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Abstract: In the current framework, a model is constituted to explore the impacts of high suction 

and partial slip on Fe3O4–water nanoliquid flow over a porous moveable surface in a parallel free 

stream. The mechanisms of heat transfer are also modeled in the existence of Newtonian heating 

effect. The obtaining PDEs are transformed into a non-linear ODE system employing appropriate 

boundary conditions to diverse physical parameters. The governing ODE system is solved using a 

singular perturbation technique that results in an analytical asymptotic solution as a function of the 

physical parameters. The obtained solution allows us to carry out an analytical parametric study to 

investigate the impact of the physical parameters on the nonlinear attitude of the system. The 

precision of the proposed method is verified by comparisons between the numerical and analytical 

results. The results confirm that the proposed technique yields a good approximation to the solution 

as well as the solution calculation has no CPU time-consuming or round off error. Numerical 

solutions are computed and clarified in graphs for the model embedded parameters. Moreover, 

profiles of the skin friction coefficient and the heat transfer rate are also portrayed and deliberated. 

The data manifests that both solid volume fraction and slip impact significantly alter the flow 

profiles. Moreover, an upward trend in temperature is anticipated for enhancing Newtonian heating 

strength. Additionally, it was found that both the nanofluid velocity and temperature distributions 

are decelerated when the solid volume fraction and suction parameters increase. Furthermore, a rise 

in slip parameter causes an increment in velocity profiles, and a rise in Biot number causes an 

increment in the temperature profiles. 

Keywords: moving surface; nanofluid; partial slip; Newtonian heating; high suction; singular 

perturbation techniques 

 

1. Introduction 

Recently, the investigation of solutions of nonlinear ordinary/partial differential equations is 

quite popular area of study. Such equations manifest in several physical, engineering and industrial 

applications. Most of nonlinear differential equations have no exact solution and then the numerical 

techniques have predominately been applied to handle such equations. The significance of gaining 



Energies 2019, 12, 198 2 of 18 

 

the analytical approximate solutions of nonlinear differential equations in mathematics and physics 

is yet still defying that requires novel techniques. Various researchers fundamentally had paid 

attention to investigate solutions of nonlinear differential equations by applying semi-analytical 

numerical methods such as Homotopy perturbation method [1], differential transform method [2], 

Homotopy analysis method [3], etc. The convergence of the series solutions obtained using these 

semi-analytical numerical methods are mainly dependent upon the initial guess and the smoothness 

of the solution. However for discontinuous or singularly perturbed nonlinear problems there does 

not exist a general theory or an efficient approach to find a good enough initial guess. Recently a new 

treatment of nonlinear boundary layer problems is introduced in [4,5] using singular perturbation 

techniques. The advantage of this method over other semi-analytical numerical methods is that as 

the boundary layer thickness decreases and the problem becomes much stiffer the accuracy of the 

obtained asymptotic solution increases. 

The investigation of heat transfer over moveable surfaces is of great interest to researchers due 

to its engineering and industrial applications, such as glass fiber, the manufacture and drawing of 

plastics and rubber sheets, the cooling of continuous stripes and an infinite metallic sheet, paper 

production, continuous casting, the polymer extrusion process, food processing, and heat-treated 

materials travelling on conveyer belts. Sakiadis [6] initiated work on the analysis of boundary layer 

flow on a moving surface, which was later extended by Crane [7] by considering a linearly stretching 

surface. A theoretical and experimental investigation was done on the flow past a moveable surface 

by Tsou et al. [8]. Magyari and Keller [9,10] studied heat and mass transfer in the boundary layers on 

an exponentially stretching continuous surface. El-Kabeir et al. [11] investigated the unsteady MHD 

combined convection over a moving vertical sheet. Bataller [12] considered the radiation effects in 

the blasius flow over the moving surface. Ishak [13] reported the flow and heat transfer over a moving 

plate in a parallel stream. EL-Kabeir et al. [14] investigated unsteady MHD three dimensional by 

natural convection from an inclined stretching surface saturated porous medium. Rashad et al. [15] 

analyzed the viscous dissipation and ohmic heating effects on MHD mixed convection along a 

vertical moving surface. EL-Kabeir et al. [16] explored Heat transfer in a micropolar fluid flow past a 

permeable continuous moving surface. 

Nanofluids, with the insight of their thermal conductivity improvement, have been found to be 

advantageous in diverse engineering and industrial applications. Working fluids have large 

requirements in terms of enhancing or reducing energy release to apparatuses and of their impacts 

based on thermal conductivity, heat capacity, and other physical properties in novel thermal and 

manufacturing processes. A weak thermal conductivity is one of the most salient parameters that can 

restrict the heat transfer performance. Additionally, conventional heat transfer fluids such as ethylene 

glycol, water, and engine oil have limited heat transfer abilities due to their weak thermal 

conductivity and consequently cannot assemble with modernistic cooling demands. On the other 

side, the thermal conductivity of metals is extremely large in comparison to classical heat transfer 

fluids. Suspending the ultrafine solid metallic particles in technological fluids leads to an 

enhancement in thermal conductivity. This is one of the most modern and convenient processes for 

enhancing the heat transfer coefficient. Choi and Eastman [17] were likely the first to employ a 

mixture of nanoparticles and base fluids. Such fluids were designated as nanofluids. Buongiorno [18] 

presented a comprehensive study concerning the heat transport in nanofluids and found an 

extraordinary rise in the thermal conductivity of nanofluids. The pattern of nanofluid suggested by 

Buongiorno [18] was applied as an instrument to study many nanofluids problems. Chamkha et al. 

[19] examined the unsteady hydro-magnetic flow of a nanofluid past a stretching sheet. Rashad et al. 

[20] analyzed the natural convection boundary layer of a non-Newtonian fluid about a permeable 

vertical cone embedded in a porous medium saturated with a nanofluid. Chamkha et al. [21] 

discussed the natural convection from a vertical permeable cone in nanofluid saturated porous media 

for uniform heat and nanoparticles volume fraction fluxes. For getting empirical correlations for 

engineering simulations, many efforts have been made on experimentally measuring the physical 

properties of nanofluids as well [22–26]. Choi [27] has also reported another model that examined 

various conventional fluids to examine the thermal conductivity of fluids with nanoparticle 
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properties, and another is a model proposed by Tiwari and Das [28]. EL-Kabeir and co-authors [29,30] 

reported a theoretical analysis of the flow and heat transfer in a nanofluid. Rashad [31,32] 

investigated the impact of thermal MHD slip flow of a nanofluid over a nonisothermal wedge and 

an inclined stretching surface, respectively. Rashidi and co-authors [33–37] presented a 

comprehensive review of last theoretical and experimental studies on thermal conductivity of 

nanofluids. Li et al. [38] studied the effects of the Lorentz force and the induced anisotropic thermal 

conductivity due to a magnetic field on the flow and the heat transfer of a ferrofluid. Salleh et al. [39] 

investigated the magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with 

stability analysis. 

The motivation of this investigation is thus to carry out an analytical parametric study through 

constructed analytical asymptotic solutions for the nanofluid passing through a moveable plane with 

constant velocity, in the same trend to the free stream taking into account the partial slip velocity, 

Newtonian heating and high suction effects. The accuracy of the proposed method is verified by 

comparisons between the numerical and analytical results. The results confirm that the suggested 

technique produces a good approximation to the solution as well as the solution calculation has no 

CPU time-consuming or round off error. Moreover, a numerical study is present and the results 

shown in figures confirm a high validation of the present parametric study. 

The novelty of the present problem is the analysis of nanofluid flow over a moveable plane. This 

type of work has not been reported previously in the open literature. Another important aspect of 

this problem is the application of singular perturbation techniques for high suction condition for 

which the numerical solution is difficult. 

2. Modeling 

Consider a steady 2D laminar flow of an iron oxide nanoparticle (Fe3O4)–water nanofluid 

passing through a moveable plane in parallel to a free stream of constant velocity Uw in parallel with 

a constant free stream velocity U∞ with high fluid suction imposed on the surface. The flow pattern 

and physical coordinate system is demonstrated in Figure 1. In this coordinate frame, the x-axis 

extends in parallel to the surface, while the �-axis extends upwards, normal to the surface. The 

temperature at the plane surface is deemed to have a constant value Tf, which extends a heat transfer 

coefficient hf while the ambient temperature has a constant value T∞. The thermophysical properties 

of the nanofluid are given in Table 1. In addition, both the base fluid (i.e., water) and the nanoparticles 

are in thermal equilibrium, and no slip occurs between them. With the above assumptions, the 

simplifying governing equations of the problem are 
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Here all parameters have been defined in the notation section. Additionally, ρnf, μnf, αnf, (ρCp), 

and (ρβ)nf are defined as (see Tiwari and Das [28]) 
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We introduce the following non-dimensional variables: 
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where ψ is the stream function defined in the usual way as /u y   , /v x   . Substituting 

variables of Equation (8) into Equations (1)–(3) produces the following ordinary differential 

equations: 
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where primes denote the differentiation with respect to  , wf  is the suction parameter,   is the 

velocity ratio parameter,   is the velocity slip parameter, Bi  is the Biot number, and Pr  is the 

Prantdl number, which are respectively defined as follows: 
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where Rew and Re∞ are the Reynolds numbers, f  is the kinematic coefficient of viscosity of base 

fluid, and αf is the thermal diffusivity of base fluid. 

Because the parameters δ and Bi depends on x, a true similarity is not accomplished. However, 

if the velocity slip coefficient N and the convection heat transfer coefficient hf are proportional to 
1/2x  , δ and Bi become independent of x and a true similarity is attained. It is manifested that the 

transpiration parameter fw = 0 (Vw = 0) coincides with an impermeable surface, while fw < 0 (Vw > 0) 

coincides to the status of fluid injection and fw > 0 (Vw < 0) coincides to the status of the fluid suction 

or withdrawal (the current work). It is also manifested that velocity ratio parameters γ = 0 and γ = 1 

coincides with a fixed plate in a moving fluid and with a moving plate in a quiescent fluid, 

respectively. The status 0 < γ < 1 is true when the plate and the fluid move in the same direction. If γ 

< 0, the free stream tends toward the positive x-direction, while the plate moves toward the negative 

x-direction. If γ > 1, the free stream is directed across the negative x-direction, while the plate moves 

across the positive x-direction. However, in this investigation, we inspect the status of γ ≤ 1, i.e., the 

direction of the free stream is specified (across the positive x-direction). 
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Of particular importance for this investigation are the local skin friction coefficient and the local 

Nusselt number. These physical quantities can be defined as 
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Applying the non-dimensional variables of Equation (8), we obtain 
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Figure 1. Flow model and physical co-ordinate system. 

Table 1. Physical properties of base fluid and iron oxide nanoparticles [24,25]. 

Property Pure Water (Fe3O4) 

ρ (kg m−3) 997.1 5200 

Cp (Jkg−1 K−1) 4179 670 

k (W m−1 K−1) 0.613  6 

3. Analytical Solutions via Singular Perturbation Technique 

For larger suction parameter value wf , the BVP (9)–(12) becomes much stiffer or singularly 

perturbed and the standard numerical methods fail to handle this situation unless we use special 

purpose methods or numerical routines for stiff differential equations with continuation techniques 

[40–51]. In general the numerical solution of a stiff or singularly perturbed BVP will be more difficult 

matter than the numerical solution of the corresponding IVPs. Hence, we prefer to approximate the 

BVPs (9)–(12) by suitable IVPs. For convenience, based on singular perturbation theory [40,41,50] and 

the formulation developed early by El-Zahar and EL-Kabeir [51], the BVPS (9)–(12) can approximated 

by IVPs with known closed form analytical asymptotic solutions. 

3.1. An Analytical Solution of Energy Equation 

Equation (10) with the boundary conditions of Equation (12) can be written as 

1 1 1( ) ( ) ( ) 0t f t t     , 
1 1
(0) , (1) 0A    (16) 
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3.2. An Analytical Solution of the Blasuis Equation 

Using the same procedure, we obtain an analytical solution to the Blasuis equation as follows. 

Equation (9) with its boundary conditions expressed by Equation (11) can be written as  
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Theorem 2. Let ( )f   and ( )f   be respectively the solution of Equation (9) with its boundary conditions 

expressed in Equation (11) and the solution given by Equation (27). Then we have the following bounded error: 
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In order to assess the accuracy of the proposed analytical solution, a comparison is presented 

with the numerical solution generated using the built-in MATLAB boundary value solver, bvp4c, 

which is an adaptive Lobatto quadrature scheme [51]. To assure that the bvp4c numerical solution 

can be considered as a good reference solution in our computations, the bvp4c solver is set with 

(Abstol = 1210 , Reltol = 810 ). The analytical solution is evaluated at the bvp4c grid points for 

different values of the governing physical parameters, and the maximum absolute and relative errors 

are presented in Figures 2–5. Figures 2 and 3 show that the achieved analytical solution has maximum 

absolute errors within 2.2 × 10−6 and 3.9 × 10−4 in approximating the temperature and velocity 

solutions, respectively. Figures 4 and 5 show that the maximum relative error is within 0.0008%  

and 0.045%  in approximating the Nusselt number and skin friction parameter, respectively. The 

results confirm that a good agreement between analytical and numerical solutions is achieved. 

Moreover, Figures 2–5 show that the numerical data agree with the theoretical results (Theorems 1 

and 2), which confirms the validity of the analytical approach and reveals that the method is 

sufficiently accurate for engineering applications. 

  

  

Figure 2. The effect of the physical parameters wf ,  , Bi , and   on the absolute error of the 

obtained analytical solution ( )  . 
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Figure 3. The effect of the physical parameters wf ,  , Bi  and   on the maximum absolute error 

of the obtained analytical solution ( )f  . 
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Figure 4. The effect of the physical parameters wf ,  , Bi , and   on the maximum absolute error 

of the obtained analytical solution (0)  . 

  

  

Figure 5. The effect of the physical parameters wf ,  , Bi , and   on the maximum absolute error 

of the obtained analytical solution (0 )f  . 

4. Analytical Parametric Study 

Using the obtained analytic solutions in Equations (20), (21) and (27)–(29), an analytical 

parametric study was carried out analyzing the impact of the system physical parameters on the 

solution behavior. The following was found: 
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 Solutions in Equations (20) and (21) show that the temperatures profiles have exponential 

distributions. 

 We notice that the solutions in Equations (20) and (21) do not contain the velocity ratio parameter 

  or the slip factor  , which indicates that, for high suction, the effect of these parameters on 

the temperature profiles and the local Nusselt number can be neglected compared to other 

existing parameters.  

 Since we have 0s fk k  , ( ) ( ) 0P s P fC C   , and 0 0.5  , , 0nfk   , and the solution 

in Equation (21) results in a positive local Nusselt number. 

 Additionally, since we have 0s fk k  , ( ) ( ) 0P s P fC C   , and 0 0.5  , 

,nfk      and (0) 1/  . This means that, as the solid volume fraction   increases the 

initial temperature of the wall layer, (0) , decreases, while the thermal boundary layers 

thickness ( / )wO f  increases, which suggests that there are intersections points among ( )t  

curves and the temperature profiles decrease non-monotonically. 

 Moreover, the solution in Equation (20) shows that, as the suction parameter wf  increases or 

the Biot number Bi  decreases, the temperature profiles decrease monotonically. 

 Additionally, the solution in (21) shows that as the suction parameter wf  or the Biot number 

Bi  increases the wall temperature gradients (at 0  ) and the local Nusselt number increase. 

 The solution in Equation (20) shows that, as the suction parameter wf  increases the wall 

temperature and the temperature profile decrease; therefore, the thermal boundary layers 

thickness decreases, while the Biot number Bi  has a neglected effect on the temperature layer’s 

thickness compared to other parameters. 

 The solutions in Equations (27)–(29) do not contain the Biot number Bi , which indicates that it 

has no effect on the fluid velocity and the Local skin friction coefficient. 

 Since we have 0s f    and 0 0.5  , 0K  , and the solution in Equation (29) always 

results in a negative local skin friction coefficient for 0.5   and a positive one for 0.5  . 

 Since we have / 7 / 2s f    and 
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which shows that, at fixed values of   ,wf   and  , we have one intersection point  0.5 , 0.5f   

of the velocity curves regardless of the values of  . This intersection point lies in the right (left) 

half plane for /w f nff    ( /w f nff   ) which confirm that for high suction, 0wf  , and 

positive slip factor 0  , the intersection point lies in the left half plane. 

 Moreover, based on Equations (27)–(29), for 0.5   ( 0.5  ) and ( ) 0f    ( ( ) 0f   ), as the 

suction parameter wf  or the slip parameter   increases, the velocity profiles decrease 

(increases) monotonically.  

5. Numerical Results and Discussion 

A numerical study was performed on the influence of solid volume fraction parameter ϕ, suction 

parameter fw, slip factor δ, and Biot number Bi, with high values of suction parameter fw, on the 

behavior of nanofluid velocity and temperature components as well as the local skin-friction 

coefficient and the local Nusselt number. The results are shown in Figures 6–11. The present 

numerical study was performed for iron oxide–water nanofluid as a working fluid with various 

values of velocity ratio parameter γ in the range 0 ≤ γ ≤ 1. The corresponding thermo-physical 

properties [26] of the fluid and nanoparticles are shown in Table 1.  
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(a) (b) 

Figure 6. Velocity profiles for different values of (a) suction parameter fw and (b) solid volume fraction 

parameter   at different values of  . 

  
(a) (b) 

Figure 7. Temperature profiles for different values of (a) suction parameter fw and (b) soild volume 

fraction parameter  . 

  
(a) (b) 

Figure 8. Local skin friction coefficient for various values of (a) suction parameter fw and (b) 

nanoparticle volume fraction parameter  . 
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(a) (b) 

Figure 9. Local Nusselt number for various values of (a) suction parameter fw and (b) nanoparticle 

volume fraction parameter  . 

  

(a) (b) 

Figure 10. (a) Velocity profiles for different values of slip parameter δ at different values of   and 

(b) temperature profiles for different values of Biot number Bi. 

  
(a) (b) 

Figure 11. (a) Local skin friction coefficient for various values of slip parameter δ and (b) local Nusselt 

number for various values of Biot number Bi. 

Figure 6 reveals the impacts of the nanoparticle volume fraction parameter ϕ and suction 

parameter fw on the nanofluid velocity f’(η) and temperature profiles θ(η), respectively. The figure is 
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limited to the status of the suction (lateral mass withdrawal over the plate surface out of the boundary 

layer regime). From these figures, it is manifested that velocity ratio parameter γ = 0, 0 < γ < 1, and γ 

= 1 coincides to a fixed plate in a movable fluid, a movable plate in a moving fluid, and a movable 

plate in a quiescent fluid, respectively. However, it is depicted that the imposition of a wall nanofluid 

suction (fw >> 0) tends to enhance the flow along the surface, which results in increasing the velocity 

profiles for γ < 0.5, while the opposite can be observed for γ > 0.5. In a similar pattern, it is manifested 

that an increase in nanoparticle volume fraction parameter   causes an enhancement in the 

nanofluid velocity for γ < 0.5, while the opposite occurs for γ > 0.5. Additionally, both the temperature 

profiles and thermal boundary layer elevate constantly with the augmenting volume fraction of the 

nanoparticles, while the reverse occurs with the suction parameter. This coincides with the physical 

pattern whereby, after the volume fraction of iron oxide boosts thermal conductivity, the thermal 

boundary layer thickness increases, as shown in Figure 7. 

Figures 8a and 9b exhibit the influences of fw and   on the local skin friction coefficient 

 
1/2

Re Ref wC   and the local Nusselt number  
1/ 2

Re Rex wNu


 , respectively, with various 

values of γ for the parallel moving plate. It is manifested that all values of the  
1/2

Re Ref wC   are 

positive as γ < 0.5 and negative when γ > 0.5, while γ = 0.5 attains  
1/2

Re Ref wC   = 0, since both 

the fluid and plate move with the same velocity. Conversely, the values of  
1/ 2

Re Rex wNu


  are 

positive for all γ. For γ < 0.5, development in fw causes a slight decline in the skin friction coefficient, 

while the reverse behavior can be seen for γ > 0.5. It was also noticed that the increment in ϕ has a 

tendency to diminish the  
1/2

Re Ref wC   as a result of the increment in the momentum thickness 

of the boundary layers for the status γ < 0.5, and the opposite impact is manifested for γ > 0.5. 

Moreover, it is evident in Figure 9a that a sufficient boosting of fw results in an increase in 

 
1/ 2

Re Rex wNu


  for all γ. This conduct is related to the remarkable reduction in the thermal 

boundary layers as fw boosts. However, as mentioned, the rise in volume fraction parameter   leads 

to an increase in the temperature profiles and thermal boundary layers, which results in an increase 

in  
1/ 2

Re Rex wNu


 , as shown in Figure 9b. This is consistent with the physical manner in which 

the susceptibility of the thermal boundary layer thickness to   is concerned with the enhanced 

thermal conductivity of the nanofluid (see Table 1), which in turn enhances in thermal diffusivity 

and, consequently, following Equation (14), causes a significant evolution in the local Nusselt 

number. 

Figure 10 demonstrates the impacts of the velocity slip parameter δ and the Biot number Bi on 

f’(η) and θ(η), respectively. It is apparent that an elevation in Bi leads to a salient increment in the 

temperature distributions. In addition, an increment in δ tends to accelerate the flow along the 

movable surface filled with nanofluid when γ < 0.5, while the opposite trend can be observed when 

γ > 0.5. Finally, the variations in skin friction coefficient and Nusselt number (  
1/2

Re Ref wC  , 

 
1/ 2

Re Rex wNu


 ) versus γ, respectively, for several values of δ and Bi, respectively, are revealed 

in Figures 11a,b. This reason because, as Bi increases, the convective heat transfer from the hot 

nanofluid portion on the surface to the cold nanofluid portion rises leading to an increment in the 

temperature gradients. Moreover, the elevation in the slip parameter δ causes a prominent 

enhancement in the  
1/2

Re Ref wC   for the status γ < 0.5, whilst the behavior is reversed for γ > 0.5. 

In fact, the present numerical study with results shown in Figures 6–11 confirms a high 

validation of the present parametric study. 

6. Conclusions 

The influences of the impacts of high suction and partial slip on iron oxide nanoliquid flow over 

a porous moving surface in a parallel free stream with Newtonian heating is investigated analytically 

and numerically. The analytic solutions of the velocity function and temperature distributions are 
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obtained via a singular perturbation technique. The bounded errors of the proposed solutions are 

derived through Theorems 1 and 2 and the accuracy of the proposed method is verified by 

comparisons between the numerical and analytical results. The solution graphs are computed and 

clarified for specific range of embedded parameters. Moreover, profiles of skin friction coefficient 

and heat transfer rate are also sketched portrayed and elaborated. The concluding remarks are 

specified as: 

 The present singular perturbation technique results in a closed form asymptotic solution of the 

energy and Blasuis equations as a function of the physical parameters. 

 The numerical results in Figures 2–5 agree with theoretical ones (Theorems 1 and 2) and illustrate 

that the proposed technique yields a good approximation to the solution as well as the solution 

calculation has no CPU time-consuming or round off error. 

 The rapid calculation of the system solution (dynamic response) with acceptable accuracy 

demonstrates that the analytical solutions are effective for performing analytical parametric 

studies. 

 An analytical parametric study is carried out to predict the impact of the system physical 

parameters on the temperature and velocity behaviors. 

 A numerical study is performed on the influence of the system physical parameters on the 

system behavior and the numerical results are present in Figures 6–11. 

 The results of the numerical study confirms a high validation of the present analytical parametric 

study and their main results can be summarized as follows: 

i. Both the nanofluid velocity and temperature distributions are decelerated for growing 

the solid volume fraction and suction parameters. 

ii. The raising in slip parameter causes an increment in the velocity profiles, and the raising 

in Biot number causes an increment in the temperature profiles. 

iii. The local Nusselt number elevates along with boosting values of Biot number solid 

volume fraction and suction parameters. 
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Abbreviations 

Nomenclature 

Bi Biot number 

Cp specific heat at constant pressure (J·kg−1·K−1) 

Cf local skin-friction coefficient  

fw suction parameter value 

f   dimensionless velocity 

hf convective heat transfer coefficient (W/ m2 k) 

k thermal conductivity (m2 s−1) 

N velocity slip coefficient 

Nux local Nusselt number 

Pr Prandtl number, n/am 

Rew, Re∞ Reynolds numbers 

T temperature (K) 

u, v velocity components along x  and y  axes (m/s) 

Uw, U∞ the plate velocity and free stream velocity, respectively (m/s) 

x coordinate in flow direction (m) 

y coordinate perpendicular to flow direction (m) 

Vw uniform transpiration velocity (m/s) 



Energies 2019, 12, 198 16 of 18 

 

Greek Symbols 

α thermal diffusivity (m2 s−1) 

β coefficient of thermal expansion (1/K) 

γ velocity ratio parameter 
η similarity variable 

θ dimensionless temperature  

  solid volume fraction parameter 

ψ non-dimensional stream function 
δ velocity slip parameter 

μ dynamic viscosity (m2 s−1) 

ν kinematic viscosity (m2 s−1) 

ρCp heat capacity (J·kg−3·K−1) 
ρ density (kg/ m3) 

Subscripts 
f fluid 
nf ferrofluid 

s nanoparticle 

w condition at the wall 

∞ condition at infinity 
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