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Abstract: Model predictive control has been demonstrated to be one of the most efficient control
techniques for solar power systems. An incremental offset-free state-space Model Predictive
Controller (MPC) is developed for the Fresnel collector field located at the solar cooling plant
installed on the roof of the Engineering School of Sevilla. A robust Luenberger observer is used for
estimating the states of the plant which cannot be measured. The proposed strategy is tested on a
nonlinear distributed parameter model of the Fresnel collector field. Its performance is compared to
that obtained with a gain-scheduling generalized predictive controller. A real test carried out at the
real plant is presented, showing that the proposed strategy achieves a very good performance.
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1. Introduction

Currently, governments are promoting the use of renewable energy sources to reduce the
environmental impact generated using fossil fuels [1,2]. Solar energy is, by far, the most abundant
source of renewable energy. In fact, wind and most of the hydraulic energies come from solar
energy [3,4]. The main application of the use of solar energy is producing electricity in solar thermal
plants. A solar thermal plant is composed of a solar field which heats up a heat-transfer fluid (usually
synthetic o0il) to a desired temperature, a steam generator which uses the heated fluid to produce
electricity, a storage system which provides energy when the solar field is not capable of doing it, and
auxiliary elements such as valves, pipes etc. [1].

Many examples of solar thermal plants can be found. For instance, the three 50 MW Solaben
and the two 50 MW Solacor parabolic-trough plants of Atlantica Yield in Spain, and the SOLANA
and Mojave Solar parabolic-trough plant located at Arizona and California, each of 280 MW power
production [5]. PS10 (10 MW), PS20 (20 MW) and Khi Solar One are examples of solar power plants
operated by Atlantica Yield and Abengoa Solar respectively [6].

Another important application of solar energy is the supply of cold air for air conditioning in
buildings. The use of solar energy for air conditioning is spurred by the fact that high demands of air
conditioning correlates very well with the high levels of solar radiation [7,8].

This paper presents a control scheme designed for the Fresnel collector field which is a part of the
solar cooling plant located at the Engineering School (ESI) of Seville [9,10]. This plant consists of a
Fresnel collector field, a double-effect LiBr+ water absorption chiller and a storage tank. The water
chiller is powered by hot pressurized water coming from the Fresnel solar field at 140-170 °C and
produces air conditioning. When the solar radiation levels are not sufficient for reaching the required
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temperatures, the storage tank can be used. If the water temperature reaching the high temperature
generator of the absorption machine is below 135 °C, the absorption machine uses natural gas.

In general, the control aim in solar plants is keeping the outlet temperature of the solar field as
close as possible to a desired temperature set-point [11]. Since the decade of 1980, a considerable effort
has been done concerning the development of control algorithm for solar power plants. Many of
them were designed and tested for the experimental solar parabolic-trough plant of ACUREX at the
plataforma solar de Almeria [12]. For example, in [13,14] a review of different control strategies applied
to the ACUREX plant is presented. In [15], an adaptative control scheme which cancels the resonance
modes of the distributed collector field is presented. In [16], an observer-based MPC was developed
and tested at the ACUREX field. In [17] a practical nonlinear MPC is designed. More recently, in [18] a
nonlinear continuous-time generalized predictive control (GPC) applied to the distributed collector
field ACUREX is presented and tested in simulation. In [19,20] different advanced control strategies
using predictive and adaptative control strategies are described.

The linear Fresnel collectors can be used in multiple applications. For example, in [21] a model of
a Fresnel collector field which uses molten salts as a heat-transfer fluid is presented. In [22], a model of
a 100 MW solar power plant based on a linear Fresnel collector field is developed. In [23] a Fresnel
collector field used in a desalination plant is described and the overall system efficiency is investigated.

Concerning the control of a Fresnel solar collector field, in [24,25] different control schemes for
a Fresnel collector field are presented and an explicit MPC is developed and tested in a simulation
environment. In [26], the modeling and control of a linear Fresnel collector system is addressed. In [27]
a sliding model predictive control based on a feedforward compensation is developed and tested in
simulation for a Fresnel collector field. More recently, in [28] a gain-scheduling generalized predictive
controller is developed and tested at the real Fresnel plant described in this paper.

Since a solar collector field is affected by multiple disturbance sources and its dynamics changes
strongly with the operating conditions [29,30], conventional linear control strategies do not perform
well when the plant evolves far from the designing point [19]. In this paper, an incremental
observer-based model predictive control algorithm is developed. The control strategy uses a
linearization of the nonlinear distributed parameter model to obtain the linear models. The MPC
algorithm uses an incremental formulation which ensures an offset-free response without using
disturbance estimators as long as the reference is constant and reachable. Its performance is compared
to that obtained with a gain-scheduling GPC [28]. The proposed control strategy shows faster
tracking references.

Since only the inlet and outlet fluid temperatures are measurable, the intermediate temperatures
as well as the metal temperatures must be estimated. The MPC strategy uses a robust Luenberger
estimator. The estimator gain is obtained by a robust pole-placement technique allowing the imposition
of stability constraints. The resulting problem can be solved via Linear Matrix Inequalities (LMI)
considering a polytopic uncertainty of the plant. The main problem when using nonlinear estimators
such as the unscented Kalman filter (UKF) is that imposing performance requirements and proving
stability is a very difficult issue [31,32]. Furthermore, the stability of the MPC+UKEF control strategy is
still an open problem.

The paper is organized as follows: Section 2 describes the control objectives in solar power
plants. Section 3 presents the solar cooling plant and describes its components. Section 4 presents
the mathematical model of the Fresnel collector field used in this paper. Section 5 shows the design
process of the proposed control strategy. Section 6 presents the simulation results, discussion of
those results and the real tests performed at the real plant. Finally, Section 7 draws to a close with
concluding remarks.
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2. Control Objectives

The control objective in a solar energy plant is to maintain the outlet temperature of the solar field
around a desired set-point [33]. To accomplish this objective, the water flow is used as a manipulated
variable. This task is not an easy matter for two reasons:

¢  The system dynamics are very complex and highly nonlinear. Furthermore, the input-output
delay changes with respect to the water flow. This fact produces that this kind of plants are very
difficult to be controlled at low flow levels [34].

¢ The system is affected by multiple disturbance sources: inlet temperature, ambient temperature,
solar time, solar radiation etc. The most important disturbance source is the solar radiation which
can change suddenly because of passing clouds [29].

In general, the temperature set-point is chosen or computed according to optimal criteria [3].
The faster the controller can reach the desired set-point, the better. However, fast responses may excite
the anti-resonance modes and high frequency dynamics of the system which lead to an oscillatory
behavior [15]. For this reason, the controller should produce fast responses without exciting the high
frequencies dynamics of the plant and reject properly the disturbances affecting the plant.

3. Plant Description

The solar cooling plant consists of three subsystems: the double-effect LiBr+ water absorption
chiller of 174 kW nominal cooling capacity. The solar Fresnel collector field heats up the pressurized
water and delivers it to the water absorption chiller. If the solar field cannot reach the required
temperature for the absorption machine operation, the PCM storage tank can be used. Figure 1 shows
the scheme of the whole plant.
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Figure 1. Plant general scheme.

Water absorption chiller: this is a double-effect cycle LiBr+ absorption machine with 174 kW and
a theoretical COP of 1.34 [9]. The water chiller consists of three subsystems: (i) the high temperature
generator which receives the hot water coming from the solar field (140-170 °C) and a nominal flow
of 13 m®/h. If the temperature is not high enough, the absorption machine burns natural gas. (ii)
the evaporator which cools down water from 14 °C to 7 °C with a nominal water flow of 30 m?/h.
(iii) the refrigerator which dissipates the heat absorbed in the high temperature generator and the
evaporator by transferring it to water from the Guadalquivir river at 30 °C and 37 m3/h of flow. For
further information, the reader is referred to [35].

Solar Field: the solar field consists of a set of Fresnel solar collectors (see Figure 2) which
concentrate the direct solar radiation onto the receiver tube placed in a plane parallel to the solar field.
The metal tube is enveloped by a thin metal case called the secondary reflector. The secondary reflector
aims at reflecting the solar beams which do not have direct impact on the receiver. The energy collected
by the receiver tube is then transferred to a heat-transfer fluid (in our case, pressurized water).

The solar field orientation is East-West, and the sun-tracking system modifies the inclination
of every row to concentrate the sun beam onto the metal tube. To do this, the sun-tracking system
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computes the solar vector by using the well-known formulas for solar azimuth and solar height [1],
and then calculates the desired inclination of every row using the relative position between the row
and the tube as explained in [10].

To change the flow provided by the water pumps, the pump speed variation must be used. Since
the control signal provided by the control algorithm proposed here is the water flow, an intermediate
PID controller is used. It receives the water flow set-point and modifies the speed variator accordingly
to obtain it.

PCM storage tank: The PMC storage is a tank of 18 m long and 1.31 m of diameter (Figure 3).
The storage tank is a shell-tube heat exchanger with a theoretical thermal storage capacity of 275.5 kWh
(145-180 °C) and 150 kW. It consists of a series of tubes containing a heat-transfer fluid and the PCM
fills up the space between tubes and the shell. The theoretical thermal storage is computed by using the
properties of the hydroquinone. The total mass of the PCM is of 3294 kg [36]. The melting temperature
of the hydroquinone is about 170 °C which is suitable for the water absorption chiller operating
range [37].

Figure 3. PCM storage tank.

4. Mathematical Modeling of the Fresnel Collector Field

A mathematical model of the Fresnel collector field has been developed using similar equations
to those obtained for parabolic-trough fields [12] but taking into account a different way of computing
the geometrical efficiency and the shading factor.

Two different models are used [38]: concentrated parameter model which is usually used
for feedforward control purposes and the distributed parameter model used for simulating the
performance of the closed-loop control strategies.
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4.1. Distributed Parameter Model

The Fresnel solar collector field consists of a set of Fresnel solar collectors which concentrate solar
radiation onto a line where an absorption tube of 64 m long is located. The model is described by the
following system of partial differential equations (PDE) describing the energy balance [39]:

Ty,
memAmF = IKoptnOGa — HlGa(Tm — Ta) — lth(Tm — Tf)
o o M)
prCrAr 5 +orCra— = lpHi(Tw — T)
where m subindex refers to metal and f subindex refers to a fluid. In Table 1, parameters and their
units are shown.

Table 1. Parameters description.

Symbol  Description Units
t Time S

1 Space m
T(x,t) Temperature K,°C
q(t) Water flow rate m3s~1
o(t, T) Density kgm 3
C(t,T)  Specific heat capacity JK kg™t
A Cross-sectional area m?
I(t) Direct Solar Radiation Wm—2
no(t) geometric efficiency Unitless
Kopt Optical efficiency Unitless
Gy Collector aperture m
Ta(t) Ambient temperature K,°C

H(t,T)  Global coefficient of Wm™2°C~!
thermal loss

Hi(t,T,q) Coefficient of heat Wm=2°C~!
transmission metal-fluid

Ip Length of pipe line m

S Total reflective surface m?

Cr(t,T)  Thermal capacity of the J/K
solar field

Pcy(t,T)  Parameter of solar field Jm—3K!

The PDE system is solved by dividing the metal and fluid in 64 segments of 1 m long. The chosen
integration step is 0.5 s. The equations are integrated by using an Euler method.

The geometric efficiency depends on the solar time. It takes into account the effect of the cosine
of the incidence angle of the solar beam and the shade factor. Its computation involves complex
trigonometric formulas. These are well explained in [10].

Some parameters have been adjusted using real data from the real solar field. In particular,
the density, specific heat, coefficient of heat transmission have been obtained as polynomial functions
of the segment temperature and the water flow using thermodynamic data of pressurized water.
The coefficient of thermal losses has been obtained using real data from the Fresnel solar field. Their
expressions are given by Equations (2)—(4):

pf = —0.0025 T# — 0.203 Ty +1003.91 )

Cp =5.160—7 T; — 1.56¢ — 4 T} +0.0277 T; — 1.627 Ty + 4207.403 ®)
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H, =134e — 4 TJ‘} —7.78¢ -2 T}’ +18.73 T]% —2.57¢3 Ty 4 4.11¢5

@)
H; = H, ¢°8
The thermal losses coefficient can be calculated using Equation (5):
H; = (0.00122) (T, — T,) + 0.001763 ®)

4.2. Concentrated Parameter Model

The concentrated parameter model provides a lumped description of the whole field.
The variation in the internal energy of the fluid can be described by the equation [10]:

dT, ]
Cr= = KopimoSI — qPey(Tout — Tyn) — HIS(T = Ty) ©

where g is the water flow, T,y and Tj, are the outlet and inlet oil temperatures, respectively. T is the
average value between inlet and outlet temperatures and T, is the ambient temperature. Cr is the
thermal capacity of the solar field, K, is the optical efficiency (which incorporates the effects of mirror
reflectivity, tube absorptance, interception factor), I is the solar irradiance and S is the total reflective
surface measuring 352 m2. The geometric efficiency no is a function of the cosine of the incidence angle
between the mirrors” normal vector and the solar beam and the shade factor, Pc, takes into account
some geometrical and thermal properties of the loop and H; is the coefficient of thermal losses.

4.3. Comparison between Real Data and Models Output

Figures 4 and 5 show the comparison between the model output and the real outlet temperature
from solar field. As can be seen, the model dynamics is very similar to that of the real plant.

Temperature evolution: 11/09/2015
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Figure 4. Solar field evolution Model vs Real: 11 September 2015.
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Figure 5. Solar field evolution Model vs Real: 31 July 2017.
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To show a comparison between the evolution of the distributed parameter model and the lumped
parameter model is shown in Figure 6. Figure 7 shows the evolution of the error between the output
of the models and the real outlet temperature. As can be seen the distributed model achieves better

results as expected.

Comparison between concentrated and parameter models evolution
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Figure 6. Comparison between distributed (solid blue) and concentrated parameter (dashed-dot black)

models: 31 July 2017.
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Model errors compared to real data: 31/07/2017
T T

T T

Concentrated Parameter Model error
3 e Distributed parameter model error T
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13 135 14 145 15
Time (Local hour)

Figure 7. Comparison between distributed (blue) and concentrated parameter (red) models: evolution
of the error between the models and real outlet temperature evolution.

5. Model Predictive Control Strategy

In this section, the observer-based state-space MPC is presented. The state-space matrices used by
the MPC are obtained by means of the distributed parameter model (1). The linear model is obtained
by dividing the absorption metal tube into 4 segments (instead of the 64 used in the full distributed
nonlinear model). This simplification allows to reduce the complexity of the control strategy and thus
the computational time is also diminished.

Since only the inlet and the outlet temperature of the fluid are available, the temperatures of metal
segments and fluid in the intermediate sections must be estimated. The state estimator is a robust
Luenberger state-observer. The observer gain is computed using a robust pole placement via LMI
considering a polytopic uncertainty of the plant dynamic [40]. Using this approach, the stability of the
state observer is ensured by imposing stability and performance conditions to the closed-loop poles in
the z plane [41].

5.1. MPC Problem

Basically, an MPC control algorithm consists of the following 3 steps [42,43]:

1. Use a model to predict the process evolution at future time instants (horizon), depending on a
control sequence.

2. Compute the control sequence which minimizes a certain objective function.

3. Apply only the first element of the control sequence, then in the rest of sampling instants
recalculate the sequence shifting the horizon one step in the future (receding horizon). Repeat
steps 1 to 3.

The use of a conventional linear controller in a plant with highly nonlinear dynamics presents
some drawbacks. The performance of linear controllers may deteriorate if the state of the plant evolves
far from the design point. In systems such as Fresnel collector or Parabolic-trough plants, the dynamics
of the plant becomes complex at low water flows [44]. To overcome this drawback, in this paper the
linear model is computed each sampling time. The sampling time is chosen as 20 s, selected by taking
into account the time characteristics of closed-loop time constants. Augmenting the sampling time
would produce slower reactions by the control algorithm and it is not desirable. Diminishing the
sampling time may produce faster reactions of the controller but the high dynamics modes of the solar
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field may be excited as shown in [16]. Furthermore, the sampling time cannot be smaller than 10 s due
to communication requirements of the data acquisition system.
In general, the mathematical expression of the MPC problem can be posed as follows:

Np N¢.—1

. T
min] =) (}/k+t|k - yfﬁ{t) (ykth\k - y;ﬂ) +Ry ), Au}Lrt‘kA”k+t|k )
Au =1 =0

s.t.
Vlyk+t|k = f(AW, Yiyt—1, Yiyt—2, )

Upptlk = Ugpr—1(k T Dllgpgx ®)

Umin < Uitk < Umax
tZO,...,Np—l

where N, and N, stand for the prediction and the control horizons, respectively. The parameter R,
penalizes the control effort. Then uy = uy; is applied to the system. In this case, only constraints in the
amplitude of the water flow have been considered.

5.2. Obtaining the Linear Models

The linear model of the PDE system (1) consists of a set of matrices depending of inputs and
system states. Let x be the state vector formed by the temperatures of the 4 metal and fluid segments,
T;, the inlet temperature, g the water flow , [, = IK,pn, the effective solar radiation, and T the
ambient temperature. Al is the length of each segment in which the metal tube is broken down (16 m).

The linear model in continuous time is computed using (9):

J'Ct = Axt + But + det

©)
Yyt = Cx;
T
w=q di=[Ty L T,] (10)
The linear matrices are computed as follows:
-H,G, - 1,H I,H
pp= e pp=_—2" (11)
PmCmAm PmCmAm
l Ht q
2 prfAf 3 AfAZ ( )
Py=—-P,— P (13)
PB 0 0 0 P 0 0 O
0 Bhb O 0 0 Pb 0 O
A— 0 0 0 php 0 0 0 P (14)

P, 00 0 P, 0 0 O
0 P, 0 0 Ppb ;, 0 0

0 0 0B 0 0 P B
where the first 4 states correspond to the metal temperatures and the other 4 correspond to the fluid

temperatures. It is worth noting that the value of the control signal g appearing in the matrix A is the
value defining the operating point around the nonlinear model is linearized.

1 1 T
B=| O1x4 AA A (15)
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Brip = [ O1x4 ﬁ 0113 }T (16)

B = [ 11x4'pmccﬁ 014 }T (17)
Bro= [ it . G 04 | (18)
By=| Bru Bie Bm | (19)
C=[00000001] (20)

Notice that A and Br, matrices depend on the system states, water flow and parameters; Br;, is
function of the water flow u.

The variables p;;, Cyy, A fr Ay, and G are constants whereas each parameter Hj, p fr C b and H;
depend on the state temperature and are calculated around the operation point in which the plant is
working at. The linear matrices are discretized using a sampling time of 20 s. In the remainder we will
refer to the discrete-time matrices keeping the notation A, B and Bj.

5.3. Computation of the Observer Gain

As stated above, only the inlet and outlet fluid temperatures are measured in this plant. Since the
intermediate fluid temperatures and the metal segments temperature are needed for the MPC, they
must be estimated. A Luenberger observer is implemented and the observer gain L is obtained by the
solution of a LMI problem.

The advantage of using the Luenberger observer is that performance constraints can be imposed.
This fact allows not only ensuring the stability of the observer for the whole range of the plant dynamics,
but it also allows to impose dynamics behavior. To fulfill this aim, a polytopic Linear Differential
Inclusion (LDI) description of plant is used. A 36-vertex polytope is employed, representing the
behavior inside the range of water flow, operative temperature, and direct solar radiation.

In this kind of systems, the dynamics is mainly dictated by the flow and the direct solar
radiation [11,19], although other variables have also influence: the optical and geometrical efficiencies,
the inlet and outlet temperatures etc. To obtain a representative set of linear systems representing
the dynamics of the solar field, 36 linear systems are chosen for simplicity. Otherwise the polytope
contains a very high number of vertices depending on different operating conditions. This fact proves
that solving the LMI problem becomes more difficult and computationally heavier.

In this paper, four values for the water flow are considered: 3.5, 6, 8.7 and 11 m3/h. Three values
for the direct solar radiation (low, medium, and high) are taken into account: 300, 600 and 950 W/ mZ2.
The values of the effective solar radiation are obtained considering two values of the direct solar
radiation (950 W/m? and 350) and a typical value of the overall efficiency of 0.35. As far as the inlet
temperature is concerned, three values are considered covering the range of working temperature: 40,
80 and 140 °C. The ambient temperature is considered to be 25 °C. It has been found that the ambient
temperature, which is used to compute the thermal losses to the ambient, has an almost negligible
influence in the system dynamics. For this reason, this is considered to be a typical value of 25 °C.
The variation of the matrix A eigenvalues depends much more on the water flow than on the ambient
temperature. It can be seen in Figure 8: the upper part shows the evolution of the real part of the fluid
segments eigenvalues with respect to the ambient temperature. The inlet temperature is considered to
be 120 °C and the direct solar radiation is considered to be 900 W/m?2. As seen, the evolution of the
eigenvalues in the upper part of Figure 8 is almost constant, in other words, the dependence of the
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dynamics with respect to the ambient temperature is almost negligible. However, the evolution with
respect to the water flow showed in the bottom part is much more important.

Evolution of the real part of Eigen-values w.r.t. Ambient Temp.
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Figure 8. Real part of fluid eigenvalues w.r.t flow (bottom part) and ambient temperature (upper part).

The value of the states to compute the corresponding linear matrices are obtained by solving
the nonlinear distributed parameter model equations in steady-state. Thus, when the 36 systems are
computed, the observer gain can be obtained.

The equations describing the dynamics of the estimated state (in discrete time) are given by:

X1 = A(k, X, u)f@k + Buy + Bydy + L (}?k — yk)

. R (21)
gk +1) = Cx
where A(k,x,u) € Co{Ay,...,As}.
The estimation error is defined as e = £; — x; and its dynamics is given by:
er1 = (A(k,x,u) + LC) e (22)

The objective of the LMI problem formulated here is to find an observer gain matrix L such that
e(k) converges to zero for k — co with the system described by the polytopic LDI, with the performance
requirements imposed by pole clustering constraints. Notice that to avoid nonlinear terms in the LMI,
we formulate the problem on (A(k, x,u)) + LC)T exploiting the fact that a square matrix shares the
same eigenvalues with its transpose.

This translates in searching for a positive definite matrix W such that the following LMIs are
satisfied for each vertex of the polytope [45].

minr
WY (23a)
ATW+CTY + WA+YTC >0
—rW ATW 4+ CTY

WA+YTC  —W <0 (23b)

with Y = LTW and r € (0, 1), which correspond to the following conditions for pole clustering [40,46]:
e Re(A(A;+LC)) >0
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o AMA+LO)| <7

Notice that as the condition in (23b) constitutes a Bilinear Matrix Inequalities (BMI). The simplest
method to solve the LMI problem is choosing the value of r as a constant and scaling it iteratively by a
factor B < 1. The LMI problem is solved while it is feasible.

Figure 9 shows the poles of the observer for the 36 linear systems considered. It can be seen that
they are inside the constraint region ensuring not only stability but also appropriate dynamic behavior.
The minimum radius obtained was 0.62.

Pole-placement in the Z plane and imposed constraints
1 T T T T
0.5%/T

Imaginary part

R 0.57/T
-1 -0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Real Part

Figure 9. Result of the pole clustering for the observer.

5.4. Offset-Free State-Space MPC

In this subsection, the incremental formulation of the state-space formulation is presented.

In general, when using state-space formulation in model predictive control strategies, steady-state
errors may appear due to modeling errors or plant model mismatches. This problem has
been addressed in literature by including a disturbance estimator to compensate model-plant
mismatches [47,48]. The drawback of this approach is that additional dynamics is added to the
controller and the parameters to be tuned increase. The approach considered in this paper, is using
and incremental formulation of the MPC problem [49]. This formulation achieves offset-free tracking
of constant references for systems without a zero in the origin. Subsequently, a brief description of the
procedure is given, since the complete analysis can be found in [49].

Considering a linear state-space model with n states, m outputs, r inputs and p
disturbance sources:

X1 = Axy + Buy + Bydy

24
Y = Cxg 24

The key is to use an incremental form of the state-space formulation and augmenting the states to
include the system output [49]. The incremental formulation is described as follows:

Axy 1 = AAxy + BAuy + ByAdy (25)
Yk = Yk1 + CAxg (26)

where Ax; = x; — x;_1. Augmenting Equations (25) and (26), the complete state-space model is posed
as follows:
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Fpet1 A Ty B
Akarl A Onxm Axk
= + Auy+ 27
Yk ] C  ILuxm ] Y1 Omxcr k @7)
Bd
—_——
[ Bd ]Adk 29)
Opxr
C
———
o Axk
Yk = [ C Luxm } [ Vi1 ] (29)

The new matrices can be used in the MPC control algorithm to obtain the desired control signal at
instant k. The difference with the standard state-space MPC formulation is that the free response of
the system depends on the measurement of y;_; producing an offset-free tracking of references [49].
The new system can be posed as follows:

Xry1 = A%, + BAuy + BdAdy (30)
v = CX (1)

The predicted response can be obtained as the sum of the forced response, the term that depends
on the future control actions, and the free response which does not depend on the future control
actions [42] as follows:

y=GAu+f (32)

The matrix G can be obtained from the model matrices (Equations (30) and (31)) and the free
response can be computed as a matrix depending on the past values of the states, outputs, and
measured disturbances. Since it is difficult to know how disturbances are going to evolve in the future,
they are assumed to be constant along the prediction horizon. The free response can be calculated as
follows [42]:

A%y
Yr—1
The matrix F can be obtained from the model, and the matrices G, G, and Grpy, are the

contribution of the effective solar radiation, the ambient temperature, and the inlet temperature
to the free response.

f=F + GeAlL + GriyATin + G AT, (33)

5.5. Final Control Scheme

In this subsection, the final control scheme is presented. Every 20 s the data acquisition system
takes the data from the field and the state observer computes the estimated states. This estimation
is provided to the block which computes the linear matrices and solves the MPC problem given by
Equation (8). The MPC optimizer computes a control signal, g, which is applied to the Fresnel collector
field. Figure 10 shows this control scheme:
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Tin (2C) Tamb (2C) le (W/m2) q (m3/h)

Matrices Tout

MPC Optimizer Fresnel Solar

computation block: Collector Field

Ts: 20 seconds Ts: 20 seconds

State estimation
block.

Ts: 20 seconds

Tin (2C) Tamb (2C) le (W/m2) q (m3/h)

Figure 10. Final Control Scheme.

6. Simulation Results, Discussion and Experimental Results

In this section, some simulation results are presented comparing the proposed control strategy
with a Gain-Scheduling Generalized Predictive Controller (GS-GPC). This controller was tested in
simulation and in the real plant and it provided very good performance. In this paper, the G5-GPC
control strategy is outlined. For further information, the reader is referred to [28]. Another important
point is that the data used for simulation purposes is taken from the real Fresnel collector field.

A gain-scheduling controller is an easy way to cope the changing dynamics of a nonlinear
system. Since a linear controller is tuned to a particular working point, when the plant evolves far
from the design conditions, the linear controller performance may deteriorate. A gain-scheduling
approach is an easy way to deal with the changing dynamics of the plant depending on the operating
conditions. The GS-GPC control strategy uses a series feedforward to linearize the plant and to cope
with measurable disturbances [50]. The feedforward is computed using the concentrated parameter
model as follows:

 (KoptnoSI — HiS(T — Ty))
1 qPCP(Trefvir - Tin)
In this case, the dynamics of the plant depends mainly on the water flow as stated in [51]. Four

water flow level are considered covering the range of operation (3.8-9.1 m3/h). For each water flow
level, a discrete transfer function is obtained as follows (Equation (35)):

(34)

b+ b1z '+ bz 2 + b3z 3+ byz 4

G -1
(z7) 1+a,z7 1 4 a1z—2

(35)

Figure 11 shows the step response for different water flow conditions. The linear model parameters
are interpolated for intermediate flow values. Every sampling time (20 s), a transfer function is obtained,
and a GPC optimization problem is solved [28]. The parameters for the GS-GPC are chosen as follows:
the control horizon N, = 7, the prediction horizon N, = 12 and A = 6.
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Figure 11. Linear models step response for different water flow conditions.

The tuning parameters of the MPC are chosen as N. = 8, N, = 14 and R;, = 2¢8. The water flow
can vary from 3 to 10 m®/h for simulation purposes. The value of R, is high because the cost function
is not normalized.

6.1. Simulation Results

In this subsection, two simulation are carried out comparing the response of the two controllers,
the GS-GPC and the MPC.

Figure 12 shows the first simulation consisting of a series of changing set-points for the outlet
temperature. The direct solar radiation corresponds to a clear day with passing clouds. The data to
carry out the simulation corresponds to the day 29 June of 2009. The temperature reference is initially at
120 °C. Then a series of increasing steps in the reference temperature are selected. The MPC controller
provides slightly faster responses with very small overshoots. Both controllers reject properly the
disturbances in the solar radiation and the inlet temperature. As can be seen, an offset-free tracking
response is obtained in the proposed control strategy.

Temperature Evolution Compari MPC vs GS-GPC
T T T T T
135 4
8130 — MPC
o —emem= GS-GPC
‘5 = = =Tin
H 125 Ref
< —
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£ 2
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Local hour
Direct solar radiation and water flow evolution
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E el \ [V TN ] 100 (GS-GPC)
3 800 ) ’ -
[«] - ol \» i )
x ) \
g 600 Ty
c
©
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z
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Figure 12. Simulation 1: Tracking references.
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Figure 13 depicts the comparison between the temperature profiles obtained by the robust
Luenberger observer and those provided by the distributed parameter model. As seen, the estimated
profiles follow the dynamics of the real measurements properly. Small steady-state errors appear due
the loss of precision produced for considering a smaller number of segments in the linear model (4 for
fluid and metal temperatures) than those considered in the distributed parameter model (64 segments
for fluid and metal temperatures). The maximum error observed in about 1 °C.

Metal temperature profile comparison: real (red dash-dot) vs estimated (blue solid)
140 1 |

T T T T
o135+
<
o Bt no e
5130F
s | R KT
©
1
B 125t g~ “Raromond
E
O | comsmsmgmeme=t - \
= 120+ —— -
115 1 1 1 | 1 1
1 12 13 14 15 16 17 18
Local hour
Fluid temperature profile comparison: real (red dash-dot) vs estimated (blue solid)
135 T T T T T T
8 130+ A
g et e
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5
Q120 ZTmE 4
PRI — i 1 1 1 1 L
1 12 13 14 15 16 17 18
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Figure 13. Simulation 1: Temperature profiles estimation. Estimated (solid blue line) and Distributed
parameter model (dash red line).

Figure 14 shows the second simulation. The direct solar radiation data corresponds to a clear
day with clouds affecting the solar field at 15.2 h (see Figure 15). The data used for this simulation
corresponds to the day 6 October 2017.

In this day, the data corresponds to a day where the solar field is working in recirculation mode:
the hot water coming out the solar field returns to the input of the solar field after circulating through
a pipe. Tracking the references in this mode is not an easy task due to the disturbances in the inlet
temperature. The disturbances in the inlet temperature are not easy to reject because they are affected
by a delay and this delay depends on the water flow. As can be seen, the MPC tracks faster the
temperature references and deals with better the inlet temperature disturbances.
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Temperature Evolution Comparison: MPC vs GS-GPC
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Figure 14. Simulation 2: Tracking references in recirculation mode.

Direct solar radiation and water flow evolution

T I 2
; : ‘\V = DNI (Wim?)
i Wl ——q"100 (MPC)
i

————— 4100 (GS-GPC)

1000

900

3

800

700

600

500

400

300

Direct solar radiation (Wlmz) and water flow (m3lh)

0 1 1 1 1 1 1
14 145 15 155 16 165 17
Local hour

Figure 15. Simulation 2: Water Flow and solar radiation.

Finally, the comparison between the temperature profiles obtained by the robust Luenberger
observer and those provided by the distributed parameter model is plotted in Figure 16. The estimation
follows properly the dynamics of the temperature profiles obtained with the distributed parameter
model as in the previous simulation, despite the variations in the temperature. As observed in the
previous simulation, a steady-state error appears. The maximum error observed is about 0.8 °C.
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Metal temperature profile comparison: real (red dash-dot) vs estimated (blue solid)
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Figure 16. Simulation 2: Temperature profiles estimation. Estimated (solid blue line) and Distributed
parameter model (dash red line).

6.2. Discussion of the Results

In this subsection, a discussion of the obtained simulation results is carried out. The comparison
between the two control strategies, the MPC proposed here and the GS-GPC, is analyzed. A control
algorithm for a solar power plant should have the following features:

e  Fast tracking references: The temperature set-point is usually chosen to maximize the
performance of the absorption machine and fulfilling the cooling demand. Thus, tracking as fast
as possible the temperature reference is an important issue.

e Disturbance rejection: The controller must be able to minimize the impact of the disturbances
affecting the field and tracks the set-point despite them. The main disturbance sources are the
direct solar radiation and the inlet temperature.

e  Control effort: The controller should not produce a water pump oscillatory response. If the
controller is too aggressive with the manipulated variable, the anti-resonance modes may be
excited, and the overall performance may be deteriorated as explained in [33].

To compare the performance of the two controllers, two performance indexes are considered.
The ITAE (integral of time multiplied by the absolute error) index and the ISE (Integral of Square of
the errors) index. The smaller these indexes the better the controller performance. As is shown in the
Section 6.1, neither of the controller produces too aggressive responses of the water pumps.

Table 2 shows the comparison of the ITAE and ISE criteria for both controllers for simulation 1.
As can be seen, the MPC control strategy outperforms the GS-GPC control strategy achieving smaller
performance indexes. Faster responses are achieved. Table 2 also includes the improvement of the
MPC over the GS-GPC in percentage. As shown, the improvement is significative: a 29.69 % in the
ITAE criterion and a 46.74 % in the ISE criterion.
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Table 2. Simulation 1: Performance comparison using ITAE and ISE criteria for the comparison between
the GS-GPC and the MPC.

ITAE Criterion GS-GPC ~ MPC  Improvement MPC over GS-GPC (%)

3715.2 2612.4 29.69
ISE Criterion ~ GS-GPC MPC Improvement MPC over GS-GPC (%)
751.95 400.351 46.74

Table 3 shows the ITAE and the ISE for the second case. The MPC controller achieves smaller
values in the performance criteria. The conclusion obtained is similar to that obtained for the first
simulation. In this case, the improvement achieved is smaller but important: a 19.6 % in the ITAE
criterion and a 14.7 % in the ISE criterion.

Table 3. Simulation 2: Performance comparison using ITAE and ISE criteria for the comparison between
the GS-GPC and the MPC.

ITAE Criterion  GS-GPC MPC Improvement MPC over GS-GPC (%)

14117.5  11350.1 19.6
ISE Criterion  GS-GPC MPC Improvement MPC over GS-GPC (%)
4814.5 4106.8 14.17

As a final comment, it can be concluded that the MPC obtains a better overall performance.
Faster tracking references and better disturbance rejection properties are achieved without a significant
increase of the control effort.

6.3. Real Test

In this section, a real test carried out on 22 October 2017 at the real Fresnel collector field is
presented. The plant was working in recirculation model, that is, the outlet temperature of the solar
field is recirculated through a long pipe and returns to the solar field. In this mode the plant is
constantly affected by inlet temperature disturbances. The inlet temperature disturbances are difficult
to reject because its associated residence time depends on the water flow [52]. The allowed flow range
is confined to 3.7-9 m3/h.

From the beginning to 15 h, the test consisted of a series of changing references which the
controller tracks well as seen in Figure 17. The rise times obtained were around 4-6 min. As can be
seen, the controller achieves an offset-free tracking.

At 15.2 h the 65 % of the mirrors were defocused for 3 min to simulate a passing cloud. As seen,
the controller recovers the temperature after an overshoot of 3.5 °C and steers the outlet temperature to
the desired set-point. The effect of the recirculation is seen at 15.4 h, where the oscillation of the outlet
temperature produced by the partial defocusing appears in the input of the solar field. The controller
rejects the disturbance and tracks the reference properly.

At 15.9 h, the solar field is completely defocused for 4 min. It becomes impossible to track the
set-point. When the solar field is again focused, the controller recovers the temperature with small
oscillations. The rest of the test consisted of a series of set-points which the controller tracks properly.
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Real Test 22/10/2017: Temperature evolution
T T

110 {| = Tout

Ref
100 Tin

100% field
defocusing

65% field 4
defocusing

Temperature (°C)
o

60

1 1 1 1 1 1
14 145 15 155 16 16.5
Time (local hour)

Direct solar radiation (DNI) and water flow
T T

1000 {{ === @100 (m’m) 1
= DNI (Wim?) .

DNI (W/m?), water flow (m >/h)

5
Time (local hour)

Figure 17. Real Test carried out on 22 October 2017.

7. Conclusions

Advances control strategies can play an important role in improving the efficiency of solar plants.
In particular, model predictive control strategies have been applied successfully when controlling
solar plants.

In this paper, an incremental offset-free state-space Model Predictive Controller (MPC) is
developed for the Fresnel collector field located at the solar cooling plant installed on the roof of
the Engineering School of Sevilla. The state-space description uses a robust Luenberger observer for
estimating the states which cannot be measured. The effectiveness of the proposed strategy was tested
on a nonlinear distributed parameter model of the Fresnel collector field.

The proposed strategy was compared to a GS-GPC, showing a better performance. The estimation
of the temperature profile obtained by the robust Luenberger observer was also presented showing a
proper state estimation. The estimation is compared to the states obtained by the nonlinear distributed
parameter model, because the metal and intermediate fluid measurements are not available at the
real Fresnel solar collector field. The maximum error between the estimation and the real metal-fluid
temperature profile is about a 1 °C.

The MPC algorithm obtains a better overall performance than the GS-GPC. Faster tracking
references and better disturbance rejection properties are achieved without much brisker control
efforts. The MPC achieves smaller performance indexes in the two simulations presented.

Furthermore, a real test carried out at the real plant is presented. It shows the good performance
obtained with the proposed strategy. Fast reference tracking properties are achieved and rise times of
about 4-6 min are attained despite the disturbances affecting the solar field.
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Abbreviations

The following abbreviations are used in this manuscript:

MPC
GPC

Model Predictive Controller
Generalized Predictive Control

GS-GPC  Gain-Scheduling Generalized Predictive Controller

UKF Unscented Kalman Filter

PCM Phase Change Material

PID Proportional+Integral+Derivative Controller

PDE Partial differential equations
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