ξωnTs
, (4)

where:

a = e−ξωnTs cos
(
ωnTs

√
1− ξ2

)
, (5)

b = e−ξωnTs sin
(
ωnTs

√
1− ξ2

)
, (6)

c =
ξωo −ωn

ωo
√

1− ξ2
, (7)

and it can be obtained by applying the definition of the Z-transform to the series plants H0(s)G(s)H.
Notice that G(z) is characterized the following two complex conjugate poles:

z1,2 = e(−ξ±j
√

1−ξ2)ωnTs .

Indeed, from (1) it follows that:

G(z) = Z
[

1− e−Tss

s
G(s)

]
=
(

1− z−1
)

Z
[

G(s)
s

]
=

Vinωn
2

ω0

(
1− z−1

)
Z[R(s)],

where:
R(s) =

s +ωo

s(s2 + 2ξωns +ωn2)
. (8)
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Expanding R(s) into partial fractions we have:

R(s) = ωo
ωn2

1
s −

ωo
ωn2

(s+ξωn)+

(
ξωn−ωn2

ωo

)
s2+2ξωns+ωn2

= ωo
ωn2

1
s −

ωo
ωn2

(s+ξωn)

(s+ξωn)
2+ωn2(1−ξ2)

= − ξωo−ωn

ωn2
√

1−ξ2
ωn

√
1−ξ2

(s+ξωn)
2+ωn2(1−ξ2)

.

Applying the standard manipulation theorems of the Z-transform to R(s) we have:

R(z) = ωo
ωn2

z
z−1 −

ωo
ωn2

z2−e−ξωnTs cos(ωnTs

√
1−ξ2)z

z2−2e−ξωnTs cos(ωnTs

√
1−ξ2)z+e−2ξωnTs

− ξωo−ωn

ωn2
√

1−ξ2

e−ξωnTs sin(ωnTs

√
1−ξ2)z

z2−2e−ξωnTs cos(ωnTs

√
1−ξ2)z+e−2ξωnTs

.

It follows that (8) can be written as:

G(z) = Vin −Vin
(z− e−ξωnTs cos(ωnTs

√
1− ξ2))(z− 1)

z2 − 2e−ξωnTs cos(ωnTs
√

1− ξ2)z + e−2ξωnTs

−Vin
ξωo −ωn

ωo2
√

1− ξ2

e−ξωnTs sin(ωnTs
√

1− ξ2)z

z2 − 2e−ξωnTs cos(ωnTs
√

1− ξ2)z + e−2ξωnTs
,

which can be rewritten as in (4) using (5)–(7).

3. The Proposed Discrete PIDF Controller with Complex Conjugate Zeros

The controller presented in this paper is a discrete PIDF controller, described by the following
transfer function:

C(z) = K̃i
z2 − 2δdωdz +ωd

2

(z− 1)
(

z− ωn
βd

) . (9)

when:
ωd = e−

δ
τ Ts , δd = cos

(
Ts
τ

√
1− δ2

)
, βd = e(β−δ)

Ts
τ ,

K̃i = 2kiτβ
1+e−

βTs
τ

1+2e−
δ
τ Ts cos

(
Ts
τ

√
1−δ2

)
+e−

2δ
τ Ts

,

the controller (9) represents the discrete pole-zero mapping transformation with the sampling period
Ts of the following continuous-time PIDF controller:

C(s) = Ki
1 + 2δτs + (τs)2

s
(

1 + τ
β s
) . (10)

Here Ki is the integral gain, δ is the damping ratio and 1/τ is the natural frequency of the controller
zeros, and:

β =
K∞

τKi

is a parameter that depends on the high frequency controller gain, which is defined as:

K∞ = lim
s→∞

C(s).
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The PIDF controller (10) is equivalent to the classical parallel PIDF controller:

C(s) = Kp

(
1 +

1
sTi

+
sTd

1 + sTf

)
. (11)

In fact, equivalent parameters for (11) can be obtained from δ, β, Ki, τ by equating (10) and (11):
the resulting proportional gain, and the integral, the derivative and the filter time constants are shown
in the following Equation (12):

Kp = Ki
τ

β
(2δβ− 1), Ti =

τ

β
(2δβ− 1), Td =

τ

β

(
β2

2δβ− 1
− 1

)
, Tf =

τ

β
. (12)

Notice that when β > 1 and δ ≥ 1 the PIDF controller (10) reduces to a series PID controller, when
0 < β < 1 the PIDF controller has complex conjugate zeros, and when β = 1 and δ = 1 the PIDF controller
becomes a PI controller, see [19].

Interestingly, the controller (9) can be written as a digital biquadratic filter:

C(z) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 , (13)

where:
b0 = K̃i, b1 = −2K̃iδdωd, b2 = K̃iωd

2,

a1 = −
(
ωd
βd

+ 1
)

, a2 = ωd
βd

,

which has the clear advantage of being directly implementable on a microcontroller by using the
difference equation:

d[n] =
2

∑
i=0

bie[n− i]−
2

∑
j=1

ajd[n− j]. (14)

4. The Design Problem and the Proposed Design Solution

For control design purposes, the control system scheme can be simplified as in Figure 2, where
G(z) and C(z) are given by (1) and (9), respectively, while L(z) denotes the loop gain transfer function
L(z) = C(z)G(z).
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4.1. Pole/Zero Compensation Method

The PIDF controller (9) introduces a pair of complex conjugate zeros, which can be placed to
achieve pole/zero compensation. The PIDF parameters can be selected as follows:

ωd = e−ξωnTs , δd = cos
(
ωnTs

√
1− ξ2

)
, (15)

where ξ and ωn are the parameters of the buck converter described in (3). In this way, the transfer
function of the controller can be factorized into two parts. The zeros and the integrator:

z2 − 2δdωdz +ωd
2

z− 1
(16)
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are completely determined by the zero/pole cancellation. The remaining factor is:

C̃(z) =
K̃i

z− ωd
βd

(17)

and it comprises the parameters that are yet to be assigned. Thus, we can consider a new control
problem where the controller is C̃(z), while the former factor is part of the plant, whose transfer
function then becomes:

G̃(z) = G(z)
z2 − 2δdωdz +ωd

2

z− 1
.

4.2. Discrete Inversion Formulae Method

The design method based on the so-called “inversion formulae” consists in a set of closed-form
expressions that deliver the parameters of the controller to exactly satisfy specifications on the gain
crossover frequency ωg, phase margin Φm and/or gain margin Gm. In most cases, these specifications
are satisfied if the frequency response associated with the loop gain transfer function:

L(ejωTs) = C(ejωTs) G(ejωTs)

at frequency ωg satisfies: ∣∣∣L(ejωgTs)
∣∣∣ = 1, ∠L(ejωgTs) = Φm + π . (18)

In other words, the design method based on the inversion formulae is a way of constraining the
loop gain polar plot to cross a specific point of the complex plane. In practice, in the vast majority of the
situations that are interesting in practice this goal alone is sufficient to guarantee that the specifications
on the phase (or gain) margin and crossover frequency are met, see [15] for further details.

The classical feedback design problem is to find a controller C(z) that satisfies the steady-state a
zero position error specification, and such that the gain crossover frequency and the phase margin of
the loop gain transfer function L(z) are, respectively,ωg and Φm.

The first step of the design method consists in guaranteeing that the steady-state requirement
is met. In most situations, the pole at z = 1 of the controller is sufficient to automatically satisfy the
steady-state requirements. However, in some cases, the number of poles at z = 1 of the plant and the
single pole at z = 1of the controller are not sufficient to meet the desired static requirements, and the
factor K̃i in (9) must be chosen accordingly. For example, this is the case of a type-0 plant as the
considered buck converter when the steady-state specifications not only require zero position error,
but also that the velocity error (i.e., the tracking error in the response of a ramp) be equal to (or smaller
than) a given non-zero constant. In the considered case specifications on the steady-state error do not
lead to constraints in the value of the integral constant. Let L(z) =C̃(z)G̃(z) be the loop gain transfer
function. We define:

Mg
de f
= M(ωg) = 1/

∣∣∣G̃(ejωgTs)
∣∣∣, (19)

ϕg
de f
= ϕ(ωg) = Φm − π−∠G̃(ejωgTs). (20)

The solvability of the feedback design problem amounts to solving the complex equation:

L(ejωgTs) = ej(Φm−π)

in the unknowns K̃i > 0 and βd > 0. The closed-form solution to this problem is given in the
following theorem:
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Theorem 1. The values of K̃i and βd that solve the control problem are given by the following expressions:

βd =
ωd

sin(ωgTs)

tan(ϕg)
+ cos(ωgTs)

, (21)

K̃i = −Mg sin(ϕg) sin(ωgTs)

(
1 +

1
tan2(ϕg)

)
. (22)

Proof. From (18), the controller (17) has to be designed in such a way that:

C̃(ejωgTs) = Mgejϕg = Mg(cosϕg + j sinϕg), (23)

holds. The frequency response of (17) forω =ωg can be written in Cartesian form as:

C̃(ejωgTs) =
K̃i

ejωgTs − ωd
βd

. (24)

Equating (24) and (23) directly leads to (21) and (22). �

Remark 1. It is easy to verify that the parameters βd and K̃i in (21) and in (22) are positive if and only if:

tan(ωgTs) > − tan(ϕg) (25)

and one of the following conditions holds:

•ωg ∈
[
0, π2Ts

]
and ϕg ∈

[
π, 3

2π
]
,

•ωg ∈
[
π

2Ts
, πTs

]
and ϕg ∈

[
3
2π, 2π

]
,

•ωg ∈
[
π
Ts

, 3π
2Ts

]
and ϕg ∈

[
π
2 ,π

]
,

•ωg ∈
[

3π
2Ts

, 2π
Ts

]
and ϕg ∈

[
0, π2

]
,

or:
tan(ωgTs) < − tan(ϕg) (26)

and one of the following conditions holds:

•ωg ∈
[
0, π2Ts

]
and ϕg ∈

[
3
2π, 2π

]
,

•ωg ∈
[
π

2Ts
, πTs

]
and ϕg ∈

[
π, 3

2π
]
,

•ωg ∈
[
π
Ts

, 3π
2Ts

]
and ϕg ∈

[
0, π2

]
,

•ωg ∈
[

3π
2Ts

, 2π
Ts

]
and ϕg ∈

[
π
2 ,π

]
.

Note that, if one of the previous conditions fails, the required frequency-domain constraints are
infeasible. In other words, the devised inversion formulae provide a solution whenever a feasible
solution exists.

It is worth stressing that the proposed approach is based on closed-form expressions that deliver
a discrete-time PIDF controller that satisfies exactly the design specification. This is clearly a major
advantage since the imposed stability margin is guaranteed, and it is not subject to variations induced
by the discretization method.
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5. Design of the Buck Converter

5.1. Design Problem

The aim of this section is to apply the proposed designed procedure to the buck converter circuit
with the parameters given in Table 1. The steady state requirement is zero position error, while the
phase margin and the gain crossover frequency of the open loop frequency response are required to be
equal to Φm = 85◦ andωg = 1600 rad/s, respectively.

Table 1. Circuit parameters of the buck converter.

Parameter Symbol Value Units

Input voltage Vin 20 V
Reference voltage Vref 12 V
Filter Capacitance C 100 µF
Filter Inductance L 680 µH
Load resistance R 20 Ω
ESR of capacitor RC 170 mΩ
ESR of inductor RL 173 mΩ

5.2. Proposed Solution Using Discrete-Time PIDF Controller

The discrete plant (4) of the buck converter with the parameters given in Table 1 and with sampling
period Ts equal to 5 × 10−5 s is:

G(z) =
0.603 z + 0.1122

z2 − 1.916z + 0.9513
. (27)

The same result can be obtained using the zero-order-hold discretization method on the transfer
function of the continuous time averaged model (2):

G(s) =
Vout(s)

d(s)
=

5001s + 2.942× 108

s2 + 998.1s + 1.471× 107 . (28)

The steady-state requirements are automatically satisfied by the pole at z = 1 of the discrete PIDF
controller. Its zeros can be designed to cancel the complex poles of G(z) at 0.96 ± j 0.18 by selecting
δd = 0.982 andωd = 0.97 rad/s in (9). It follows that:

G̃(z) =
0.603 z + 0.1122

z− 1
. (29)

The complex value G̃(e jωgTs) = 8.94 e j 1.54 determines the gain Mg = 1/8.94 = 0.11 that the
controller has to introduce at frequency ωg, and the phase ϕg = 85◦ + 180◦ + 88.4◦ = 353.4◦ of the
controller at ωg needed to satisfy the design specification on the phase margin. The parameters of the
PIDF controller (9) that solves the problem are βd = 3.22, K̃i= 0.078, and follow directly from (21–22).
The resulting PIDF transfer function is:

C(z) =
0.0781z2 − 0.1496z + 0.0743

z2 − 1.303z + 0.3033
, (30)

which can also be rewritten as:

C(z) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 , (31)

with a1 = −1.303, a2 = 0.3033, b0 = 0.0781, b1 = −0.1496, b2 = 0.0743. Applying this discrete controller,
the design requirements are exactly satisfied, as one can observe by the Nyquist and Bode plots of
the open loop frequency response L(e jωTs) shown in red in Figures 3 and 4. The step response of the
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controlled system is plotted in red in Figure 5 showing the effectiveness of the control in the time
domain. Notice that selecting a different value of the sampling time Ts causes the complex conjugate
poles of the discrete plant to shift in the complex plane. In this case, new values of δd andωd can be
computed according to (9) as functions of Ts to exactly cancel the shifted poles.
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5.3. Simulation and Experimental Results

The proposed control system for the buck converter regulation has been extensively simulated in
MATLAB-Simulink® using the model shown in Figure 6. As a first step, the PIDF controller has been
tested introducing the discrete transfer function block contained in the Simulink® library. Then, this
block has been substituted with the Infinite Impulse Response (IIR) digital filter shown in Figure 7,
which has the advantage to be directly implementable by a microcontroller algorithm.
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Figure 7. Discrete-time PIDF controller model: biquad cascade IIR filters using a direct form II
transposed structure.

The control signal dn, the inductor current and the output voltage of the converter and inductor
under step reference variations from 0 V to 12 V are shown in Figure 8 from which the smoothness
and monotonicity of the response achieved with our method can be clearly observed, as well as the
notching effect of the complex conjugate zeros, which is well-visible in the first part of the transient
response of the control signal. It is also worth noting that the simulated response and the experimental
one exhibit a very good matching, demonstrating that our model is effectively descriptive of the
real-world buck converter.



Energies 2019, 12, 36 12 of 21

Energies 2018, 11, x FOR PEER REVIEW  12 of 21 

 

 
Figure 7. Discrete-time PIDF controller model: biquad cascade IIR filters using a direct form II 
transposed structure. 

The control signal dn, the inductor current and the output voltage of the converter and inductor 
under step reference variations from 0 V to 12 V are shown in Figure 8 from which the smoothness 
and monotonicity of the response achieved with our method can be clearly observed, as well as the 
notching effect of the complex conjugate zeros, which is well-visible in the first part of the transient 
response of the control signal. It is also worth noting that the simulated response and the 
experimental one exhibit a very good matching, demonstrating that our model is effectively 
descriptive of the real-world buck converter. 

 
Figure 8. Simulated control signal, inductor current and output voltage under step variation of the 
reference value from 0 V to 12 V using the proposed control method. 

An experimental hardware device has been built to verify the proposed method for the DC-DC 
buck converter. It is composed by the buck converter and an Arduino Due development board, 
based on a 32-bit Atmel SAM3X8E ARM® Cortex® M3 CPU, see Figure 9. The main components of 
the buck converter circuit have been selected as shown in Table 1.  

 
Figure 9. Physical realization of the buck converter. 

An interrupt routine is generated every Ts = 5 × 10−5 s. This routine starts the ADC conversion of 
the output signal of the converter and computes the duty cycle of the PWM control signal. Figure 10 

Figure 8. Simulated control signal, inductor current and output voltage under step variation of the
reference value from 0 V to 12 V using the proposed control method.

An experimental hardware device has been built to verify the proposed method for the DC-DC
buck converter. It is composed by the buck converter and an Arduino Due development board, based
on a 32-bit Atmel SAM3X8E ARM® Cortex® M3 CPU, see Figure 9. The main components of the buck
converter circuit have been selected as shown in Table 1.
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Figure 9. Physical realization of the buck converter.

An interrupt routine is generated every Ts = 5 × 10−5 s. This routine starts the ADC conversion
of the output signal of the converter and computes the duty cycle of the PWM control signal. Figure 10
represents the difference Equation (14) of the PIDF controller using the Direct-Form II Transposed
structure of a Biquad Cascade IIR Filter shown in Figure 7.
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Figure 10. The Biquad Cascade IIR Filter algorithm.

The output voltage of the converter and inductor current IL under step reference variations from
0 V to 12 V are shown in Figure 11. The measure of IL has been obtained using the analog transducer
LEM 6−NP with a 5V supply and a galvanic isolation between the primary and the secondary circuit.
The experimental results confirm the behavior already observed in the simulations: the output voltage
reaches the desired value in a monotonic fashion, and the inductor current remains always well below
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the saturation value. A zoom of the inductor current sensor output in steady-state condition is shown
in Figure 12 from which the regularity of the PWM duty cycle when the system has reached the new
steady-state can be observed. This is a consequence of the selected bandwidth, which is large enough
to obtain a fast set point tracking, but narrow enough to avoid the amplification of high frequency
noise and discontinuities due to the PWM behavior. Note that assigning such bandwidth without
cancelling the complex conjugate poles would result in large oscillations due to the presence of the
resonance peak in the closed-loop system.
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5.4. Comparison with Other Methods

There are various design techniques for determining the parameters of a PID controller when the
mathematical model of the plant is explicitly available. For a comparison with the proposed design
method, three classical PID tuning techniques have been considered, see Table 2.

Table 2. PID parameters.

Control Kp Ki Kd

IMC-Chien 0.033 958.7 6.519 × 10−5

Pole placement 0.55 247.1, 7.353 × 10−5

Pole-zero cancellation 0.02 294.7 2.004 × 10−5

The first controller has been obtained using the Internal Model Control IMC-Chien method
described in [23], and by neglecting the capacitor and inductor resistances in (2). The second has been
obtained by placing one zero of the PID controller an octave below the cut-off frequency, approximately
at 480 rad/s, while the other zero has been placed at 7 × 103 rad/s, see [12]. The third controller
has been obtained by selecting the PID zeros to approximately cancel the complex conjugate poles
of the converter at the cut-off frequency and a phase margin equal to 95◦, see [10]. The considered
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continuous-time PID controllers have been simulated via the Simulink® PID(s) block which implements
a PID controller in the form:

CPID(s) = Kp +
Ki
s
+ Kd

N
1 + N/s

. (32)

The MATLAB-Simulink® PID(s) model uses a lowpass filter in the derivative term to obtain a
proper transfer function. The default value of the coefficient N in the filter is set at 100. Using this
value in (32), all the considered PID controls generate large oscillations during the step response
transient. These oscillations are considerably reduced by setting the coefficient N of the filter to the
value N = 200,000. It is clear that the time constant of the filter is a critical component in the design of a
PID controller and that a systematic design method should be taken into account. Accordingly, in our
method, the time constant of the filter is selected to achieve the desired closed-loop system performance,
and it is not designed by using trial-and-error, empiric or rule-of-thumb methods.

For the practical implementation of the controller on the Arduino board, the continuous-time
PID controllers are converted to the discrete-time by using the backward Euler’s integration
method, as suggested in [10]. The discrete control algorithm will therefore implement the causal
difference equation:

d[n] = Kpe(n) + KiTs

n

∑
i=0

e(n) +
Kd
Ts

[e(n)− e(n− 1)].

Moreover, an anti-windup filter based on the conditional integration method (see [24] for details)
has been implemented in order to minimize the detrimental effect of the large saturation resulting
from the techniques listed in Table 3.

Table 3. Phase margin variations from continuous to discrete-time control using backward Euler’s
discretization method.

PID Control

Phase Margin

Continuous-Time
Discrete-Time

N = 100,000 N = 200,000

IMC-Chien 90◦ 47.5◦ 50.5◦

Pole placement 98.6◦ 26.3◦ 29.5◦

Pole-zero cancellation 95.7◦ 65.2◦ 67.6◦

The simulated step responses of these three methods in the continuous-time are shown in Figure 13.
The simulated step response using the IMC-Chien method is very fast, with a settling time of 0.2 ms.
However, the peak of the resulting control signal is approximately 80.
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On the other hand, the saturation of the duty cycle range [0,1] leads to an oscillatory behavior in
the experimental output voltage, see Figure 14b. In fact, the resulting settling time is 20 times greater
than the one obtained in the simulated test. Moreover, a steady-state ripple in the output voltage and
in the inductor current is present because of the excessively aggressive tuning.

The simulated continuous-time step response using the pole placement method exhibits a rise
time of 8.1 × 10−5 s, a settling time of 4.2 ms, and an overshoot equal to 6%. As in the previous case,
the control signal reaches a very high value, in this case with a peak of nearly 180. The converter signals
obtained using this control method in the experimental hardware device are shown in Figure 14c.
The main drawback of this type of control is the large steady-state ripple in the output voltage, see [10].
This is due to an excessively large closed-loop bandwidth that results in an aggressive control action
which tries to compensate the high frequency noise. The saturation of the duty cycle in the range
[0,1] leads to an ON-OFF behavior in the hardware device and high power dissipation both during
the transient response and in the maintenance of the steady-state. Note also that the voltage ripple is
unsuitable for most sensitive electronic equipment and the resulting current may cause heating and
damage of capacitors over time, see [25].

The simulated continuous-time step response using the pole-zero cancellation method has a
rise time of 4.1 × 10−4 s, a settling time of 0.7 ms. The peak of the control signal is 48, which is
considerably lower than the ones obtained with the previously described techniques, but still orders
of magnitude above the saturation level. The corresponding experimental results are shown in
Figure 14d. Notice that the steady-state output ripple is not present using this type of control because
of the less aggressive tuning of the parameters, which also results in a lower peak of the control variable.
However, the non-linear saturation of the control signal is not considered in (2). As a consequence,
the zeros of the controller only partially compensate the oscillatory effects of the buck converter poles
in the transient period. It follows that the settling time rises to 4 ms in practice, and the experimental
output voltage exhibits an oscillatory behavior with an overshoot of 20–30%.
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Compared to all the considered methods, the proposed control procedure leads to a good matching
between simulated and experimental results, due to the design which is carried out directly in discrete-time
via closed-form formulae. As such, the phase margin that we obtain with the discrete PIDF controller is
exactly the design one. On the contrary, other approaches are based on the design of the controller in the
discrete domain, and eventually, on the discretization of the obtained continuous controller. However, this
results in a discrete controller that often delivers a phase margin considerably different from the one that
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would have ideally been obtained in the continuous time, see Table 2, where the phase margins obtained
from the considered methods and a discrete PID of the following form are presented:

PID = Kp + KiTs
z

z− 1
+ Kd

N
1 + NTs

z
z−1

.

5.5. The Proposed Control under Output Load and Converter Parameters Variations

For the widespread diffusion of a control technique in practical applications, robustness to
parameter variation and model uncertainty is clearly a key feature. For this reason, we study the
behavior of the output voltage under different load resistance variations. Experimental results of
the step load testing under different output loads (10 Ω, 20 Ω and 30 Ω) are shown in Figure 15a.
Notice that the output voltage presents an almost overlapping behavior in the three considered cases,
confirming that the control is not affected by load variation in the range ±50% of the nominal value,
see Table 1. Other experimental results on load variations from 20 Ω to 10 Ω and from 20 Ω to
30 Ω in steady-state condition are shown in Figure 15b. Notice that the proposed control system
promptly stabilizes the voltage output with negligible undershoot and overshoot, thus providing
a good performance in the case of load variations. Moreover, the set-point step response remains
virtually the same irrespectively of the load resistance.
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While load variations are due to normal operations of the buck converter, other parameters of
the circuit of the converter, such as the inductance and capacitance, may vary as well as a result of
the uncertainties affecting the production of the electrical components. In particular, the resonance
frequency is directly related to the inductance and capacitance. In fact, since R>>RC and R>>RL,
in practice we have:

ωn ∼=
1√
LC

.

Therefore, the inductor current and the output voltage under variations of the capacitor and
inductor in the buck converter are also studied, and the results are shown in Figures 16 and 17.
The proposed system delivers a good robust performance under parameter variations, and a monotonic
response is obtained with all the considered combinations.
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6. Conclusions

A new design framework for the control of buck converters has been presented in this paper.
The proposed methodology is based on the discrete PIDF controller, and hinges on a direct design
procedure that can be easily implemented in any non-specific platform. Indeed, the proposed methodology
delivers a closed-form solution to meet suitable phase margin and gain crossover frequency values without
a simulation environment. Moreover, the proposed design procedure and the discrete control algorithm
are simple, they require small tuning times and they can be implemented by inexpensive microcontrollers.

Numerical and experimental verifications confirm that the proposed method goes well beyond
the well-known zero/pole cancellation strategy and other control methods available in the literature.
Indeed, the proposed approach enables the designer to assign an arbitrary bandwidth, which is
therefore no longer constrained by the resonant peak. This aspect leads to a double benefit. On the
one hand, this method avoids an excessively large bandwidth, which would result in noise/ripple
amplification and ultimately in an increase in power consumption and a decrease in the component life.
On the other hand, this method avoids the discretization problem that derives from discretizing
a controller which assigns a bandwidth that is too large with respect to the sampling period.
This, in particular, avoids detrimental effects on the stability margin due to the discretization.
Moreover, experimental results confirm that the selection of large phase margin with the direct
proposed method delivers a good system performance under load variations and plant uncertainties.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

ADC Analog-to-digital converter
CCM Continuous-conduction mode
DC Direct current
DC-DC Direct current to direct current
DPWM Digital pulse width modulator
ESR Equivalent series resistance
IIR Infinite impulse response (digital filter)
IMC Internal model control
PI Proportional-integral (controller)
PID Proportional-integral-derivative (controller)
PIDF PID + filter
PWM Pulse width modulation
List of Symbols
ai, bi PIDF coefficients
C Buck converter capacitance
C(s), C(z) Continuous and discrete-time controller transfer function
D Control signal
E Tracking error
G(s), G(z) Continuous and discrete-time plant model
Gm Gain margin
H Constant sensor gain
H0(s) Zero-order hold transfer function
iL Buck converter inductor current
Kd Controller derivative gain
Ki Controller integral gain
K∞ High frequency controller gain
Kp Controller proportional gain
L Buck converter inductance
L(s), L(z) Continuous and discrete-time loop gain transfer function
N Filter coefficient
R Output load resistance
RC ESR of buck converter capacitor
RL ESR of buck converter inductor
rn Reference digital signal
Td Derivative time constant of the controller
Tf Filter time constant of the controller
Ti Integral time constant of the controller
Ts Sampling period
u0 Output signal of IIR filter
VC Buck converter capacitor voltage
Vin Buck converter input voltage
Vout Buck converter output voltage
Vref Reference voltage
yn Sampled output of the process
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δ Damping ratio of the controller zeros
Φm Phase margin
ξ Buck converter damping ratio
ωg Gain crossover frequency
ωn Buck converter natural frequency
1/τ Natural frequency of the controller zeros
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