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Abstract: A hybrid microgrid-powered charging station reduces transmission losses with better
power flow control in the modern power system. However, the uncoordinated charging of battery
electric vehicles (BEVs) with the hybrid microgrid results in ineffective utilization of the renewable
energy sources connected to the charging station. Furthermore, planned development of upcoming
charging stations includes a multiport charging facility, which will cause overloading of the utility grid.
The paper analyzes the following technical issues: (1) the energy management strategy and converter
control of multiport BEV charging from a photovoltaic (PV) source and its effective utilization;
(2) maintenance of the DC bus voltage irrespective of the utility grid overloading, which is caused by
either local load or the meagerness of PV power through its energy storage unit (ESU). In addition,
the charge controller provides closed loop charging through constant current and voltage, and this
reduces the charging time. The aim of an energy management strategy is to minimize the usage of
utility grid power and store PV power when the vehicle is not connected for charging. The proposed
energy management strategy (EMS) was modeled and simulated using MATLAB/Simulink, and
its different modes of operation were verified. A laboratory-scale experimental prototype was also
developed, and the performance of the proposed charging station was investigated.

Keywords: hybrid microgrid; battery electric vehicle; energy management strategy; vehicle-to-vehicle
charging; energy storage unit

1. Introduction

The road transportation sector (RTS) utilizes a substantial proportion of oil and gas resources,
produces carbon emissions, and pollutes the environment [1]. To limit the usage of fossil fuels and to
reduce CO2 emissions, an alternate solution has been developed: the battery electric vehicle (BEV) [2,3].
However, problems related to the complete adoption of the BEV, such as the selection of a suitable
electric motor drive, power controller, charging facility, battery management system, fast charging
system, and coordinated charge management system, need to be resolved [4,5].

Integration of BEVs and renewable energy sources (RESs) with hybrid microgrids is much needed
to provide high DC power directly without any reactive power compensation [6,7]. To meet the local
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load demand and BEV requirements, the modern charging station needs to be upgraded [8,9]. A BEV
charging station powered by photovoltaic (PV) energy produces uncertainties between PV and BEV
which can be analyzed by radial distribution systems [10]. The losses from AC-DC conversion can be
minimized by selecting the proper operating voltage level at the charging station [11]. Similarly, the
number of required charging stations can be significantly reduced by developing multiport charging
with real-time forecasting of charging station infrastructure [12,13]. The PV and energy storage unit
(ESU)-connected DC microgrid system is used to charge BEVs available at the charging station, and
the DC bus connection with the RES has to follow requirements for network coordination, earthing,
and DC network protection [14]. A rudimentary multiport BEV charging architecture with a hybrid
microgrid is illustrated in Figure 1. It consists of a PV power generating unit, ESU, utility grid, BEV
charging points, local load (home appliance), AC-DC-AC bidirectional converter, and bidirectional
buck/boost converters.
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Figure 1. Model of hybrid microgrid battery electric vehicle (BEV) charging station. 
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Considering the voltage level, EV chargers are classified into three types, namely: DC level 1 
(200–450 V, 80 A, up to 36 kW), level 2 (200–450 V, 200 A, up to 90 kW), and level 3 (200–600 V, 400 
A, up to 240 kW) [23]. Similarly, the Society of Automotive Engineers (SAE) requirements—namely, 
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Figure 1. Model of hybrid microgrid battery electric vehicle (BEV) charging station.

In a PV integrated hybrid microgrid, the DC bus power level varies based on the irradiation falling
on the PV panel, which creates an unbalance condition in the microgrid [15,16]. The DC microgrid
powered by PV and regenerative breaking at a railway station with an ESU provides an option to
store the available power [17]. The ESU of rechargeable type batteries is used for grid-connected
applications because of its modular configuration, moderate energy density, and ability to absorb
or deliver appreciable power [18]. Using the MPPT algorithm (incremental conductance method),
maximum power from the PV is obtained by changing the switching pulse duration of the boost
converter [19]. The bidirectional DC-AC converter provides the power flow from the DC microgrid to
the utility grid through reactive power control and grid synchronization [20,21]. The DC-DC charging
power converter supplies power with the required voltage to the BEV battery, which increases the
overall power conversion efficiency with minimum conversion losses [22]. However, the output
voltage level of the DC-DC converter needs to meet the defined standard operating voltage.

Considering the voltage level, EV chargers are classified into three types, namely: DC level 1
(200–450 V, 80 A, up to 36 kW), level 2 (200–450 V, 200 A, up to 90 kW), and level 3 (200–600 V, 400 A,
up to 240 kW) [23]. Similarly, the Society of Automotive Engineers (SAE) requirements—namely,
SAEJ1772, SAEJ2293, and SAEJ2836—define the operating voltage levels for charging cords and
connectors. The proposed multiport hybrid charging station is developed at an operating power of
12 kW by adapting the DC level 1 charging standard and type 1 SAEJ1772 connector [24].
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The power conversion efficiency of the charging station is improved by effectively utilizing the
generated power with the proper energy management strategy (EMS) technique. The microgrid voltage
level is regulated, and the power flow between the microgrid and charging terminals is controlled
based on the demand. In [25], the DC bus voltage was maintained using an LCL compensator at
the rectifier side to compensate the reactive power. Similarly, to balance the power generation and
distribution at the charging station, the proper controller has to be designed by actively tuning the
controller parameters [26]. Moreover, under the dynamic variation of DC bus voltage, the conventional
PI controller cannot be tuned precisely. It needs an optimization algorithm to achieve automatic voltage
balance control, which was implemented using a nonlinear disturbance observer (NDO)-based DC bus
voltage control strategy along with a filter circuit [27]. However, power balancing based on the local
demand and RES power production has not been addressed. Hence, a coordinated control strategy is
needed for DC bus voltage balancing and to meet the load demand. The separate control strategy with
two-level bus voltage for the local load and different ratings of EV involves a high investment cost [28].
The economical configuration of BEV charging stations was modeled through the integration of RESs
and energy management planning algorithms. Renewable energy integration can not only reduce the
charging cost but also reduce the power stress on the utility grid [29–31]. Many previous studies on
local grid voltage control methods have adopted droop controller concepts to regulate the bus voltage
in the DC microgrid [32–34].

Moreover, the studies mentioned above focused only on DC bus voltage balancing using different
control strategies. Instead, the strategy proposed here effectively utilizes available energy sources
using EMS algorithms by meeting the demand can bring down the investment cost and maintains the
DC bus voltage. In addition, uninterrupted supply for the multiport charging station is also achieved
by using vehicle-to-vehicle (V2V) technology. To make use of V2V technology, the charging points
need to have a bidirectional converter (BDC) with EMS control. Likewise, the BEV charger has to
support bidirectional power flow between one BEV battery to another BEV battery; this reduces the
peak price and manages the uninterrupted charging process [35,36]. Nevertheless, V2V power transfer
is performed based on the BEV owner’s interest, and surplus available energy can be shared with
other vehicles or the grid. There are many optimization techniques used in vehicle-to-vehicle charging
modes for cost efficiency, minimizing power loss, maximizing discharging revenues, and reducing
peak load [37]. Specifically, Oligopoly game and Lagrange duality optimization techniques are used
for V2V charging/discharging [38,39]. When the charging station operates in vehicle-to-grid mode, the
utility grid integration with the vehicle follows dynamic grid support and a frequency management
system [40].

Based on the above discussion, it is observed that a proper EMS algorithm is required for multiport
charging stations to obtain efficient power flow. The following are the major contributions of this paper
toward the development of an EMS algorithm for the multiport BEV charging station.

• Eleven different modes of energy management strategies are developed for the proposed
microgrid to provide continuous power to the BEV charging point.

• When the utility grid is fully loaded and irradiation for PV energy production is low, BEV charging
is delayed or temporarily interrupted, and the ESU and vehicle-to-vehicle charging manage the
power demand.

• Mathematical power balance equations for all 11 modes are used to analyze the power flow.
• The proposed hybrid multiport charging station with an EMS was developed and simulated

through MATLAB/Simulink. Also, an experimental study was carried out for different modes
of operation.

The paper is structured as follows: the architecture of the proposed utility grid-integrated charging
station is given in Section 2, and the modes of operation of the charging station are discussed in
Section 3. The control operation of the power converter and BEV battery charging controller is
discussed in Section 4. The simulation was performed using MATLAB/Simulink, and the results are
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presented in Section 5. Experimental validation of the simulation results is discussed in Section 6.
Conclusions, including the advantages of the proposed system, are presented in Section 7. Symbols
and abbreviations are given in the list titled Abbreviations.

2. Proposed Utility Grid-Integrated Charging Station

A detailed block diagram of the charging station is shown in Figure 2. The charging station
consists of an MPPT boost converter for the PV system, three bidirectional DC-DC charging converters,
a bidirectional DC-AC converter, and an ESU with bidirectional DC-DC converters. The distribution
transformer is connected between the microgrid and AC utility grid. The control of a hybrid microgrid
depends on the DC bus voltage. The output of the PV system defines the DC bus voltage, and it
varies with changes in irradiation level. A variation in DC bus power of between 1500 W and 10 kW
is predicted in the analysis. The power produced by the PV system is 12 kW, which is the maximum
power required to charge all BEVs and the ESU. When the ESU and BEVs are connected to the charging
terminals, the maximum power drawn from the microgrid is 9 kW. When the DC bus power exceeds
9000 W (PV system producing the maximum output), the excess power is sent to the utility grid.

Energies 2019, 12, x FOR PEER REVIEW 4 of 29 

 

presented in Section 5. Experimental validation of the simulation results is discussed in Section 6. 
Conclusions, including the advantages of the proposed system, are presented in Section 7. Symbols 
and abbreviations are given in the list titled Abbreviations. 

2. Proposed Utility Grid-Integrated Charging Station 

A detailed block diagram of the charging station is shown in Figure 2. The charging station 
consists of an MPPT boost converter for the PV system, three bidirectional DC-DC charging 
converters, a bidirectional DC-AC converter, and an ESU with bidirectional DC-DC converters. The 
distribution transformer is connected between the microgrid and AC utility grid. The control of a 
hybrid microgrid depends on the DC bus voltage. The output of the PV system defines the DC bus 
voltage, and it varies with changes in irradiation level. A variation in DC bus power of between 1500 
W and 10 kW is predicted in the analysis. The power produced by the PV system is 12 kW, which is 
the maximum power required to charge all BEVs and the ESU. When the ESU and BEVs are connected 
to the charging terminals, the maximum power drawn from the microgrid is 9 kW. When the DC bus 
power exceeds 9000 W (PV system producing the maximum output), the excess power is sent to the 
utility grid. 

  IS1

Plugged in DC charging points 1 ESU (Battery)

L1 

 D1

G1 C1

Grid

Step up Transformer

DC/AC 
Bidirectional 

Converter EMS
AND

CONTROLLER

IPV IDTR IFB   IS1

VBEV 1-VBEV 3 VDC BUS 

VPV 

VGRID

V DC link

Synchronization 
Switch

G1 G2   G11

VDC BUS 

VPV 

IPV
IDTR

IFB

VDTR

Local Load

VBEV 1 

Plugged in DC charging points 2

DC/DC Buck/Boost Converter 1

Plugged in DC charging points 3

 D2

C3C2 G7

G6

DC/DC Buck/Boost Converter 2

 D3

C5C4 G9

G8

DC/DC Buck/Boost Converter 3

 D4

C7C6 G11

G10
 Buck Mode Buck Mode Buck Mode

Boost ModeBoost Mode Boost Mode

VGRID

MPPT

VDTR

BEV 1 BEV 2 BEV 3

G2

G4

G3

G5

ILOCAL

  IESU

BDC 1 BDC 2 BDC 3

L2 L3 
L4 

Boost Converter

ISW-2

ISW-3 ISW-4 ISW-5

ISW-6

DC
DC

ISW-1

VBEV 2 VBEV 3 

V
E

S
U

 

 
Figure 2. Proposed structure of the utility grid-connected BEV charging station. 

Based on the state of charge (SOC) of the three BEVs, the EMS determines the mode of operation, 
such as grid to vehicle (G2V), ESU to vehicle (ESU2V), and V2V. The BEV operates in V2V mode 
when there is a demand for electricity in the hybrid microgrid. The operating modes are selected 
based on the reference DC power produced by PV and distribution transformer current. The 11 
operating modes of the charging station and the direction of power flow are depicted in Figure 3. 

Figure 2. Proposed structure of the utility grid-connected BEV charging station.

Based on the state of charge (SOC) of the three BEVs, the EMS determines the mode of operation,
such as grid to vehicle (G2V), ESU to vehicle (ESU2V), and V2V. The BEV operates in V2V mode when
there is a demand for electricity in the hybrid microgrid. The operating modes are selected based
on the reference DC power produced by PV and distribution transformer current. The 11 operating
modes of the charging station and the direction of power flow are depicted in Figure 3.
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Based on the charging current (Iref), the bidirectional converter operates in buck or boost mode.
If Iref is less than or equal to zero, the BEV is fully charged and does not take current from the DC bus;
the particular charging bidirectional converter operates in boost mode (V2V). If Iref of the BEV is greater
than zero, the BEV needs to be charged; hence, the particular charging bidirectional converter operates
in buck (microgrid to vehicle) mode. With BDC 1, BDC 2, and BDC 3 indicating the bidirectional
converters, the various combinations of Iref and the operating modes of the bidirectional converters are
shown in Figure 4.
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3. Energy Management Modes of Charging Station

The EMS of the charging station was developed based on various parameters of the charging
station to provide a continuous supply to the charging point. The EMS flowchart of the charging station
is shown in Figure 5. The following variables are taken into consideration for deciding on the different
operating modes: IDTR, PPV, PPV REF-1, PPV REF-2, PPV REF-3, SOCESU, and SOCBEVs. The various modes
and direction of power flow are as follows:

(1) PV and ESU to BEV charging mode (Mode-1).
(2) PV to particular BEV charging mode (Mode-2).
(3) PV and utility grid-connected ESU charging mode (Mode-3).
(4) PV and utility grid-connected BEV charging mode (Mode-4).
(5) PV and utility grid-connected ESU and BEV charging mode (Mode-5).
(6) PV to BEV charging mode (Mode-6).
(7) PV to grid inversion mode (Mode-7).
(8) PV to ESU and BEV charging mode (Mode-8).
(9) PV to ESU charging mode (Mode-9).
(10) ESU to BEV charging mode (Mode-10).
(11) BEV to BEV charging mode (Mode-11).

(1) Mode-1: PV and ESU to BEV charging mode

PPV < PPV REF−1, IDTR ≥ IDTR−MAX , PPV ≤ PBEV−N & SOC ESU ≥ 40%

During peak demand at the utility grid, the PV system produces the power; nevertheless, it
is not sufficient to charge the BEV present at the charging point. Therefore, the power required to
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charge the BEV is taken from PV and the ESU. When the power is shared through the DC bus using
the bidirectional DC-DC converter, the ESU side’s BDC operates in boost mode and the BEV side’s
BDC operates in buck mode. When the BEV battery charge exceeds the reference SOC, DC-DC buck
converters are disconnected from the BEV battery. The power balance equation of the charging station
is as follows.

PCS = PPV + PESU −
3

∑
N=1

PBEV−N (1)

(2) Mode-2: PV to particular BEV charging mode

PPV < PPV REF− 1 , IDTR ≥ IDTR−MAX , SOC ESU ≤ 40% & PPV ≥ PBEV−k

During peak demand at the utility grid, the PV produces power which is sufficient to charge any
BEV available at the charging point. Therefore, the BEV is charged from the PV, and the total power
balanced in this mode is as follows.

PCS = PPV − PBEV−k (2)

(3) Mode-3: PV and utility grid-connected ESU charging mode

PPV < PPV REF− 1 , IDTR ≥ IDTR−MAX , 18% ≤ SOC ESU≤ 40% & BEV is not available

During this mode of operation, the utility grid is under off-peak hours. A BEV is not available at
the charging point, and the ESU has the SOC to supply only the local load. Therefore, the utility grid
and PV supply the power to charge the ESU, and the total power balanced in this mode is as follows.

PCS = PPV + PUG − PESU (3)

(4) Mode-4: PV and utility grid-connected BEV charging mode

PPV < PPV REF−1 & IDTR ≤ IDTR−MAX & SOC ESU ≥ 40% & PPV < PBEV−K

During this condition, the power generated by the PV system is not sufficient to charge a BEV.
In this circumstance, the DC bus is powered by both PV and the utility grid. In this mode, utility grid
supply is rectified and given to the DC bus through a bidirectional AC/DC converter. The total power
balanced in the charging station is as follows.

PCS = PPV + PUG −
3

∑
N=1

PBEV−N (4)

(5) Mode-5: PV and grid-connected BEV and ESU charging mode

PPV REF−1 < PPV < PPV REF−2, IDTR < IDTR−MAX , & , SOC ESU ≤ 40% & PPV < PBEV−N

During this mode, the power generated by the PV system is not enough to charge all the BEVs
and the ESU available at the charging station. Therefore, the power generated from the PV system is
given to the microgrid, and the remaining power is obtained from the utility grid. If the distribution
transformer draws more current than the reference level due to an increase in local load, to reduce the
stress on the distribution transformer, utility grid charging of BEVs has to be terminated. Therefore,
the ESU and BEVs are charged from both PV and the utility grid; the total power balanced in this mode
is as follows.

P CS = PPV + PUG − PESU −
3

∑
N=1

PBEV−N (5)

(6) Mode-6: PV to BEV charging mode



Energies 2019, 12, 168 8 of 28

PPV REF−1 < PPV < PPV REF− 2 , IDTR ≥ IDTR−MAX , & PPV ≥ PBEV−N

During this mode, the power produced by the PV system is sufficient to charge all the BEVs
available at the charging point but not sufficient to charge the ESU. The charging station cannot take
any supply from the utility grid, which is in peak demand of electricity. Therefore, a BEV is charged
from the PV system, and the total power balanced in this mode is as follows.

PCS = PPV −
3

∑
N=1

PBEV−N (6)

(7) Mode-7: Utility grid inversion mode

PPV REF−1 < PPV < PPV REF− 2, SOC ESU ≥ 90%, SOC BEV s
≥ 90% or BEV not available

The power generated by the PV is sufficient to charge all the BEVs at the charging terminals.
If BEVs are not available at the charging terminal, the power generated by the PV system is given to
the utility grid through the bidirectional DC-AC converter.

PCS = PPV − PUG (7)

(8) Mode-8: PV-connected ESU and BEV charging mode

PPV REF−2 < PPV < PPV REF− 3 , SOC ESU ≤ 90%, BEV available SOC BEV s ≤ 90%

In this mode, the PV system generates maximum power, and the total power generated by the PV
system is sufficient to charge BEVs and the ESU. Therefore, the BEV and ESU are charged from the PV
system, and the total power balanced in this mode is as follows.

PCS = PPV − PBEV − PESU (8)

(9) Mode-9: PV to ESU charging Mode

PPV REF− 3 ≥ PPV & IDTR ≥ IDTR−MAX , SOC ESU ≤ 90% & SOC BEV ≥ 90%

In this mode, the power generated by the PV system is sufficient to charge BEVs and the ESU.
All the BEVs are fully charged and the SOC of ESU is less than 90%. All the power generated from
the PV system is given to the microgrid to charge the ESU. Therefore, the ESU is charged from the PV
system, and the total power balanced in this mode is as follows.

PCS = PPV − PESU (9)

(10) Mode-10: ESU to BEV charging mode

IDTR ≥ IDTR−MAX , SOC ESU ≥ 90%, PPV < PPV min , SOC ESU
≤ 90% and BEV available for charging

In this mode, the PV system is not generating power due to low irradiation and bad weather
conditions. The utility grid is overloaded due to the local load demand, the BEVs are charged using
ESU, and the total power balanced in this mode is as follows.

PCS = PESU −
3

∑
N=1

PBEV−N (10)



Energies 2019, 12, 168 9 of 28

(11) Mode-11: Vehicle-to-Vehicle (V2V) mode

IDTR ≥ IDTR−MAX , SOC BEV ≥ 90%, PPV < PPV min , SOC ESU
≤ 40% and BEV available f or charging

In this mode, the PV system is not generating power due to low irradiation and bad weather
conditions. The utility grid is overloaded due to the local load, the ESU has the SOC to supply only
the local load, and the BEVs are charged using nearby BEVs. The total power balanced in this mode is
as follows.

PCS = PBEV−2 − PBEV−1 (11)
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4. Control Operation of Power Converters

The switching sequence of all the power electronic converters is controlled based on different
parameters that are measured from the DC bus and the charging station-connected vehicle. The PV
side’s MPPT DC-DC converter is controlled based on the voltage and current that are measured from
the PV devices. The BEV side’s buck/boost converter to be controlled is based on the state of charge
and the current drawn by the battery.

BEV Battery Charging Controller

The BEV battery is charged by providing constant-voltage and constant-current control to the
charging converter. Fast charging is done by inner current loop control; the outer voltage loop control
used for constant-voltage charging is shown in Figure 6. When the current flowing into the battery is
positive, Ibatt > 0, the battery is charged; otherwise, it is discharged. Based on the sign of the battery
current (Iref), the EMS controller is providing regulated supply to the battery.
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Depending on the SOC and sign of the reference current (Iref), the charging converter operates
under different modes. Based on the control signal, it can be operated under constant-current
or constant-voltage mode. When the switch is open, the charging station converter operates in
constant-current charging mode; if the switch is closed, the charging station converter operates in
constant-voltage charging mode.

5. Simulation and Evaluation of Charging Station

Different modes of the charging station were evaluated using MATLAB Simulink. The simulation
module consists of the BEV battery and power converters: DC-AC, AC-DC, and DC-DC converters.
A PV system of 12 kW and the utility grid are used to power the charging station. A backup ESU
battery of 6 kWh (48 V) is connected to the charging station to provide uninterrupted supply. The BEVs
are considered to be storage batteries (BEV 1–3) with a power rating of 1 kW.

The reference DC bus power, current, and SOC values for all DC microgrid-to-vehicle modes of the
charging station are as follows: PPV MAX = 12 kW, PPV MIN = 1.5 kW, IDTR MIN = 12 A, IDTR Max = 17.5 A,
SOC MIN = 18%, and SOC MAX = 90%. The DC bus voltage and power generated by the PV system
varies with the change in irradiation from the sun. The PV system starts to deliver power when
the DC bus voltage is greater than 50 V. The PV system yields 250 V, and the power of the DC bus
is 7.5 W, which is required to charge both the energy storage unit and electric vehicles. The DC
bus power is greater than 10 kW (300–320 V) and exceeds the power requirement of the charging
station. The different operating modes of the charging station are chosen based on the DC bus power.
Using the PV voltage and DC bus power, three threshold values were chosen: PPV REF−1 = 1.5 kW,
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PPV REF−2 = 7.5 kW, and PPV REF−3 = 10 kW. Based on the reference PV power, the charging station is
controlled in 11 modes (Mode-1–11).

When the PV power is less than 1.5 kW, the peak demand from the utility grid (IDTR MAX = 17.5 A)
and the ESU have an SOC of greater than 40%; power produced by the PV is not sufficient to charge
all the BEVs available at the charging terminals. During this condition, the power required to charge
the BEVs is drawn from PV and the ESU, as shown in Figure 7. In Mode-1, total power in the DC bus
is maintained as 5.3 kW, which is sufficient to charge all BEVs. With the same PV power level, the
charging station has one BEV for charging, and the power produced by the PV system is greater than
that needed by the vehicle available at the charging point; the particular BEV is charged from the PV
by Mode-2 and is shown in Figure 8.
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Figure 7. Simulation output of Mode-1: (a) photovoltaic (PV) power, (b) distribution transformer
current, (c) state of charge (SOC) of the energy storage unit (ESU), (d) DC bus power, and (e) output
current of all of the BEV side’s buck converters.
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ESU, (d) DC bus power, (e) output current of any one of the BEV side’s buck converters.

When the PPV is less than 1.5 kW, the utility grid is off-peak (IDTR = 12 A), the SOC of the ESU is
less than 40%, and the power required to charge the ESU and BEVs is drawn from the PV system and
the utility grid; the grid-connected AC-DC converter works in rectification mode. Therefore, the ESU
and BEVs are charged from the utility grid and PV, and power at the DC bus is maintained at a rated
capacity of 11.2 kW; in this scenario, 1.5 kW of power is drawn from the PV and the remaining power
is taken from the utility grid, as shown in Figure 9. At the same PV power level, SOCESU is greater
than 40%, and the PV system and the utility grid provide the continuous supply to the charging station.
DC bus power is maintained at 11.2 kW, as shown in Figure 10.
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the ESU, (d) DC bus power, (e) output voltage from the ESU.
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Figure 10. Simulation output of Mode-4: (a) PV power, (b) distribution transformer current, (c) SOC of
the ESU, (d) DC bus power, (e) output current of all BEV side’s buck converters.

The power generated by the PV system is 7.5 kW, the utility grid is not overloaded, and the SOC
of the ESU is less than 40%. The power required to charge the BEV and ESU is 9 kW; all the power
generated by the PV is transferred to the DC bus and the utility grid supplies the deficit. Power in
the DC bus is maintained at 11.2 kW, as shown in Figure 11. For the above PV power level, the utility
grid is at peak conditions; all the BEVs are charged from the PV system, and the DC bus power is
maintained at 7.1 kW, as shown in Figure 12.
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Figure 11. Simulation output of Mode-5: (a) PV power, (b) distribution transformer current, (c) voltage
of the ESU, (d) DC bus power, (e) output current of all BEV side’s buck converters.

The power generated by the PV system is 7.5 kW or 10 kW, the SOC of the ESU is greater than
90%, and BEVs are not available for charging; the generated PV power is fed back to the utility grid
and the DC bus power is maintained at 7.1 kW, as shown in Figure 13. The power generated by the
PV system is 10 kW, which is sufficient to charge BEVs and the ESU; DC bus power is maintained at
9.5 kW, as shown in Figure 14.

The power produced by the PV system is 10 kW, and the ESU and BEVs need charging; the DC
bus power is maintained at 9.5 kW, as shown in Figure 15. When the PV power is less than 1.5 kW, the
SOC of the ESU is greater than the 40%, and BEVs are charged from the ESU; the DC bus power is
maintained as 4.8 kW, as shown in Figure 16.
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(c) output voltage of all of the BEV side’s buck converters, (d) output current of all of the BEV side’s
buck converters.

The PV system is not producing any output, the utility grid is overloaded, the SOC of the ESU is
less than 40%, and a BEV is charged from other BEVs. Depending upon the price and power demand
at peak time, the owner of the BEV has to decide how much power they wish to share with other
vehicles. The power flows from one BEV to the other. The amount of power to be sold is identified by
the discharge current of the BEV battery; BEV 1 discharges and gives power to BEV 2, as shown in
Figure 17.
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The comprehensive simulation studies demonstrate the power level of the charging station in the
different modes. The BEVs are able to charge/discharge based on user requirements. The objective is
to obtain superior performance under both steady and variable charging and discharging conditions.
By operating the EMS within its rated range, the proposed control system can handle the control
needs of the charging station when the physical constraints of power converters are exceeded. At the
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end of the case study, it is observed that PV-produced power is effectively used for BEV charging.
The different simulation outputs are presented in Table 1. Despite the variations in PV power, the DC
grid provides sufficient power for BEV charging through its scattered energy sources. When the PV
system provides power of 1500 W and the utility grid is overloaded (17.5 A), the charging station is
operated in Mode-1 and -2. In Mode-1, all the BEVs are available for charging and receive power from
the PV system and ESU, and the DC grid power is maintained at 5340 W. Similarly, with the above
condition, only one BEV is available at the charging terminal (Mode-2); DC grid power is maintained
at 1425 W, which is sufficient to charge a particular BEV without receiving power from the ESU.

Table 1. Simulation results of Mode-1–11.

CS Parameters Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 Mode-8 Mode-9 Mode-10 Mode-11

PPV (W) 1500 1500 1500 1500 7500 7500 7500 10,000 10,000 0 0
IDTR (A) 17.5 17.5 12 12 12 17.5 19.7 NC NC 17.5 17.5
SOCESU (%) 50 70 35 90 30 NC 90 35 70 80 25
IESU (A) 12 NC 12 NC 120 NC NC 120 120 15 NC
PDC-GRID (W) 5340 1425 11250 11250 11250 7125 7125 9500 9500 4800 1000
PBEV-N (W) 1000 1000 NA 1000 1000 960 NA 1000 FC 1000 950
IBEV-N (A) 20 20 NA 20 20 20 NA 20 FC 20 19

VPV = 120 V, VDC BUS = 320 V, POWER BEV 1–3 = 1 KW, PESU = 6 kWh, NC—Not considered, FC—Fully Charged,
NA—Not Available.

6. Experimental Validation

To verify the practical feasibility and effectiveness of the proposed energy management control
strategies, experimental tests were carried out in the laboratory. The laboratory prototype of the
proposed BEV charging station with a hybrid microgrid was developed for a power of 240 W, as shown
in Figure 18. An FPGA controller was used for controlling the overall charging station. The charging
station consisted of a PV panel with a single-switch MPPT boost converter, bidirectional buck-boost
converter, bidirectional AC-DC converter, and a 12 V, 80 Ah battery (instead of a BEV). The maximum
power from the PV (when there is full irradiation) was defined as 240 W (VPV = 18 V, IPV = 13.34 A).
The P&O MPPT algorithm was used with a boost converter to extract the maximum power from the
PV system. The mode selection was chosen in a manner similar to that in the simulation study to deal
the different cases of PV generation and BEV load connectivity. The charging station was modeled at
lab scale, so losses were negligible. However, voltage and power losses of 5% were considered while
designing the original system.

The variation in solar irradiation affects the PV power and DC bus voltage. By considering these
variations, three power levels were chosen for deciding operating modes. The following threshold
values were chosen: PPV REF 1 = 120 W, PPV REF 2 = 160 W, and PPV REF 3 = 230 W. Based on the reference
PV power, the charging station was operated in the following modes.

(1) PV and ESU to BEV charging mode (PPV ≤ 120 W).
(2) PV to particular BEV charging mode (PPV ≤ 120 W).
(3) PV and utility grid-connected ESU charging mode (PPV ≤ 120 W).
(4) PV and utility grid-connected ESU and BEV charging mode (PPV ≤ 120 W).
(5) PV and utility grid-connected BEV charging mode (120 W ≤ PPV ≤ 160 W).
(6) PV to BEV charging mode (120 W ≤ PPV ≤ 160 W).
(7) PV to grid inversion mode (120 W ≤ PPV ≤ 160 W).
(8) PV to ESU and BEV charging mode (160 W ≤ PPV ≤ 230 W).
(9) PV to ESU charging mode (PPV ≥ 230 W).
(10) ESU to BEV charging mode (PPV < PPV MIN).
(11) BEV to BEV charging mode (PPV < PPV MIN).
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When the PV system delivers power of 120 W, with various conditions of the ESU, BEV, and
utility grid, the charging station is operated at four modes (Mode-1–4). The BEV is the only load for
the first two modes, and in Mode-3 and Mode-4, the BEV and ESU act as the load. Among the first
two modes, Mode-2 is taken into consideration to demonstrate the charging current and input power.
Similarly, Mode-4 is presented from among Mode-3 and Mode-4.

(1) Experimental results of Mode-2: PV to particular BEV charging mode (PPV ≤ 120 W)

In Mode-2, the PV system provides output that can charge only one BEV, and the DC-DC buck
converter gives its output to the BEV battery (VBEV-1 = 12 V and IBEV-1 = 2.96 A). The corresponding
DC bus power, charging voltage, and current are shown in Figure 19.
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(2) Experimental results of Mode-4: PV and utility grid-connected ESU and BEV charging mode (PPV ≤ 120 W)

In this mode, the PV system generates power of 120 W, which is not sufficient to charge all the
BEVs available at the charging point. Hence, power is drawn from the PV system and utility grid.
The voltage and current are delivered from the PV system (VPV = 12.21 V and IPV = 10.54 A); the
current drawn from the distribution transformer is 2 A, which is shown in Figure 20.
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From Mode-5 to Mode-8, the PV system provides power of 120–160 W; among this series, Mode-6
is used for practical demonstration. In Mode-6, the PV system provides power of 150 W for charging
all the BEVs available at the charging station. In Mode-8, the PV system provides power of above
160 W, and the ESU and BEV are charged with maximum charging current.

(3) Experimental results of Mode-6: PV to BEV charging mode (120 W ≤ PPV ≤ 160 W)

In this mode, the PV system delivers power with the moderate output of the PV panel, which
is 150 W (VPV = 13.09 V, IPV = 11.53 A). The DC bus voltage is maintained at 22 V by a PV boost
converter. The output of the bidirectional converter in buck mode provides a charging current to BEVs
(VBEV 1 = 13 V, IBEV 1 = 3.3 A), as shown in Figure 21.Energies 2019, 12, x FOR PEER REVIEW 23 of 29 
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(4) Experimental results of Mode-9: PV to ESU charging Mode (PPV ≥ 230 W)

This mode is considered to be an energy saving mode; the maximum power delivered by the
PV system (VPV = 18.1 V, IPV = 12.7 A) when BEVs are not available for charging is stored in ESU.
A charging voltage of 13.6 V with 4.67 A is used to charge the ESU, as shown in Figure 22.
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(5) Experimental results of Mode-10: ESU to BEV charging mode (PPV = PPV MIN W)

In this mode, the charging power is transferred from the ESU to BEVs. The PV system and utility
grid are not able to provide charging power; the ESU provides a charging supply of 14.1 V and 3.1 A
to the BEVs. A BEV is charged with 13.6 V and 2.79 A, as shown in Figure 23.Energies 2019, 12, x FOR PEER REVIEW 2 of 29 
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The different operating modes mitigate the loading of the distribution transformer and provide 
an uninterrupted supply to the charging station. This infrastructure with an EMS is suitable for 
workplace-based RES charging. In these different modes, PV-generated power is effectively used for 
charging. For example, in Mode-2, the PV-generated power is sufficient to charge any one BEV 
available at the charging point effectively. In Mode-4, PV-generated power is insufficient to charge 
the ESU and BEV; thus, the charging station receives power from the utility grid. Similarly, other 
modes provide uninterrupted power for charging a BEV through this energy management approach. 
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(6) Experimental results of Mode-11: BEV to BEV charging mode (PPV = PPV MIN W)

This is the special mode (no power from the PV, utility grid, or ESU) among the 11 modes: a
particular BEV is ready to transfer power to another BEV, and there is a power exchange between two
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BEVs. The power provided from BEV 1 to BEV 2 is 13.9 V with a current of 1.9 A, and BEV 2 receives a
charging supply of 13.8 V with a current of 1.81 A, as shown in Figure 24
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The different operating modes mitigate the loading of the distribution transformer and provide
an uninterrupted supply to the charging station. This infrastructure with an EMS is suitable for
workplace-based RES charging. In these different modes, PV-generated power is effectively used
for charging. For example, in Mode-2, the PV-generated power is sufficient to charge any one BEV
available at the charging point effectively. In Mode-4, PV-generated power is insufficient to charge the
ESU and BEV; thus, the charging station receives power from the utility grid. Similarly, other modes
provide uninterrupted power for charging a BEV through this energy management approach.

Table 2 compares pros and cons of the proposed charging station with proposed strategies from
other published papers. From the table, it can be seen that the proposed charging infrastructure and its
energy management can potentially utilize PV power to realize a continuous EV charging facility.
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Table 2. Comparison of charging stations.

Ref. Papers Microgrid
Type

On board
Storage
System

Nonrenewable
Sources

Connected

Renewable
Sources

Utility Grid
Connected

Type of
Charging

Control
Strategy

V2V
Charging Pros and Cons

[41] AC YES Two Diesel
Generators PV YES On board Load demand YES

Pros:
Generators used; Uninterrupted supply

Cons:
Conversion needs for charging

[42] Hybrid YES NO PV and WIND YES On board Power Control NO

Pros:
High power density converter used for charging

Cons:
PV to grid stabilize the demand

[43] DC YES NO PV YES Off board DC link
voltage NO

Pros:
Distribution Transformer upgradation not required

Cons:
Not used ESU for store PV power

[44] AC YES NO NO YES Off board Power Control
Strategies NO

Pros:
Smart charging

Cons:
AC distribution network, increases conversion losses

[45] DC NO NO PV YES On board Power Control NO

Pros:
Flexible EV charging

Cons:
Overloading of grid not realized

Proposed Hybrid YES NO PV YES Off board PV and DC
link Power YES

Pros:
Provide optimum usage of PV utilization and considering

grid overloading, bidirectional power flow for V2V
Cons:

High Cost of ESU installation
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7. Conclusions

The EMS for a multiport BEV charging station powered by a hybrid microgrid is proposed in this
paper. The proposed EMS maintains the DC bus voltage irrespective of utility grid overloading caused
either by the local load or meagerness of PV power. Eleven different modes of the EMS were developed
for the proposed microgrid to provide continuous power to the BEV charging point. Moreover, when
the utility grid is fully loaded, and irradiation of the PV system is low, BEV charging is delayed or
temporarily interrupted. The power demand is managed by the ESU and vehicle-to-vehicle charging.
MATLAB/Simulink simulation analyses were performed for the proposed hybrid multiport charging
station with EMS, and the system was validated with an experimental study. Based on the observed
results using different modes of operation, the proposed EMS strategy shows better performance by
maintaining the DC bus power and effectively utilizing PV energy.
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Abbreviations

VPV Output voltage of the PV panel
IPV Output current of the PV panel
PPV PV power
VDTR Voltage drawn from the utility grid
IDTR Current drawn from the utility grid
IFB Feedback current to the utility grid
IS1 Boost converter current
VESU ESU battery voltage
IESU ESU battery current
PESU Energy storage unit power
Iref Battery charging current
PCS Charging station power
PUG Power drawn from the utility grid
BEV Battery electric vehicle
G2V Grid to vehicle
V2V Vehicle to vehicle
ESU2V ESU to vehicle
VDC BUS DC bus voltage
PDC BUS DC bus power
PBEV-N BEVs power
PBEV-K Particular BEV power
PPV REF-1 PV power reference 1
PPV REF-2 PV power reference 2
PPV REF-3 PV power reference 3
SOCESU SOC of energy storage unit
SOC BEV SOC of battery electric vehicle
VBEV-1–VBEV-3 BEVs’ battery voltages
ISW Isolation switch
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