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Abstract: Effective prediction of gas concentrations and reasonable development of corresponding
safety measures have important guiding significance for improving coal mine safety management.
In order to improve the accuracy of gas concentration prediction and enhance the applicability of
the model, this paper proposes a long short-term memory (LSTM) cyclic neural network prediction
method based on actual coal mine production monitoring data to select gas concentration time series
with larger samples and longer time spans, including model structural design, model training, model
prediction, and model optimization to implement the prediction algorithm. By using the minimum
objective function as the optimization goal, the Adam optimization algorithm is used to continuously
update the weight of the neural network, and the network layer and batch size are tuned to select
the optimal one. The number of layers and batch size are used as parameters of the coal mine gas
concentration prediction model. Finally, the optimized LSTM prediction model is called to predict
the gas concentration in the next time period. The experiment proves the following: The LSTM gas
concentration prediction model uses large data volume sample prediction, more accurate than the
bidirectional recurrent neural network (BidirectionRNN) model and the gated recurrent unit (GRU)
model. The average mean square error of the prediction model can be reduced to 0.003 and the
predicted mean square error can be reduced to 0.015, which has higher reliability in gas concentration
time series prediction. The prediction error range is 0.0005–0.04, which has better robustness in gas
concentration time series prediction. When predicting the trend of gas concentration time series,
the gas concentration at the time inflection point can be better predicted and the mean square error at
the inflection point can be reduced to 0.014, which has higher applicability in gas concentration time
series prediction.

Keywords: coal mine safety; recurrent neural network; deep learning; LSTM regression

1. Introduction

China is a large coal consuming and producing country. Gas emissions from coal seams increase
sharply during the coal mining process; gas overruns and coal and gas outbursts are frequent; and it
has become a challenging topic for safe coal mine production. The key to preventing gas hazards is to
effectively predict gas concentration and formulate effective extraction schemes. A lot of research has
been done by domestic and foreign experts on the issue of gas concentration prediction. Fu’s team
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has done a lot of such research, and proposed the gas concentration of hybrid kernel least squares
support vector machine based on phase space reconstruction theory and adaptive chaos particle
swarm optimization theory [1–4]. In addition, scholars such as Wu used support vector machine
(SVM) and the differential evolution (DE) algorithm to establish a prediction model, and based on
the Markov chain, the residual correction predicted the gas concentration change trend, compared
with the direct SVM prediction of the granular data [5]. Others have used neural networks to do more
in-depth research. Liu proposed a prediction method combining genetic algorithm (GA) with back
propagation (BP) neural network [6]. Guo proposed a dynamic prediction method based on time
series for gas concentration [7]. Zhang proposed a dynamic nerve network gas concentration real-time
prediction model for improved prediction accuracy of gas concentration and less running time [8].
The above method greatly improved the accuracy and reliability of gas concentration prediction,
but the research data sample is small and has certain limitations, and it is difficult to adapt to more
varied gas concentration sequences.

Long short-term memory (LSTM) is a time-recurrent neural network suitable for processing
and predicting data with gaps and delays in a time series. Based on complex historical fault data,
Wang proposed a fault time series prediction method based on a long short-term memory-cycle neural
network. The multigrid parameter optimization algorithm was used to verify the LSTM prediction
model in fault time. There is strong applicability in sequence analysis [9–11]. Based on the time series
of factors affecting the operating state of the transformer, Dai used the fuzzy comprehensive evaluation
idea to evaluate the operating state of the power transformer and establish prediction of the operating
state of the power transformer based on LSTM [12]. Li proposed a long short-term memory-cycle
neural network prediction model by analyzing the correlation between electricity price and load time
series and using an adaptive evidence-based algorithm for deep learning [13–15]. Wang constructed a
short-term traffic flow prediction model for LSTM–recurrent neural network (RNN) for traffic flow
time series and achieved the prediction effect with layer-by-layer construction and fine-tuning [16–19].
Based on historical landslide time series, Yang proposed a dynamic prediction model of landslide
displacement based on time series and LSTM. Combined with actual case verification, the prediction
accuracy could be improved [20–22]. Relevant research at home and abroad shows that LSTM is
suitable for processing sample data related to time series. Combined with the characteristics of gas
concentration data, this paper proposes a gas concentration prediction model based on LSTM that
can effectively predict the gas concentration in the next time period and provide a strong basis for
formulating a reasonable gas drainage plan, thus improving coal mine safety management.

2. Materials and Methods

2.1. Deep Learning Model and Parameter Optimization Algorithm

This section briefly introduces the LSTM model, the Adam parameter optimization algorithm,
and the related recurrent neural network (RNN) model. The traditional neural network model is from
the input layer to the hidden layer to the output layer. The layers are fully connected and the nodes
between each layer are disconnected. Therefore, ordinary neural networks have certain limitations
in solving time series problems. The recurrent neural network compensates for the shortcomings of
traditional neural networks. Its structure is shown in Figure 1, where X indicates the value of the input
layer, S represents the value of the hidden layer, U is the weight matrix of the input layer to the hidden
layer, O represents the value of the output layer, V is the weight matrix of the hidden layer to the
output layer, and W is the last value of the hidden layer as the input of this time. The weight of t, t − 1
is time. Its running formula is: {

Q = g(VSt)

St = f (UXt + WSt−1)
(1)
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Although the RNN can effectively process nonlinear time series, it cannot handle time series with
excessive delay due to gradient disappearance and gradient explosion. The LSTM is an improved cyclic
neural network that solves the problem that the RNN cannot handle, i.e., long-distance dependencies.
Figure 2 is a schematic structural view of the LSTM, where ft, it, Ct, and Ot are the forget gate, the input
gate, the output gate, and the timing of the output gate, respectively, and W, b, and tanh are the
corresponding weights, deviations, and excitation functions, respectively. The forget gate determines
how much of the unit state Ct−1 at the previous moment is retained at the current time Ct; the input
gate determines how much the input Xt of the network is saved to the unit state Ct at the current
moment and how much output gate control unit state Ct is output to the LSTM. The current output
value is ht. Its calculation formula is shown by Equations (2)–(4). The forget gate ft is Equation (2),
the input gate it is Equation (3), and the output gate Ot is Equation (4):

ft = δ(w f ·[ht−1, xt] + b f ) (2)
it = δ(wi·[ht−1, xt] + bi)

C′ = tanh(wc·[ht−1, xt] + bc)

Ct = ft·Ct−1 + it·C′t
(3)

{
Ot = δ(wo·[ht−1, xt] + bo)

ht = Ot·tanh(Ct)
(4)

A more popular concept at present is that circulating neural networks are gated recurrent units
(GRUs) and bidirectional cyclic neural networks (BidirectionRNNs). A GRU is a light version of LSTM
that has an update gate and a reset gate. The update gate is used to update information, and the reset
gate is used to determine the output information. A BidirectionRNN is really just 2 independent RNNs
put together.

Adaptive moment estimation (Adam) [23] is an optimization algorithm based on gradient.
The method is simple, efficient, and has less memory usage. It is suitable for nonstationary objective
functions. Hyperparameters have intuitive interpretations and do not require complex tuning
procedures. Its update mechanism is as follows: deviation correction is Equation (5) and parameter
change is Equation (7): {

m_t = β_1·m_(t− 1) + (1− β_1)·g_t
v_t = β_2·v_(t− 1) + (1− β_2)·g_t∧2

(5)

{
m′_t = m_t/(1− β_1∧t)
v′_t = v_t/(1− β_2∧t)

(6)

θ_t = θ_(t− 1)− α·m′_t/(
√
(v′_t) + ε) (7)

where β_1 = 0.9, β_2 = 0.99, ε = 1 × 10−8; the initial value of m_t and v_t is 0.

Energies 2019, 12, x FOR PEER REVIEW 3 of 15 

 

distance dependencies. Figure 2 is a schematic structural view of the LSTM, where ft, it, Ct, and Ot are 
the forget gate, the input gate, the output gate, and the timing of the output gate, respectively, and 
W, b, and tanh are the corresponding weights, deviations, and excitation functions, respectively. The 
forget gate determines how much of the unit state Ct−1 at the previous moment is retained at the 
current time Ct; the input gate determines how much the input Xt of the network is saved to the unit 
state Ct at the current moment and how much output gate control unit state Ct is output to the LSTM. 
The current output value is ht. Its calculation formula is shown by Equations (2)–(4). The forget gate 
ft is Equation (2), the input gate it is Equation (3), and the output gate Ot is Equation (4): 

[ ]1( , )t f t t ff w h x bδ −= ⋅ +  (2) 

[ ]1

1

1

( , )
' tanh( [ , ] )

· '·

δ −

−

−

 = ⋅ +
 = ⋅ +
 = +

t i t t i

c t t c

t t t t t

i w h x b
C w h x b

C f C i C
 (3) 

1

·
( [ , ] )

tanh( )
δ −= ⋅ +

 =
t o t t o

t t t

O w h x b
h O C

 (4) 

A more popular concept at present is that circulating neural networks are gated recurrent units 
(GRUs) and bidirectional cyclic neural networks (BidirectionRNNs). A GRU is a light version of 
LSTM that has an update gate and a reset gate. The update gate is used to update information, and 
the reset gate is used to determine the output information. A BidirectionRNN is really just 2 
independent RNNs put together. 

Adaptive moment estimation (Adam) [23] is an optimization algorithm based on gradient. The 
method is simple, efficient, and has less memory usage. It is suitable for nonstationary objective 
functions. Hyperparameters have intuitive interpretations and do not require complex tuning 
procedures. Its update mechanism is as follows: deviation correction is Equation (5) and parameter 
change is Equation (7): 

_ _1 _( 1) (1 _1) _
_ _ 2 _( 1) (1 _ 2)

·
_· · 2

·β β
β β ∧

= − + −
 = − + −

m t m t g t
v t v t g t

 (5) 

'_ _ / (1 _1 )
'_ _ / (1 _ 2 )
m t m t t
v t v t t

β
β

∧

∧

 = −


= −
 (6) 

_ _( 1) '_ / ( ( '_ )· )θ θ α ε= − − +t t m t v t  (7) 

where β_1 = 0.9, β_2 = 0.99, ε = 1 × 10−8; the initial value of m_t and v_t is 0. 

O

V

S

U

X

W

 
Figure 1. Recurrent neural network (RNN) structure diagram. Figure 1. Recurrent neural network (RNN) structure diagram.
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The research object through model training is the hidden layer. The original input data in the 
input layer can be represented as D, and the original data is divided into training set Tr, test set Te, 
and lookback, which is the previous time step used as an input variable to predict the next period. 
The training set Tr is normalized and scaled between 0 and 1 using the MinMaxScaler normalization 
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Figure 2. Long short-term memory (LSTM) structural unit diagram.

2.2. Construction of Predictive Model

The model can be divided into three parts: input layer, hidden layer, and output layer. The input
layer is mainly used for preprocessing and dataset division of the original data. The hidden layer is
trained based on the training set. Through the Adam optimizer, introduced in the previous section,
the parameters are optimized, and the model is optimized with the minimum loss value as the
measurement principle; the output layer predicts the data according to the model learned in the
hidden layer and performs data restoration for scaling of the previous data preprocessing. The LSTM
prediction model framework is shown in Figure 3.
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The research object through model training is the hidden layer. The original input data in the
input layer can be represented as D, and the original data is divided into training set Tr, test set Te,
and lookback, which is the previous time step used as an input variable to predict the next period.
The training set Tr is normalized and scaled between 0 and 1 using the MinMaxScaler normalization
formula. The scaled training set is Trs. The MinMaxScaler formula is:

X_std = (X− X.min(axis = 0))/(X.max(axis = 0)− X.min(axis = 0)) (8)

X_scaled = X_std·(max−min) + min (9)
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where X_std will be normalized to [0,1], X.min(axis = 0) indicates the column minimum, Max represents
the parameter of the MinMaxScaler, and min represents the feature range parameter, which is the size
range of the final result. The preprocessed training set X is defined as an input of the hidden layer,
and its operation in the hidden layer of LSTM is as shown in Equations (2)–(4), and the output result is
Y = LSTM(h_t).

The prediction is performed by using the trained LSTM network, where the prediction result
training set is Tr_forecast’, the test set is Te_forecast’, and the next time is forecast_predict’.
The preprocessed data are restored using scaler.inverse_transform, and the restored data are Tr_forecast,
Te_forecast, and forecast_predict. Finally, the accuracy and fit of the model are determined by
comparing Tr_forecast’ with Tr_forecast, Te_forecast’, and Te_forecast.

Because the setting of batch size determines the association information between time series data
available to the LSTM, the number of network layers affects the learning ability, training time, and test
time of the model; therefore, mean square error and fitting are used in training the LSTM model.
The effect and running time are used as the criteria for evaluating the model. The Adam optimizer is
used to optimize the weight of the LSTM structural unit, and the optimal parameter combination is
obtained by continuously optimizing the batch size parameter of the network layer. For the time series
of the same distribution characteristics, different activation functions have different effects, because
the data used in this paper do not involve negative numbers, and the Relu activation function is used
to improve the computing power and Dropout is added to prevent overfitting. Finally, the optimal
LSTM prediction model is obtained.

3. Experiment and Results

This experiment mainly includes data selection and processing, prediction model adjustment,
and optimization model comparison. In order to ensure the reliability and applicability of the model,
we selected the monitoring data of the goaf from 1 January to 1 March 2017 at the Tingnan coal mine
as the experimental sample. The data include four input variables: gas concentration, temperature,
flow, and negative pressure, totaling 1100 pieces of data.

The computer configuration used in this experiment was as follows: Windows 10 64-bit operating
system, AMD A6-6310 processor, 1.8 GHz frequency, 4 GB memory, Python 3.6 development language,
and PyCharm Community Edition 2018.2.3 integrated development environment. The LSTM model
used in the development of the program was derived from the Keras 2.1.5 package.

First, data was divided into a test set, a training set, a backtracking set, and a verification set,
with the training set used for model training, the test set used to test the model learning effect, and the
backtrack set used as an input variable to predict the next time period. For time series, the verification
set was used to test the prediction data, then the data was cleaned, missing data was complemented
by the near mean, abnormal data was deleted, and data whose format content did not conform to
the specification was modified. Finally, the data included the characteristics of different dimension
eigenvalues and target eigenvalue changes. The data was normalized by the MinMaxScaler method in
Section 2.1 and scaled to [0,1] to facilitate calculation and improve predictive accuracy. The raw and
processed data are shown in Figures 4 and 5, respectively.

This paper mainly evaluates the performance of the model from 3 aspects: accuracy, fitting effect,
and running time. Mean square error (MSE) was used as the evaluation index of model accuracy.
The formula is:

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (10)

where fi, yi are the predicted value and true value, respectively. The test results and real results of each
optimization model were compared to evaluate the fitting effect of the model. The running time of
each optimization model during the training test was counted to evaluate the computational efficiency
of the model.
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3.1. Optimization of Batch Size

Batch size [24] represents the length of the gas sequence that LSTM can utilize. It is a reaction of
the data association length. To study the effect of batch size on the model, we set the number of LSTM
network layers to 2 and the number of neurons to 64. Batch size was 10, 20, 50, and 100 performances,
and the experimental results are shown in Figures 6 and 7 and Table 1.

Figure 6 shows that when the batch size is 50 and 100, the loss value is about the same, which is
obviously better than the loss value when the batch size is 10 and 20. When the batch size is 50,
the prediction fit is the best. From Table 1, the batch size is 50, although the running time is not the
shortest, but its MSE is the smallest. As the batch size increases, the prediction ability of the gas
concentration prediction model improves. However, when the batch size is increased to a certain
extent, although the running time is shortened, the prediction accuracy of the model does not improve;
on the contrary, the fitting effect of the prediction result is degraded.
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Table 1. Batch size prediction results.

LSTM = 2 Layers; Neurons = 64

Batch Operation Time Mean Square Error

10 8 min 0.010897
20 5 min 0.009293
50 3 min 0.008331
100 2 min 0.009689

Taking into account prediction accuracy, running time, fitting effect, and other factors of the
model, when the batch size is 50, the prediction effect of the model is the best, the running time is
about 3 min, and the error can be reduced to 0.008.

3.2. Optimization of Network Layer Number

The number of network layers will affect the learning ability, training time, and test time of the
model. In theory, the deeper the LSTM layer, the stronger the learning ability. However, the deeper
the model, the higher the complexity of the model, the more difficult it is to converge, and the more
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difficult and time consuming is the training. This paper compares the effects of LSTM with 2, 3,
and layers, as shown in Figures 8 and 9 and Table 2.
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Table 2. LSTM layer prediction results.

Batch Size = 50; Neurons = 64

LSTM Layers Time Mean Square Error

2 3 min 0.008331
3 6 min 0.012725
4 10 min 0.0155

Figure 6 shows that the loss value of two LSTM layers is significantly lower than that of three
or four LSTM layers; the prediction results of the three layers in Figure 7 are slightly higher than the
actual value, but the prediction with 2 LSTM layers has a result closer to the true data value. Figure 2
shows that the LSTM with two layers had the shortest time and least square error value. As the number
of LSTM layers increases, the learning ability of the model is continuously enhanced, but the accuracy
of prediction declines and the corresponding running time increases. Considering the accuracy, fitting
effect, and running time of the model, the prediction effect of the 2-layer LSTM model is optimal.
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3.3. Comparison of Predicted Length

The key to the model is prediction. Therefore, predicting the next time period was studied in
depth. The predicted length of the model is closely related to the selected batch size. The predicted
timestep length is equivalent to the batch size. According to the previous experimental data, we chose
the optimal batch size to be 50. We compared the prediction results with the timesteps of 1–4, as shown
in Figures 10 and 11 and Table 3.
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Table 3. Predicted length results.

Timestep Mean Square Error Maximum Error

1 (50) 0.000713 0.003381
2 (100) 0.001551 0.011366
3 (150) 0.001862 0.011355
4 (200) 0.001549 0.012031

When the predicted length timestep is 1, the loss value is at least 0.0005, and the prediction
effect of the error variation region is good (Figure 10). With increased prediction length, the loss
grows rapidly, and especially the individual gas concentration protrusion point prediction deviation is
large. When the timestep is 1, the prediction model can better fit the law of gas concentration change.
With increased prediction length, the fitting effect no longer meets the actual requirements and the
inflection point appears as severe hysteresis at some time; the detailed prediction of the length error
comparison is 4. When the timestep is 1, the maximum error is 0.003, which is in line with coal mine
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safety requirements. Considering that the accuracy of the prediction of gas concentration in actual
production is high, the prediction effect is best when the timestep is 1.

The setting of the batch size determines the amount of related information between the time
series data that the LSTM can utilize; the number of network layers affects the learning ability, training
time, and test time of the model, and the multi-input variable information fusion can improve the
performance of the model. In this paper, a batch size of 50, two LSTM network layers, and a 50-unit
prediction length are the optimal parameters of the LSTM gas prediction model. After training,
the model can better learn variations of gas concentration, especially at the inflection point of gas
concentration change, which can show the superiority of the prediction model.

4. Discussion

4.1. Model Comparison

In order to verify the advantages of the LSTM model in different types of cyclic neural networks,
this paper replaces the hidden layer structure of the LSTM model with the BidirectionRNN [25] and
GRU [26] structures and experiments with the same parameters. The results are shown in Figures 12
and 13 and Table 4.
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Table 4. Comparison of operation results.

Model Model Parameter Operation Time MSE

LSTM Batch size = 50
2 nerve layers
128 neurons

5960 s 0.003298
GRU 4543 s 0.003475

Bidirection 19,000 s 0.00541
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The loss values of LSTM and GRU are more stable and lower than those of BidirectionRNN in
Figure 12. In Table 5, under the same model parameters, LSTM and GRU run time is shorter than
Bidirection; in Figure 13, for GRU only some peak points and overall trends can be fitted, but the fitting
effect at specific moments is not good. Bidirection can effectively fit the values of peaks A, C, D, F,
and G, but in the valleys B and E, the fitting effect of G and I is far less than that of LSTM. Compared
with GRU and Bidirection, LSTM can effectively fit not only the overall gas concentration change
trend, but also the peak and trough values, and fit the time series. The error is minimal during the
process of changing trends. LSTM is better than the GRU and Bidirection models for two reasons. First,
both LSTM and GRU update and retain information through gate control. However, the parameters
in GRU are less suitable for fewer samples, and there are more suitable samples in LSTM. Second,
Bidirection has strong learning ability, but there is more complexity, requiring training samples to be
larger and more time consuming.

Table 5. Comparison of prediction results.

Model Maximum Error Minimum Error Average Error

BidirectionRNN 0.067761 0.000572 0.022019
GRU 0.063648 0.000916 0.02246
LSTM 0.046283 0.000589 0.015979

4.2. Forecast Results and Analysis

To further verify the superiority of the LSTM model, this paper compares the overall fitting effect
and prediction results of LSTM with GRU and BidirectionRNN, as shown in Figures 14–17. In the gas
time series, GRU can better predict the trough value. The prediction result is lower than the true value
in the peak of the time series; the Bidirection model predicts poorly and the overall prediction value is
higher than the true value. LSTM is better: it predicts the overall trend of the gas time series, especially
at the inflection point of gas concentration change, which can better reflect its superiority. Compared
with the prediction results, LSTM is significantly better than BidirectionRNN and GRU. Although
the three models can predict the overall change trend of gas concentration, the prediction error of the
LSTM model is significantly smaller than that of the BidirectionRNN and GRU models. Table 5 shows
a detailed comparison of prediction data errors. The BidirectionRNN and GRU prediction models are
roughly similar. The maximum mean square error is 0.06, the minimum mean square error is 0.0005,
and the mean square error is 0.02. The LSTM prediction model is more robust, with better saturation
and higher accuracy, and the maximum and average mean square error can be reduced to 0.04 and
0.016, respectively.Energies 2019, 12, x FOR PEER REVIEW 12 of 15 
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In order to improve the practicability and reliability of the LSTM gas concentration prediction
model proposed in this paper, the production monitoring data of other working faces in the Tingnan
coal mine are selected for the LSTM gas concentration prediction model. The prediction results are
shown in Figure 18.
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Figure 18 shows the LSTM gas concentration prediction model. During the training process,
the model learning ability was poor at the initial training time. As the parameter weights in the model
were continuously optimized, the model learning ability was gradually enhanced, especially at the gas
concentration time inflection point. The trend of gas concentration change can be well learned. During
the test, the LSTM gas concentration prediction model better fit the variation trend of gas concentration
time series, and the mean square error was reduced to 0.007. In the prediction process, the LSTM gas
concentration prediction model predicted that the absolute error could be reduced to 0.006, and the
predicted absolute mean square error fluctuation range was 0.004–0.026. In summary, the LSTM gas
concentration prediction model can effectively predict the gas concentration change trend in the next
time period in other application scenarios with high prediction accuracy and robustness and can be
used for other applications.

5. Conclusions

From the results of this work the following conclusions may be proposed:

(1) During the training process, the selection of batch size and number of LSTM layers has a great
influence on the objective function value, fitting effect, and running time. The appropriate batch
size and number of LSTM layers can effectively improve the model. Predicting the accuracy and
fitting effect and reducing the training running time, the LSTM gas concentration prediction model
in this experiment used a batch size of 50 and two LSTM layers as the optimal model parameters.

(2) Compared with other cyclic neural network variants, BidirectionRNN and GRU prediction
models, the effects of LSTM prediction are better, the average mean square error of the model can
be reduced to 0.003, the predicted mean square error can be reduced to 0.015, and the predicted
mean square error range is 0.0005–0.04, which has higher accuracy, robustness, and applicability.

(3) The cyclic neural network can solve the time series problem, and the LSTM can solve the problem
of gradient disappearance and gradient explosion and deal with the time series with long delay.
For the gas concentration time series, the LSTM model can predict the concentration of gas
in the next time period in a short time range, especially at the time inflection point of the gas
concentration change, which can better reflect the LSTM prediction time series data, and the
mean square error can be reduced to 0.005.

(4) Compared with the traditional gas concentration prediction method, the model selects more
monitoring data with longer samples and time spans as training samples. The LSTM prediction
model has higher precision and wider application scenarios. At the same time, after learning
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the gas concentration time series law, the LSTM model can clearly predict the trend of gas
concentration change in the next time period and provide a reference for coal mine safety.
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