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Abstract: China’s energy consumption issues are closely associated with global climate issues, and
the scale of energy consumption, peak energy consumption, and consumption investment are all the
focus of national attention. In order to forecast the amount of energy consumption of China accurately,
this article selected GDP, population, industrial structure and energy consumption structure, energy
intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level
of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly,
we corrected the traditional principal component analysis (PCA) algorithm from the perspective
of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction
ideas. Based on the above content, we put forward a robust principal component analysis (RPCA)
algorithm and chose the first five principal components as main factors affecting energy consumption,
including: GDP, population, industrial structure and energy consumption structure, urbanization;
Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine
(LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy
consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as
the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the
PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit
determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE)
to compare the training results of the three forecasting models, which demonstrated that the proposed
TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher
training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy
consumption of China from 2017 to 2030. According to predictions, we found that China shows a
gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million
tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption
economy will transfer to a state of diminishing returns around 2026, which guides China to put more
emphasis on the field of energy investment.

Keywords: energy consumption forecasting; improved PSO-LSSVM algorithm; Tabu Search; robust
principal component analysis

1. Introduction

China is a major energy consumer. Since the first half of 2018, coal, natural gas, petrol, and
electricity consumption has been on the rise, among which the highest increase was coal consumption
with an increase of 3.1%, and we found thermal power was a major factor of the continued growth of
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coal consumption. According to “BP Statistical Review of World Energy” [1], China’s renewable energy
consumption accounts for 36% of global volume in 2017, among which natural gas consumption
accounted for 32.6% of global natural gas consumption. This showed that China’s energy consumption
has an important role in world energy consumption. At present, China’s energy consumption
structure upgraded gained initial success, however there is still a distance from the long-term goal
to build a low-carbon clean energy consumption structure. Therefore, based on a multitude of
influencing factors of energy consumption, it is imperative to apply highly accurate predictive model
to forecast energy consumption, and then study more economic information about China’s energy
consumption. A high-precision energy consumption forecasting model can provide a quantitative
basis for decision-making by relevant Chinese institutions, enabling China to better understand
energy consumption trends and solve energy-related problems such as pollutant emissions and
carbon emissions. In this article, a breakthrough is made in the machine intelligence algorithm.
The PSO-LSSVM forecasting model optimized by the Tabu search algorithm is put forward, which
avoids PSO-LSSVM falling into local optimum and speeds up the global search at the same time. Finally,
the comparison of various forecasting models proves the fact that the accuracy and generalization
ability of the TS-PSO-LSSVM forecasting model proposed in this article is higher than the others.

Energy consumption can be influenced by many factors directly or indirectly. Up to now, there
are many factors affecting energy consumption have been studied [2–6]. Energy consumption problem
is a complex nonlinear problem. So far, scholars have proposed various forecasting models, including
grey prediction theory [7–9], multiple regression [10–12], input-output method [13,14], and time-series
forecasting models [15,16].

Hsu et al. [7] applied artificial neural network and an improved gray model to predict electricity
consumption of Taiwan, and the examples showed that the improved grey prediction model has higher
prediction accuracy. Sehgal, V et al. [10] proposed the wavelet-bootstrap-multiple linear regression
(WBMLR) predictive model to forecast India Mahathir Power Load Nadi River Basin, and the examples
showed that the model owns higher accuracy than the artificial neural networks (ANN), wide area
network (WAN), machine learning in R (MLR) model. Erdogdu E [16] applied co-integration analysis
and auto-regressive integrated moving average (ARIMA) model to predict power load of the Republic
of Turkey, and proved the high power load forecasting officially.

Up to now, a multitude of scholars have proposed robustness problem of the principal component
analysis (PCA) based on various ways and put forward their own optimized algorithm. Luong et al. [17]
considered a new method named online robust principal component analysis (RPCA) for time-varying
decomposition problems and proposed a compressive online RPCA algorithm that can combine various
information about decomposed vectors via an n − l1 minimization method. Chretien et al. [18]
proposed a robust principal component analysis (RPCA) method to build the Low Rank + Sparse
models when the used data is corrupted by outliers and applied it to estimate the topology in power
grid networks. Sadeghian et al. [19] thought that traditional robust principal component analysis
(RPCA) algorithms only focused on output outliers, however, both input and output data can make
mistakes in developing soft sensors. They built a robust probabilistic predictive model to overcome this
problem by appropriate formulation of noise distributions. Wu et al. [20] proposed a multi-component
groups sparse RPCA model to solve the problems under the condition of complex dynamic background
and applied alternating direction method of multipliers algorithm to the proposed model. Experiments
demonstrated that the proposed method has better performance than others.

Along with the wide application of intelligent algorithms, more and more scholars have
proposed various intelligent algorithms in all areas. Least squares support vector machine (LSSVM)
prediction algorithm is one of the most widely used and has high accuracy and applicability.
Roushangar et al. [21] built three types of models about flow characteristics, flow and bedform
characteristics, and sediment characteristics based on the Least Squares Support Vector Machine
optimized by Particle Swarm Optimization (PSO-LSSVM) and proved the forecasting model can
predict the roughness coefficient precisely. Huan et al. [22] proposed a forecasting model based
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on integrated empirical mode decomposition (EEMD) and Least Squares Support Vector Machine
(LSSVM) and showed that EEMD-LSSVM model is a better predictor algorithm than wavelet
denoising least squares support machine (WD-LSSVM) and traditional LSSVM. Xue [23] optimized
the LSSVM by improved particle swarm optimization algorithm (IMPSO-LSSVM) and proposed
the combined concrete compressive strength prediction model. Then, he compared IMPSO-LSSVM,
PSO-LSSVM, GA-LSSVM (the Least Squares Support Vector Machine optimized by genetic algorithm)
and back-propagation neural network to prove the proposed model is an effective tool to forecast
concrete compressive strength. Lu et al. [24] presented a new forecasting model based on empirical
mode decomposition integrated permutation entropy (EEMD-PE), LSSVM, and gravitational search
algorithm (GSA) to overcome the nonlinear prediction of wind power and volatility difficulties and
predicted ultra-short-term forecasting of wind power accurately. Zhao et al. [25] used the salp swarm
algorithm (SSA) on LSSVM to optimize two machine parameters in LSSVM algorithm, and showed
that the forecasting model have higher accuracy than traditional LSSVM, PSO-LSSVM and BP neural
network through integrated statistical indicators. Wen et al. [26] proposed the GA-LSSVM prediction
model to predict landslide displacement and showed that the model can predict high-precisive
consistency between measured displacement and predicted displacement. Liu et al. [27] proposed an
improved gravitational search algorithm (AC-GSA) to improve the performance of GSA and optimize
LSSVM parameters. They used a novel model to forecast heat rate of a 600 MW supercritical steam
turbine unit. Results indicate that the AC-GSA–LSSVM model is a powerful technique to forecast
load. Gorjaei et al. [28] applied the LSSVM model to predict liquid flow rate for two-phase flow
through wellhead chokes and used particle swarm optimization (PSO) to optimize two parameters
of the LSSVM algorithm. The PSO-LSSVM model is excellently consistent with actual measured
rates. Results indicated that the PSO-LSSVM model demonstrated better regression precision and
generalization capability. Zhang [29] proposed a hybrid model that combines fuzzy clustering (FC),
LSSVM, and the wolf pack algorithm (WPA), and used two cases to train and test data. The results
proved that the proposed model obtains higher prediction accuracy and stability.

In recent years, the Tabu search algorithm is widely used to shorten the computing time of the
algorithm [30–33]

Peng et al. [30] added a Tabu search procedure into the framework of path relinking to generate
solutions to the job shop scheduling problem (JSP). The results showed that Tabu search/Path
relinking (TS/PR) obtained better performance than the traditional state-of-the-art algorithms for JSP.
Escobar et al. [31] proposed a hybrid Granular Tabu Search algorithm to solve the Multi-Depot Vehicle
Routing Problem (MDVRP). The results of cases showed that the proposed algorithm solved problems
with short computing time and got best solutions. Li et al. [32] applied a hybrid algorithm (HA) to
the genetic algorithm (GA) and used Tabu search (TS) at the same time to solve the flexible job shop
scheduling problem with the aim to minimize the make span and proved that the proposed method
can provide the best solutions. Sicilia et al. [33] presented a novel algorithm to solve the problem of
the capillary distribution of goods in major urban areas. The proposed Tabu search algorithm can
minimize the wide variety of constraints and complexities and reduced costs, which made problems
quickly solved in time.

In order to accurately predict China’s energy consumption, this article proposes a native
PSO-LSSVM model optimized by the Tabu search algorithm based on robust principal component
analysis. The innovations of this article are as follows:

(1) Energy consumption is a macroeconomic issue and is affected by many influencing factors.
In order to achieve accurate prediction of China’s energy consumption, based on a large amount
of literature research, combined with China’s energy consumption characteristics, we selected
GDP, population, industrial structure, energy consumption structure, energy intensity, total import
and export, social fixed Asset investment, energy utilization rate, urbanization rate, household
consumption level, and fixed investment in energy industry as the set of initial influencing factors.
In this article, the main influencing factors are selected by robust optimized principal component
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analysis (RPCA) method. Based on the idea of signal reconstruction, the judgment basis of a “bad
point” sample is given, which can reduce the difficulty of data collection. The first five influencing
factors have the ability to represent the information of other influencing factors. By comparing
the classification results, it is concluded that the RPCA algorithm is significantly better than the
traditional PCA, and the classification effect is more accurate. The information of the original sample
can be more comprehensively represented. This operation also greatly improves the accuracy of the
forecasting mode.

(2) This article innovatively applies the Tabu search algorithm to optimizing the PSO-LSSVM
algorithm. The combined forecasting model greatly improves the search ability of parameters and
reduces the search time, then, it can avoid local optimal results. The empirical analysis proves that
the TS-PSO-LSSVM model has strong generalization ability and can reliably forecast China’s energy
consumption, and its prediction accuracy is better than PSO-LSSVM and LSSVM.

(3) This article innovatively applies the machine learning algorithm into the hot spot of
international research about forecasting China’s energy consumption. The traditional methods
to forecast energy consumption mainly includes mathematical statistics methods, such as linear
regression, time series analysis, gray prediction, etc. These methods all regard energy consumption as
a linear problem, which is greatly limited by the choice of influencing factors, so it is difficult to be
rational and scientific. However, the machine learning algorithm used in this article can consider more
influencing factors, which can turn the energy consumption problem into a nonlinear problem with
higher rationality and adaptability.

The main contents of the article are as follows: the second section describes the mathematical
principle of robust principal component analysis and PSO-LSSVM optimized by the Tabu search
algorithm; the third part proves that the proposed forecasting model has higher prediction accuracy,
generalization ability, and higher training speed by compared results with traditional LSSVM and
PSO-LSSVM models, and then we apply the model to forecast the energy consumption in China
from 2017 to 2030; the fourth part makes forward-looking conclusions according to the results of the
RPCA-TS-PSO-LSSVM forecasting model.

2. The Forecasting Model

2.1. Robust Principal Component Analysis

Robust principal component analysis (RPCA) [34] was proposed by John Wright and belongs
to the subspace learning model and was improved on the basis of principal component analysis
algorithm. The core idea of the RPCA algorithm is to replace the whole data with part of data to reduce
the dimension of the original data redundancy. From the perspective of linear algebra, it is to replace
the original data with another set of data under the principle of minimizing redundancy and noise.
The RPCA calculation steps are as follows:

Based on recently reconfigurable, centralizing a sample data set {x1, x2 . . . xn}, {x1, x2, . . . , xn}
n
∑

i=1
xi = 0, Given that new coordinates after the projection conversion is {w1, w2 . . . wd}, then

wi2 = I, wT
i wj = 0(i 6= j) (1)

After the coordinates of the new coordinate system portion are discarded to reduce the dimension
d′ (d′ < d), the portion of the sample data in the low-dimensional coordinate system in the coordinate
system is the projection

zi = (zi1; zi2 . . . zid), zij = wT
j xi (2)

Reconstructing xi based on zi:

x̂i =
d′

∑
j=1

zijwj (3)
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Thus, the distance between the original sample points xi and sample points x̂i based on the
projection reconstruction is

m

∑
d

∑ zijwj − xi =
m

∑ zT
i zi − 2

m

∑ zT
i WTxi + const (4)

Among them, the wj group is orthogonal, ∑ xixT
i is the covariance matrix. We obtain formula (5)

from the recent reconstruction.
min

w
− tr

(
WTXXTW

)
s.t.WTW = I

(5)

Since the premise of principal component analysis is that the noise contained in the original data
is Gaussian, large noise or severe outliers cause the algorithm to fail. Applying robust analysis to
principal component analysis can comprehensively consider the redundant information and noise.
Robust principal component analysis calculation steps are as follows:

Provided the original data matrix is D, we decomposed it into a sparse matrix and low-rank
matrix through Robust principal component analysis

D = A + E (6)

E is the sparse matrix which can be further expressed as:

min
A,K

rank(A) + γE0, s.t.D = A + E (7)

Among them, A is the low-rank part of D, E0 is the zero norm of the matrix which is the algebraic
sum of non-zero elements in the matrix, γ is the weight between rank of matrix A and sparse matrix E.
Wright [34] et al. proposed to replace the rank of the matrix with a kernel norm and replaced norm
with 1-norm, so that the original non-convex problem is converted into a convex function problem:

min
A,E

D∗ + γE1, s.t.D = A + E (8)

Among them, D∗ represents the norm of the matrix core which is the algebraic sum of all the
eigenvalues, E1 denotes the matrix norm which is an absolute value of the algebraic sum of all elements
in the matrix.

Lin [35] et al. proposed exact augmented Lagrange multipliers (EALM) to solve the Equation (7)
using the Augmented Lagrange multipliers (ALM).

Defining


X = (D, E)

f (X) = D∗ + γE1

h(x) = A− E− D
The Lagrangian function is:

L(D, E, Y, µ) = D∗ + γE1 + Y, A− D− E +
µ

2
A− D− E2

F (9)

2.2. Least Squares Support Vector Machine (LSSVM)

Given a set of training data samples (xi, yi)
N , among which xi ∈ Rm is the m-dimensional data

samples, yi ∈ R is a sample output, and the LSSVM optimization algorithm is as follows:

minJ = 1
2 wTw + 1

2 r
N
∑

i=1
e2

i

s.t.yj = wT ϕ(xi) + b + ei, i = 1, 2 . . . n
(10)
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Among them, ϕ(xi) : Rm → Rm f is the mapping function from original space to high dimensional
space, w ∈ Rm f is the weight vector, e ∈ R is a tolerance, b is the offset, γ is the normalized coefficient.

According to the objective function and constraints, we establish the Lagrange function:

L =
1
2

wTw +
1
2

r
N

∑
i=1

e2
i −

N

∑
i=1

ai

{
wT ϕ(xi) + b + ei − yi

}
(11)

Among them, ai is the Lagrange factor.
The KKT conditions, L derivative can be obtained

∂L
∂w = 0→ w =

N
∑

i=1
αi ϕ(xi)

∂L
∂b = 0→

N
∑

i=1
αi = 0

∂L
∂ei

= 0→ αi = γei, i = 1, 2 . . . n
∂L
∂αi

= 0→ wT ϕ(xi) + b + ei − yi = 0, i = 1, 2 . . . n

(12)

After canceling w and e, we obtain the matrix equation:[
0

IvΩ

IT
v

+ I
γ I

][
b
a

]
=

[
0
y

]
(13)

Among them, I is the identity matrix, Iv = [I, . . . , I], α = [α1, α2 . . . , αn]
T , Ωij = ϕ(xi)

T ϕ
(
xj
)
=

K
(

xi, xj
)
.

The optimal decision function is:

y(x) =
N

∑
i=1

αiK
(

xi, xj
)
+ b (14)

2.3. PSO-LSSVM Optimized by the Tabu Search Algorithm

2.3.1. Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm designs a set of particles to mimic the flock of birds
searching for food in the defined domain, with each particle corresponding to a solution. Particle
size of the group is N, and the position of the particle is xi. The optimal position it experienced is the
optimal solution, which is recorded as the individual extreme value pBesti. Therefore, the optimal
position of the population is recorded as gBest. The particle swarm optimization problem can be
calculated as follows:

minf(x) = f(x1, x2 . . . xn)

x ∈ S = {x = (x1, x2 . . . xn)|ai < xi < bi, i = 1, 2 . . . n}
(15)

Equation (15) will continue to be optimized by Equation (16)

vi = ω1 × vi + η1 × rand( )× (pBesti − xi) + η2 × rand()× (gBest− xi)

xi = xi + vi
(16)

Among them, vi is flight speed, rand() is a random number between 0 and 1, ω1, η1, η2 are
learning factors.

PSO algorithm flow is shown in Figure 1.
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2.3.2. Particle Swarm Optimization Algorithm Optimized by Tabu Search (TS-PSO)

The traditional PSO algorithm has the advantages of easy operation and simple parameters, but it
also has the disadvantages of single population, premature convergence, and easily falling into local
optimal solutions. This article solved the shortcomings of traditional particle swarms by applying
Tabu search tables to store the optimal and worst particles. Tabu Search is an algorithm proposed by
Glover in 1986 [28]. After each search is completed, the optimal solution is marked to prevent it from
falling into the local optimum. At present, many scholars have further studied it and introduced TS
into the PSO algorithm.

The flow of the TS-PSO algorithm is as follows:
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1. Initializing the speed and position of the particle.
2. The initial particle swarm is divided into two subgroups, and the class-free scaled network model

is used to calculate the fitness value of each particle, then the better particles of the two subgroups
are compared.

3. Updating the particle velocity and position according to Formula (16).
4. Assume that after R iterations, the worst and best particle adaptation values are substantially

unchanged. The position of the optimal particle is stored as the current best position Pj in the
local contraindication table (Table 1), and the position of the worst particle is stored in Table 2 as
the current worst position Gj.

5. Repeat steps 3 and 4.
6. Determine whether the termination condition is met, and exit if it is satisfied, otherwise return to

the second step.

2.4. Least Squares Support Vector Machine Optimized by the TS-PSO Algorithm

The parameter of regularization and the width of the radial basis function should be determined
before using the Least Squares Support Vector Machine with RBF kernel function to forecast energy
consumption. In this article, the TS-PSO algorithm was used to optimize the parameters of LSSVM.
The steps are as follows:

(1) Perform TS-PSO algorithm steps 1–6.
(2) Assign the optimized parameters to Least Squares Support Vector Machine for constructing the

forecasting model.

The flowchart of Least Squares Support Vector Machine Optimized by TS-PSO Algorithm
(TS-PSO-LSSVM) is shown in Figure 2.

According to the above analysis, the difference between the parameter settings of TS-PSO-LSSVM
and PSO-LSSVM, LSSVM, and other traditional forecasting models can be clarified, as shown in
Table 1.

Table 1. Comparison of parameter settings for various models.

Parameter LSSVM PSO-LSSVM TS-PSO-LSSVM

Regularization parameter c X X X
Radial basis kernel function parameter g X X X

Bird group inertia factor ω X X
Learning factor c1, c2 X X
Maximum speed vmax X X

The maximum number of iterations R X X
Taboo search step size t X
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2.5. The Forecasting Model Based on Robust Principal Component Analysis and Least Squares Support Vector
Machine Optimized by TS-PSO Algorithm (RPCA-TS-PSO-LSSVM)

Energy consumption is influenced by a multitude of direct or indirect factors. We firstly selected
the GDP, population, industrial structure and energy consumption structure, and urbanization as
the main affecting factors according to RPCA, which can improve data availability and forecasting
accuracy. Then, we proposed the RPCA-TS-PSO-LSSVM forecasting model to forecast the energy
consumption of China. The prediction process is shown in Figure 3:
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3. Empirical Analysis

3.1. Screening of Influencing Factors for Model Input

According to the literature study and China Statistical Yearbook, we selected GDP, population,
industrial structure and energy consumption structure, energy intensity, total imports and exports,
fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment
in the energy industry as a set to input into the RPCA model to achieve hierarchical clustering.
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3.2. Data Preprocessing

Because the scale of the experimental test data is not uniform, directly classifying according
to the RPCA algorithm will result in unsatisfactory classification. The obtained raw data must be
preprocessed to eliminate the non-uniformity of dimension and scale. The preprocessing method
adopted in this article is a normalization method commonly used in clustering algorithms to scale
the data to a small range. According to the meaning of the diagonal element representation of the
covariance matrix, the data is averaged, and the difference in the degree of change of each variable can
be reflected by the diagonal elements of the covariance matrix, and the original data is averaged and
the variables are inter-variable. Meanwhile, the relevance of the data still exists.

Zij =
xij

u
(i = 1, 2 . . . m; j = 1, 2 . . . m) (17)

u =
1
n

n

∑
i=1

xi (18)

Among them, u is the mean, xij is the normalized sample data.

3.3. Hierarchical Clustering according to RPCA

In this article, the cumulative contribution rate of the main components of the two-dimensional
data was compared and is shown in Table 2.

Table 2. Comparison between robust principal component analysis (RPCA) and principal component
analysis (PCA).

Instructions The First Two-Dimensional Principal Component Contribution Rate

PCA 92.7%
RPCA 99.8%

It can be concluded from the above analysis that the traditional PCA algorithm can’t effectively
classify the test data, indicating that the correlation between the samples is not high, and the first
two principal elements selected are not representative. The RPCA algorithm is obviously superior to
traditional PCA, and the classification effect is more accurate. The comprehensive preservation of the
original sample information can comprehensively represent the main information of the sample and
solve the information loss problem.

After RPCA clustering, the contribution rates of affecting factors are shown in Table 3.

Table 3. The contribution rates of affecting factors.

Factors Cumulative
Contribution Rate

Individual Variance
Contribution Rate

GDP 99.85% 38.39%
population 61.46% 30.23%

Industrial structure 31.23% 15.44%
Energy consumption structure 15.79% 10.61%

Urbanization rate 5.18% 3.13%
Energy intensity 2.05% 0.41%

Total import and export 1.64% 0.39%
Investment in fixed assets 1.25% 0.36%

Energy efficiency 0.89% 0.31%
Energy industry fixed investment 0.58% 0.30%

level of consumption 0.28% 0.28%

According to the above, a scree plot of the influencing factors is shown in Figure 4.
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Figure 4. Scree plot of the influencing factors.

According to the RPCA analysis results, GDP, population, industrial structure, energy
consumption structure, and urbanization rate are the main components of energy consumption
which are representative of the sample information. Based on the China National Statistical Yearbook,
the data of the above influencing factors of 1996 to 2016 are normalized and shown in Table 4.

Table 4. The main factors’ normalized results.

Year GDP Population Industrial
Structure

Energy Consumption
Structure

Urbanization
Rate

1996 0.011186 0.044472 0.057085 0.050384 0.034561
1997 0.012416 0.044922 0.05424 0.048944 0.035611
1998 0.01327 0.045334 0.054791 0.048602 0.036672
1999 0.014106 0.045706 0.052221 0.048396 0.037755
2000 0.01562 0.046054 0.054699 0.046956 0.038848
2001 0.017268 0.046375 0.042584 0.046614 0.040169
2002 0.018959 0.046676 0.045338 0.046956 0.041609
2003 0.021405 0.046957 0.053139 0.048122 0.043071
2004 0.025208 0.047233 0.04754 0.048122 0.044544
2005 0.029177 0.047512 0.046347 0.04963 0.046038
2006 0.03418 0.047778 0.045613 0.04963 0.047499
2007 0.042092 0.048011 0.04598 0.049698 0.048939
2008 0.049767 0.048256 0.044604 0.049013 0.05039
2009 0.054373 0.048491 0.047999 0.049081 0.05182
2010 0.064334 0.048724 0.05268 0.047436 0.053346
2011 0.076214 0.048958 0.047724 0.048122 0.054765
2012 0.084168 0.049201 0.045797 0.046956 0.056183
2013 0.092716 0.049444 0.044512 0.046202 0.057569
2014 0.100306 0.049702 0.043869 0.044968 0.058911
2015 0.107328 0.049949 0.038913 0.043666 0.060222
2016 0.115906 0.050243 0.034325 0.042501 0.061477
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3.4. Forecasting Energy Consumption in China Based on TS-PSO-LSSVM Model

We used the outputs of the RPCA analysis as the input for three types of forecasting models.
In the models, the data of 1996–2009 were used as the training set and the data of 2010–2016 were used
as the test set. In order to verify that the TS-PSO-LSSVM model has high prediction accuracy, we also
inputted the sample data into the traditional LSSVM and PSO-LSSVM algorithms. The forecasting
results are shown in Figure 5.

The correlation error (RE) of the three forecasting results are shown in Table 5.
In order to objectively compare the accuracy of three models, statistical indicators including

RMSE, r2, and MRE were adopted in the article and the index calculation formula was as follows:

rmse =

√
1
n

n

∑
i=1

(q̂i − qi)
2 (19)

r2 = 1− ∑n
i=1(q̂i − qi)

2

∑n
i=1(qi − qi)

2 (20)

mre =
1
n

n

∑
i=1

|q̂i − qi|
qi

× 100% (21)

where qi is a real value, q̂i is a predicted value, qi is a sample mean, n is a sample number.
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Table 5. Correlation error (RE) of three forecasting results.

Year Actual
Data

LSSVM PSO-LSSVM TS-PSO-LSSVM

Forecasting
Results RE Forecasting

Results RE Forecasting
Results RE

1996 1351.92 1300.23 0.0382 1325.64 0.0194 1345.85 0.0045
1997 1359.09 1319.84 0.0289 1324.96 0.0251 1349.9 0.0068
1998 1361.84 1330.45 0.0230 1359.32 0.0019 1363.2 0.0010
1999 1405.69 1340.64 0.0463 1384.56 0.0150 1397.83 0.0056
2000 1469.64 1393.42 0.0519 1384.98 0.0576 1459.32 0.0070
2001 1555.47 1473.23 0.0529 1485.96 0.0447 1549.69 0.0037
2002 1695.77 1502.34 0.1141 1572.24 0.0728 1685.33 0.0062
2003 1970.83 1793.4 0.0900 1834.59 0.0691 1900.43 0.0357
2004 2302.81 1994.32 0.1340 2004.55 0.1295 2256.43 0.0201
2005 2613.69 2359.32 0.0973 2595.83 0.0068 2569.43 0.0169
2006 2864.67 2485.33 0.1324 2632.13 0.0812 2845.33 0.0068
2007 3114.42 2834.55 0.0899 3005.44 0.0350 3099.45 0.0048
2008 3206.11 3022.34 0.0573 3100.45 0.0330 3220.5 0.0045
2009 3361.26 3123.58 0.0707 3211.31 0.0446 3394.56 0.0099
2010 3606.48 3398.52 0.0577 3698.34 0.0255 3600.02 0.0018
2011 3870.43 3530.96 0.0877 3945.22 0.0193 3853.42 0.0044
2012 4021.38 3745.62 0.0686 3966.58 0.0136 4098.55 0.0192
2013 4169.13 3924.45 0.0587 4005.64 0.0392 4194.99 0.0062
2014 4258.06 4024.55 0.0548 4104.54 0.0361 4298.54 0.0095
2015 4299.05 4149.64 0.0348 4304.65 0.0013 4299.95 0.0002
2016 4360 4466.93 0.0245 4467.87 0.0247 4358.43 0.0004

The calculation results of objectively three forecasting models are compared in Table 6.

Table 6. The calculation results of the three models.

Model RMSE (100%) r2 (100%) MRE

LSSVM 21.22 99.48 6.73
PSO-LSSVM 12.27 99.62 3.79

TS-PSO-LSSVM 3.087 99.97 0.83

Furthermore, boxplots of the results are shown in Figure 6.
Through the analysis of the results in Figures 5 and 6 and Tables 5 and 6, we can find that the

TS-PSO-LSSVM forecasting model has higher prediction accuracy from different directions. Based
on relative error, the TS-PSO-LSSVM forecasting model not only maintains a relatively low relative
error, but also has a small dispersion between relative errors, which shows a high degree of stability.
From the perspective of mathematical statistics, we find that TS-PSO-LSSVM< PSO-LSSVM <LSSVM
from the perspective of RMSE, which indicates the TS-PSO-LSSVM model in this article has the
best performance from the perspective of degree of dispersion. The prediction results have higher
robustness, which can also be proved by the boxplots shown in Figure 6; TS-PSO-LSSVM> PSO-LSSVM
> LSSVM from the perspective of r2 indicator; TS-PSO-LSSVM < PSO-LSSVM < LSSVM from the
perspective of MRE indicator, these two indicators jointly illustrate that the proposed TS-PSO-LSSVM
model has higher prediction accuracy.
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Another important indicator for comparing the superiority of machine learning algorithms is the
training time of the model. The shorter the training time, the higher the calculation speed, and the
superiority of the algorithm can be reflected when a large amount of data is encountered. This article
compared the training time of the three forecasting models, as shown in Table 7.

Table 7. Training times of the three forecasting models.

Forecasting Model Training Time(s) Total Time(s)

TS-PSO-LSSVM 45 s 64 s
PSO-LSSVM 52 s 66 s

LSSVM 64 s 71 s

By comparison, we can find that TS-PSO-LSSVM algorithm proposed in this article reduces the
number of repetitive process executions of the PSO algorithm which needs select the optimal position
and the poor position, and takes up less resources. Thus, the algorithm enables faster training speeds.
At the same time, the accuracy comparison of the forecasting model has also proved that the forecasting
model proposed in this article will not fall into the local optimum. Therefore, the superiority of the
proposed combination algorithm is proved from the perspective of both accuracy and operation speed.

3.5. Forecasting Results

We applied GM (1, 1) (grey prediction theory) to forecast the GDP, population, industrial structure,
energy consumption structure, and urbanization rate from 2017 to 2030, which was used as the
input data of the TS-PSO-LSSVM forecasting model. Finally, we calculated the amount of energy
consumption from 2017 to 2030, which is shown in Figure 7.
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4. Conclusions

This article combined the Tabu search algorithm with the PSO-LSSVM algorithm to construct
the TS-PSO-LSSVM forecasting model for prediction of China’s energy consumption. Because the
study of energy consumption is a complex issue and energy consumption is influenced by a multitude
of factors, we adopted RPCA to select the main factors of GDP, population, industrial structure and
energy consumption structure, urbanization, energy intensity, total imports and exports, fixed asset
investment, energy efficiency, energy industry fixed investment, household consumption, and level
of noise reduction. The main influential factors can contain information about other factors, while
reducing the complexity of the studied factors. Compared with the traditional PCA, RPCA was
proved to be better for generalizing information. After selecting the five main influential factors, we
used data from 1996 to 2010 as the training set for the TS-PSO-LSSVM, PSO-LSSVM, and LSSVM
forecasting models, and data from 2011 to 2016 as the test set. Then, we compared the results from
forecasting of the test set form the perspective of both accuracy and operation speed. Finally, we
applied the RPCA-TS-PSO-LSSVM forecasting model to forecast the future energy consumption of
China in 2017–2030. We found that China’s energy consumption will break through 5000 million tons
in 2020, and energy consumption will increase year by year, eventually reaching 6000 million tons in
2030. Our final conclusions and policy recommendations are as follows:

(1) From 2018 to 2030, China’s energy consumption shows a gradual upward trend, but the growth
rate is gradually tightening. From the perspective of technological progress, this forecast proves that
China’s energy efficiency will increase year by year.

(2) China’s energy consumption economy will transfer into the stage of diminishing returns
around 2026. At that time, excessive energy investment will not bring about sustained GDP growth.
Therefore, China should give priority to improving energy efficiency in the future, and continue to
develop renewable energy technologies. Meanwhile, China needs to look for better opportunities in
the energy investment field and continue to reduce pollutants and carbon emissions.
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(3) China should pay more attention to the development of energy consumption terminal power
for energy conservation and emissions reduction of the international community. At the same time, in
the field of energy investment, China must attach importance to the development of the Belt and Road
and grasp the opportunities of international cooperation in energy-based society. According to the
forecasting results, the energy strategy of the next ten years must be carefully planned.

The forecasting results and corresponding conclusions drawn in this article have laid a strong
foundation for our future research, especially the research hotspots of China’s carbon emission related
to energy consumption and China’s investment ability in Belt and Road countries.
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