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Abstract: Time series analysis using long short term memory (LSTM) deep learning is a very attractive
strategy to achieve accurate electric load forecasting. Although it outperforms most machine learning
approaches, the LSTM forecasting model still reveals a lack of validity because it neglects several
characteristics of the electric load exhibited by time series. In this work, we propose a load-forecasting
model based on enhanced-LSTM that explicitly considers the periodicity characteristic of the electric
load by using multiple sequences of inputs time lags. An autoregressive model is developed
together with an autocorrelation function (ACF) to regress consumption and identify the most
relevant time lags to feed the multi-sequence LSTM. Two variations of deep neural networks, LSTM
and gated recurrent unit (GRU) are developed for both single and multi-sequence time-lagged
features. These models are compared to each other and to a spectrum of data mining benchmark
techniques including artificial neural networks (ANN), boosting, and bagging ensemble trees. France
Metropolitan’s electricity consumption data is used to train and validate our models. The obtained
results show that GRU- and LSTM-based deep learning model with multi-sequence time lags achieve
higher performance than other alternatives including the single-sequence LSTM. It is demonstrated
that the new models can capture critical characteristics of complex time series (i.e., periodicity) by
encompassing past information from multiple timescale sequences. These models subsequently
achieve predictions that are more accurate.

Keywords: long short term memory networks; gated recurrent unit; short- and medium-term load
forecasting; ANN; deep learning; ensembles

1. Introduction

Electrical energy must be consumed as soon as it is produced since it cannot be stored. Thus,
its demand and supply must be carefully balanced through accurate load forecasting [1]. Moreover,
the success of energy domain activities like load scheduling, power system planning and economical
operation of power plants is crucially depending on the accuracy of load forecasting for the
short and medium term horizons. One way of achieving accurate load forecasting is time series
analysis. The purpose of such a technique is to carefully consider the past observations in order to
identify data patterns that best describe the inherent structure buried in the series and capture the
underlying data generation process [2]. The autoregressive integrated moving average algorithm
(ARIMA) is a well-known statistical approach commonly used for time series modeling to accurately
predict short-term temporal structures. Similarly, the autoregressive (AR) model provides adequate
representation of the data generation mechanism based on time series. These techniques use the
assumption that time series data (readings) are only linearly dependent on some past readings of the
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same time series. However, for long and complex time series, the forecasting performance of these
techniques drops since their derived models assume linear relationships and stationary properties of
the time series.

Electric load profile for a large metropolitan follows complex cyclic and seasonal patterns which
are related to industrial production calendar, weather impacts and human activities. Non-linear models
using the past history usually perform better than simple linear models like moving average (MA)
and autoregressive integrated moving average (ARIMA) [3]. In general, several approaches of electric
load forecasting using traditional statistical and machine learning techniques have been proposed to
improve the accuracy forecasting, however the need of more robust load forecasting models is still a
high priority [4].

In this direction, deep learning approaches have recently gain significant attention of many
researchers and have showed tremendous progresses in many domains like acoustic modeling, natural
language processing, and image recognition [5-7]. These deep layered structures increase feature
abstraction capability and allow complex non-linear patterns modeling. In particular, recurrent neural
network (RNN), which is a deep learning architecture designed specifically to operate over sequential
time series data and LSTM is a variation RNN originally developed by Hochreiter et al. [8]. It allows
preservation of the weights that are propagated forward and backward through layers. Similarly gated
recurrent networks (GRU) is another variation of standard RNN introduced by Cho, et al. in [9] which
like LSTMs overcome the problem of vanishing gradient to model long term sequences. LSTM and
GRUs are attractive schemes for modeling sequential data as they encode contextual information from
past inputs thanks to their ability to learn complex non-linear patterns and automatically extracting
relevant features. Despite their attractiveness, the applications of these deep learning models are
relatively rare and mostly concern computer-related domains. To the best of our knowledge, we were
among the first who have proposed a time series analysis based on LSTM deep learning model to
predict short and medium electric loads [10]. Although, it performed better than alternative machine
learning approaches, the proposed LSTM forecasting model revealed a lack of validity and therefore
was unable to sustain high out-of-sample performance. This is because it neglects the complex electric
load characteristics exhibited by time series, like periodicity, data frequency, trends, levels, structural
breaks and calendar effects. In particular, the complex daily, weekly, monthly and yearly patterns
of electric load are not included as input to the previous LSTM based forecasting model. It rather
considers only one single sequence of past loads as input to predict the short and medium term
electrical loads. Accordingly, the previously proposed model ignores important domain knowledge
that might have an impact on the forecasting validity and robustness.

In this work, we propose a load-forecasting model based on enhanced-LSTM that explicitly
considers the periodicity characteristics of the electric load while using multiple sequences of relevant
inputs time lags. In order to incorporate the past electric load readings that will be used by
multi-sequence LSTM, an autoregressive model is developed together with an autocorrelation function
(ACEF) to regress consumption and identify the time lags that are most relevant to the multi-sequence
LSTM. For the sake of comparison and validation, two variations of deep neural networks, LSTM and
GRU are developed for both single and multi-sequence time-lagged features. Machine learning like
multi-layer perceptron, boosting and bagging ensemble trees techniques are implemented in order to
be compared to our proposed approach. France Metropolitan’s electricity energy consumption data is
used as test bed. Experimental results show that multi sequence LSTM and GRU forecasting models
significantly outperform the other alternative machine learning techniques.

The rest of the paper is organized as follows: Section 2 summarizes the literature on the evolution
of electrical load forecasting and underlines the differences between our current and previous proposals.
While Section 3 provides a brief description of LSTM, GRU and the state-of-the-art machine learning
benchmarks, Section 4 introduces the methodology of the proposed approach along with an exploratory
data analysis. Section 5 describes the experimental results and the performance evaluation. Section 6
is dedicated to our models’ validation over the short and medium horizons, and provides a discussion
on threat to validity. Finally, Section 7 draws the conclusions and presents suggestions for future work.
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2. Literature Review

Load forecasting has been widely studied for different horizons over the last decades. Especially,
the short-term horizon has attracted considerable research effort [11-14], where the aim was always to
improve the performance of forecasting though efficient use of modeling techniques. Simultaneously,
several works on forecasting classification have identified two main categories of forecasting methods,
namely, engineering methods and data driven methods. In the past energy modeling was mostly based
on engineering approaches using dedicated building energy simulation tools. These approaches were
time consuming and required detailed domain expertise as well as significant amount of information
regarding the structural, metallurgical and geometric properties of the building [4]. Nowadays,
proliferation of smart meters, various low cost sensors and BAS has enabled availability of large
amount of electricity consumption data that has supported more and more researchers to use data
driven approaches for modeling and analysis. Data driven methods, rely on historical data collected
from tracking the energy consumption of previous episodes. They are very attractive Artificial
Intelligence (Al) methods, however little is known about their forecasting ability out of sample. Indeed,
their accuracy decrease when applied in new circumstances. Unfortunately, the ability of generalization
of Al forecasting models remains problematic [11].

Electricity demand forecasting plays a key role for power companies as they need to develop long
and short term strategies, in particular short-term load forecasting (STLF) has attracted considerable
attention in smart grids and buildings. In fact, several works ranging from classical time series analysis
to recent machine learning approaches have been carried out on STLF [14-19]. Yukseltan, et al. used
sinusoidal variations as input features to a linear regression model to predict electricity demand
over daily and weekly horizons reporting a 3% MAPE for Turkish power market [20]. Zhang et al.
developed a SVR model to predict daily and half hourly energy consumption. The proposed models
exhibit a lower MAPE for both the daily dataset and half-hourly dataset using only the time variable
and its lagged values as their input [21].

Ensemble models have been successfully used for load forecasting as it performs better than
single estimators. They decrease variance of a single estimate as they combine several estimates from
different models resulting in higher prediction stability. Well-known approaches for homogeneous
ensemble learning like boosting and bagging were used in many works. For example, Papadopoulos
and Karakatsanis developed four estimation models; two of which are statistical time series and the
other two are ensemble models namely random forest and gradient boosting regression trees for 24-h
ahead load forecast [22]. Dudek proposed a random forest model for short term load forecast using
time series data with multiple seasonal variations [23]. The random forest performed better than
ARIMA, exponential smoothing and ANN. Similarly, Wang et al. proposed a hybrid model integrating
discrete wavelet transform and XGBoost for electricity consumption forecast [24]. The derived model
outperforms the other hybrid models that integrated discrete wavelet transform with support vector
regression, ANN and unitary XGBoost.

Due to the elastic configurations of ANN structures with more than one hidden layer, deep
neural networks (DNN) are attracting many researchers. Hossen et al. used a multi-layered deep
neural network for the Iberian electric market data for day ahead load forecast [25]. For weekend
and weekday forecast, various activation functions were tested to achieve a lower MAPE. He used
a combination of convolutional neural network for feature extraction from historical load data and
recurrent neural network to learn patterns for day ahead hourly load consumption [26]. Several strong
baselines models including linear regression, Support Vector Regression (SVR), a DNN with three
hidden layers were also used. A parallel configuration of ANN and RNN reported the lowest MAPE.

Zheng et al. [27] used LSTM neural network along with similar days selection and empirical
mode decomposition to forecast short-term electric loads. This is the closest work to our previously
proposed approach [10], but it reveals many technical differences. Feature importance was determined
using XGBoost and k-means was employed for similar days clustering. The approach improved
LSTM predictive accuracy. Machine-learning models, in particular the late deep learning, have the
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potential of performing better than traditional time series analysis and regression approaches [10].
However, there is still a crucial need for improvement to better model non-linear energy consumption
patterns. The improvement is associated with high accuracy and stability of prediction especially for
the medium term forecasting. Henceforth, in our recent work, we have demonstrated that trained
deep learning model on time series data derives more accurate forecasting outputs than those obtained
with a shallow structure [10]. We proved that optimal LSTM-RNN behaves similarly in the context of
electric load forecasting for both the short-and-medium horizon with high accuracy achievement. In
particular, our approach was compared with the machine learning benchmarks including ensemble
models and several linear and non-linear models optimized with hyperparameter tuning. However,
the complex daily, weekly, monthly and yearly patterns of electric load are not fully encompassed in
the input of our previous LSTM based forecasting model. It rather considers one single sequence of
past loads as inputs to predict the short and medium term electrical loads. Accordingly, the previous
proposed model is omitting an important domain knowledge that would be critical for the forecasting
validity and robustness.

In this work, we propose a load-forecasting model based on enhanced-LSTM that explicitly
encompasses the periodicity characteristic of electric load while using multiple sequences of relevant
inputs time lags. In order to select the past-load records that will be used by multi-sequence LSTM,
an autoregressive model is developed together with an autocorrelation function to regress consumption
and identify the time lags that are most relevant to the multi-sequence LSTM. Our new approach
differs from other deep learning models including our previous LSTM [10] is the following aspects:

(i) We train LSTM and GRU deep learning models with single and multiple time scale sequences.
This will allow capturing the dynamic features in longer sequences to accurately forecast
aggregate electric load while targeting predictions that are robust against time variations.

(i) We compare the LSTM and GRU models with ANN, boosting and bagging decision trees ensemble
models in both single and multiple time scale sequences. The best performing model is selected
for our benchmark.

3. Background

This section provides a background on LSTM and GRU RNNS and briefly describes the benchmark
ensemble trees models as well as the used performance metrics of evaluation.

3.1. From RNN to LSTMs and GRUs

A Recurrent Neural Network utilizes sequential information in which the output depends not
only on the current inputs but also on the previous inputs. They are called recurrent because the
data is similarly processed for every element in the data sequence. Because of their internal memory,
RNN'’s can remember important information about their inputs and thus preferred for time series data.
However due to vanishing gradient problem, RNNs model stops the learning process as the values of
gradient become too small.

Figure 1 depicts an unrolled RNN configuration on the input sequence, where x; is the input and
s¢ is the hidden state at time step f, which is the memory of the network. Standard RNNs are affected
by vanishing gradient problem, as the gradients tends to get smaller and smaller as we move backward
in the network. As a result, neurons in the earlier layers learn very slowly as compared to the neurons
in the later layers in the hierarchy. LSTMs and GRUs were designed to overcome this difficulty of
gradient propagation. They introduce input, forget and output gates which determine addition of new
information to cell state, deletion of less important information from memory and output gate that
decides what to output from memory. Figure 2 (reported in ([28]) shows the information flow and the
set of gates within the LSTM cells.
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Figure 2. Information flow in an LSTM block of the RNN.

Gates in LSTM cell reduce the risk of vanishing gradients problem supporting learning of
long-term dependencies [29]. This gating mechanism enables the LSTM cell a lot of control over
what it remembers and forgets over time, allowing efficient management of its internal cell memory.
LSTM models its input sequence {x1, X, ..., X} using recurrence function as depicted hereafter:

he = f(hi-1, xt) 1

where x; is the input at time ¢, and #; is the hidden state. Gates are introduced into the recurrence
function f in order to solve the gradient vanishing or explosion problem. States of LSTM cell are
computed as follows:

it = o(Wirlht—1, xi] + b;) )
fi = o (Wp[, xi) +by) 3)
or = 0(Wy-[hy—1, x¢] + bo) 4)
C = tanh(We-[hy_1, x] + bc) (5)
Ci=fioCa+i0C (6)
ht = oy ® tanh(Cy) 7)

where i, f; and o; are, respectively, the input, the forget and the output gates, the W’s and the b’s are
the parameters (weights and biases) of the LSTM unit, and the current and the new candidate cell
state are respectively noted as C; and C. Equations (2)—(4) are expressing three sigmoid functions for
it, f and o; gates. Given the input x; and the previous output /;_1, the three gates will block or pass
the signal. In particular, if the gate is 0, then the signal is blocked. The forget gate f; determines the
previous output h;_1 that are allowed to pass the gate. The input gate i; decides on the input to update
the cell state. The output gate o; decides what will be the output based on the cell state. The transfer
function in Equation (6) calculates the new cell state C; using the old cell state C;_1. The new candidate
values C of memory cell and the output of current LSTM block /; are computed using hyperbolic
tangent function defined respectively by the Equations (5) and (7). At every time step, the two states C
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and h; are automatically transferred to the next cell. The weights W’s and biases b’s are learnt while
minimizing the differences between the LSTM outputs and the actual training samples.

GRU is a famous variant of the LSTM,; its structure is similar to a LSTM cell but with only two
gates; update (combination of forget and input gates) and reset gates. The model is simpler and often
computationally faster than standard LSTM models [30] as shown in Figure 3 (adopted from [28]).
Like LSTM, it overcomes vanishing gradient problem and due to simpler internal structure, it is faster
to train as fewer computations are required for updating hidden state. Carefully trained GRU can
perform extremely well in complex modeling situations.

hy 1( \ >

Figure 3. Information flow in GRU block of the RNN.

Update gate, reset gate and cell states for GRU are computed using the following equations:

zt = 0(Wy-[hi—1, x4¢]) 8)
re = o(Wy-[hi—1, x4]) )
}Tt = tanh(W~[rt Orhi_q, Xt]) (10)
h=1—-2z)Oh1+z0Oh (11)

3.2. Ensemble Approaches

Tree-based ensemble approaches, namely bagging and boosting, are used in various
load-forecasting tasks and proved to be highly effective in modeling complex electricity consumption
patterns [31]. Ensemble trees are effectively used for prediction tasks as they combine multiple
predictions from several trees to overcome accuracy of simple prediction and avoid possible overfit.
The main idea behind ensembles is that a group of weak learners come together to form a strong
learner. Boosting is an ensemble technique where new models are added sequentially to correct
errors made by previous models until no further improvements can be made. XGBoost, an improved
version of the gradient boosted machine algorithm, provides fast computational speed and improved
model performance. It allows building more stable base models with low chances of overfitting.
Likewise, gradient boosting and extreme gradient boosting belong to boosting category. Commonly
used bagging ensemble models are random forest and extremely randomized trees. Random forest
uses a random subset of data as well as random selection of features for growing trees. Extra trees
model work by random selection of both the features and cut-point choice while splitting a tree node.

3.3. Performance Metrics for Evaluation

Root mean squared error (RMSE), mean absolute error (MAE) and coefficient of variation RMSE
(CVRMSE) would be used to evaluate forecast accuracy of the time series models [32]. Coefficient
of variation RMSE is the root mean square error normalized to the mean of measured values. It is
a dimensionless measure that quantifies the expected normalized prediction error and is a good
measure of accuracy. A high CV score indicates that a model has a high error range. MAE
measures the average magnitude of the forecasting errors, without considering their direction. RMSE



Energies 2019, 12, 149 7 of 21

which penalizes larger error terms, is the square root of the mean squared difference between the
statistical estimate of the parameter and actual observed value. MAPE will be used to assess the
performance of the forecasting models with other references. The error measures are defined using the
following equations:

o VR =97

CV(RMSE) 7 x 100
N Y AYA
RMSE — 21:1(% yz) (12)
N
N | LN,
vi — il
MAE = R 13
l; N (13)
100 ¢ |yi — 7
MAPE % = — 14
NE& o 9

where 7 is the predicted, y; is the actual, 7 is the average energy consumption and N is the number of
data points.

4. Forecasting Methodology

The proposed methodology for short and medium-term load forecasting using machine learning
and deep learning models is depicted in Figure 4. Our model focuses on building accurate and
robust predictions using multi-sequence timescale features. Half-hourly electricity consumption data
spanning a period of nine years is merged with meteorological variables such as temperature, humidity
and wind speed. After merging, data preprocessing is performed to check null and missing values in
addition to outlier identification. Data scaling standardizes the range of variables. A training/test split
is performed to split the data for model training and testing while maintaining the temporal order.
The prepared data can then be used for machine leaning, single and multi-sequence LSTM and GRU
deep models. The machine learning models that would be used for comparison with our approach
comprise ensemble and ANN models as depicted in Figure 4. Best performing model among these
machine-learning models giving the lowest forecasting error would be selected as the benchmark for
comparison with single and multi-sequence models. We use an ACF plot and autoregressive model
to identify the characteristics of time series like the most significant lags. Several configurations of
the LSTM and GRU models are then trained. These configurations include single and multiple lags
as inputs with different lengths, neural network architecture, training epochs, batch size and type of
optimizer etc. The best performing configurations of LSTM and GRU are determined empirically after
training several single and multi-sequence models. Finally, the LSTM and GRU model performances
are compared to the machine learning benchmark. The model validation using time series split,
sliding window approach and on different short and medium term horizons of the proposed model is
carried out.

4.1. Exploratory Data Analysis

We have used RTE power consumption data set [33], which comprises half-hourly electrical
consumption in megawatts for a period of 09 years for a metropolitan power system in France.
The power consumption dataset ranges from January 2008 until December 2016.

As depicted in the Figure 5, the daily, the weekly and the monthly load profiles exhibit characteristics
like cyclicity and seasonality of the aggregated electricity consumption. Such characteristics are obviously
compatible with the electricity domain knowledge that reflects the cyclic and seasonal behaviors of
electricity consumers.
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Figure 5. Electricity load versus time: daily, weekly and monthly patterns. (a) Half hourly consumption;

(b) Weekly Consumption; (c¢) Monthly Consumption.

In Figure 6, the box plot of quarterly load across all years with respect to high and low
temperatures shows a decline in the consumption during the second and the third quarters, and
an increase during the first and the fourth quarters. In addition, the holidays and weekends can affect
the electricity usage; thus weekend-weekday indicator can be used as a potential feature in forecasting
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models as it allows differentiating different consumption magnitudes. The consumption magnitude is
quite different for weekend and weekdays across all years since user appliances usage behaviors can
differ during weekends as shown in the factor plot in Figure 6b.
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Figure 6. (a) Box plot of load consumption for high and low temperatures; (b) Factor plot of electric
load consumption weekend vs. weekday.

The correlation plot in Figure 7 indicates a high correlation of electricity consumption with
its previous time lags suggesting that lags might be useful predictors of the dependent variable,
i.e., electricity consumption. The joint plot of weather variables depicted in Figure 8, shows that
temperature has a high negative correlation of 0.94 with consumption while humidity and wind speed
have, respectively, low correlations of 0.61 and 0.32. The correlation between the consumption and the
temperature is explained by the cooling nature of the load being analyzed.
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4.2. Selecting Machine Learning Benchmark Model

As explained in the methodology, after data preprocessing we need to benchmark models.
The benchmarking allows comparing our models with the existing ones and empirically rank different
algorithms according to certain performance criteria. Hence, we start modeling by fitting a multi-layer
perceptron (MLP) model representing the most basic form of neural networks for multivariate statistical
analysis. Afterwards, we will build four ensemble models—two bagging and two boosting models—as
shown in Figure 9. The best performing model will be selected as benchmark. The data is split into
training and test set data while maintaining the temporal order of observations. Since our dataset is
fairly large comprising more than 150 thousand records, training and tests partitions would therefore
adequately represent the original load forecasting problem.

Artificial Neural o| Feed-forward Network
Network (ANN) Multi Layer Perceptron ]
Bagging Performance Metrics
P 1. Random Forest > Comparison
2. Extra Trees Regressor
Ensembles —
Boosting v
P 1. Gradient Boosting - ‘ Benchmark Model |
2. Extreme Gradient Boosting

Figure 9. Benchmark selection using ANN and Ensemble models.

The input of these models are time lags, weather variables such as temperature, humidity,
and wind speed, in addition to weekend-weekday indicator, month number and quarter. By using lags
of variables, regression model allows learning from various time moments in the recent history. All the
models use mean squared error as the loss function for optimization purpose. Three performance
metrics are used to evaluate all the trained models’ achievements on the same testing dataset.
The results are shown in Table 1.

Table 1. Performance Metrics of ANN and Ensemble Models.

Model RMSE CV (RMSE) MAE

ANN 725.89 1.311 559.63
Random Forest 527.25 0.952 368.91
Extra Trees Regressor 492.13 0.889 346.44
Gradient Boosting 455.84 0.823 320.72

Extreme Gradient Boosting 440.16 0.795 311.43
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Given its highest performance, the boosting model XGBoost is used as a benchmark model.
Figure 10 shows a high agreement, at different load scales, between the observed load and the load
predicted by the XGBoost model. For a perfect model all the points will lie on the diagonal blue line.

60,000 «  Predicted e
55,000
50,000
45,000

40,000

Observed Electric Load

35,000

30,000

30,000 35,000 40,000 45,000 50,000 55,000 60,000
Predicted Electric Load

Figure 10. Predicted versus actual load by XGBoost model.
Checking Overfitting for XGBoost Model

In order to prevent overfitting, we have implemented early stopping for the XGBoost model.
The model is tested after every boosting round against test data. The training of the model finishes
earlier if the evaluation metric does not improve for a given number of rounds. The learning curve
illustrated in Figure 11 shows the validation and the training score of the fitted XGBoost model for
varying numbers of trees. The mean squared errors for both the training and testing sets of XGBoost
model decreases while adding sequential decision trees and converge at similar values, which indicates
that the model does not suffer from either variance or bias error.

50,000 —*— Train
—— Test
40,000
w 30,000
%)
=
o
20,000
10,000
0 T
0 20 40 60 80 100 120 140
No of Trees

Figure 11. Learning curve for the XGBoost regressor.
4.3. LSTM-RNN Model Training

After the machine learning benchmark selection, we build deep learning LSTM and GRU models
as explained in our methodology. To model our current forecasting problem as a regression model,
we state that the consumption at timestamp t + 1 (dependent variable) is a function of previous
consumption at timestamps f, t — 1, f — 2, ..., t — n. These time lags exhibit the conditional
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dependencies that will be useful for forecasting future values. Consequently, we construct many-to-one
structure L5STMs and GRUs models as they are suitable deep learning models for sequential and
temporal data.

The larger the data, the greater is the scale of the LSTM network. In other terms, more hidden
layers and neurons are used to model the future consumption while avoiding the overfitting problem.
Otherwise, with less large neuron layers the model tends to underfit during the training. Actually,
many parameters need to be carefully set to achieve high performance. They include the number
of hidden layers, the number of neurons per layer, the number of epochs, the batch sizes, and the
activation and optimization functions. The number of time lags that are used as inputs matches the
size of the input layer of LSTM or GRU model, the neurons of the hidden layers are fully connected to
other layers and the output layer has a single neuron. The mean squared error is used as loss function
between the input and the corresponding neurons in the output layer. We use two different inputs
configuration for LSTM and GRU models as shown in Figure 12a single sequence of immediate time
lags and Figure 12b separated multi-sequence time lags other than immediate.

Immediate
Consumption Lags
a.
Immediate = Previous Days/

; s i ] icti
Consumption Single Sequence LSTM/ | Predictions B g Multi Sequence LSTM/ Predictions
) — I— S weeks Lags 4q L »

Single sequence GRU Model s 3 g GRU Model
o
Lags 9 |Previous Month Lags

(a) (b)
Figure 12. Inputs to LSTM and GRU models (a) Single Input sequence (b) Multiple Input sequence.

5. Experimental Results

In this section, we empirically determine deep learning model hyperparameters, examine both the
ACF plot and autoregressive model, and then we derive several single and multi-sequence LSTM and
GRU models using the electricity consumption dataset. When working with deep learning recurrent
models, it is worth to use both the LSTM and GRU cells to recognize which one provides more
accurate results for a particular network configuration and dataset. Obtaining good results using
LSTM or GRU networks is not straightforward, as it requires consideration of the tuning of many
hyperparameters. Table 2 lists the hyperparameters value sets to be tested for both LSTM and GRU
models in our experimentation.

Table 2. Hyperparameters testing for experiment.

No Hyperparameter Option
1 Time Lags 10, 20, 30, 40
2 No of Hidden Layers 1,2,3,4
3 No of Neurons in Hidden layer 30, 40, 50, 60
4 Batch Size 50 to 200
5 Epochs 50 to 150

Sigmoid, hyperbolic tangent (tanh) and

6 Activation Functi AN ¢
chivation Function rectified linear unit (ReLU)

ADAM (adaptive moment estimation),
7 Optimizers. SGD (Stochastic gradient descent),
RMSProp (Root Mean Square Propagation)

The network’s performance is highly dependent on the numbers of hidden layers and neurons per
layer. For both the LSTM and GRU models, we obtained significantly better results when using three
hidden layers with 100, 60 and 50 neurons, respectively. Increasing the number of layers beyond three
did not, further reduced the loss. The number of epochs used were 150 neurons with batch size of 125
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training examples. The LSTM and GRU models poorly perform on smaller window sizes of 5 and 10.
The most effective length found was 30 time lags for the single sequence model. Empirical evaluations
show that nonlinear activation function ReLU is found to be the best choice of the activation function
for the hidden layers since is allows the best network performance. Unlike fanh and sigmoid activations,
ReLU avoids vanishing gradient problem. Among the optimizers, ADAM, the adaptive moment
estimation, performs faster convergence than SGD, the conventional stochastic gradient descent. With
such an optimizer, there is no a need to specify and tune a learning rate as in the case of the stochastic
gradient descent.

5.1. Models with Single-Sequence Input

After selecting the best network configuration and hyperparameters as explained previously,
we train LSTM and GRU models using single input sequence of previous 30 lags. Table 3 shows the
summary results, where both LSTM and GRU models achieve very close results and perform better
than the benchmark.

Table 3. Performance Metrics Comparison of single sequence models.

Metrics LSTM Model 30 Lags GRU Model 30 Lags XGBoost Model Metrics

RMSE 346.34 339.22 440.16
CV(RMSE) 0.622 0.611 0.795
MAE 257.05 251.66 311.43

5.2. Models with Multi-Sequence Input

After fitting LSTM model with a single input sequence of immediate 30 time lags, our second
approach is to introduce separate past time sequences other than immediate. These time sequences
are defined as days, weeks or months before. Therefore, we can consider the correlations between
separated time sequences in order to further improve the model accuracy. In fact, exploring the
relations between series of time lags sequences can provide the model with additional information
that might be significant for accuracy improvement.

In order to have a broader understanding of which time lags are significant to be used for LSTM
and GRU models, we developed an autoregressive model and autocorrelation function (ACF) plot.
In autoregressive model, we assume that a variable depend on its previous values. An autoregressive
model is developed to regress consumption using past lags up to 60 days, lag(x,1), lag(x,2) ... ... ,
lag(x,59), lag(x,60). The series is differential log to remove trends and stationarity. The plot of the
lags coefficient for previous 60 days is shown in Figure 13 from which it is seen that lag coefficients
1, 2,7, and 14 are important with small p-values; hence, the parameters are significant. The model
has adjusted R-squared value of 0.775 and high F-statistic value of 375, suggesting that the parameter
estimates for this model were all significant and non-zero.

—e— Coefficient = p-values

0.8
0.6 .
0.4 "

0.2

Coefficient (B)

-0.2

Consumption Lags (Days)

Figure 13. Coefficients of the autoregressive model.
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Furthermore, we analyze the ACF plot for the past 100 days’ time lags with 95% and 99%
confidence intervals as indicated by the dotted lines in Figure 14. The values above the lines are
statistically significant which reveals that lags up to past 60 days are significant

1.00

0.75

o Wiy,

i ninininiE N Y.
A A A A AL
B L e R

Figure 14. Autocorrelation function (ACF) plot.

Based on the importance of lags, a series of experiments were performed using lag sequences of
previous day, weeks and months as input to LSTM and GRU model. Obtained results are shown in
Table 4.

Table 4. Impact of the Different timescales on LSTM and GRU models performance.

No Model Inputs Errors LSTM Errors GRU
Input1 Input 2 Input 3 MAE RMSE MAE RMSE
1 Immediate 10 2 days, 10 lags 3 days, 10 lags 31541 39470 35234  270.56
2 Immediate 10 1 day, 10 lags 1week,10lags 22079  293.74 23318  312.64
3 Immediate 10 1 week, 10 lags 2 week 10 lags 293.02  388.35  234.62  326.48
4 Immediate 10 1 week, 10lags 1 Month, 101lags  252.05 351.15 324.67 434.19
5 Immediate 10 1 month,10lags 2 Month, 10lags  389.45 512.40 380.26 490.10
6 Immediate 20 1 day, 20 lags 1 week, 20 Lags 251.16 327.48 202.15 266.57
7 Immediate 20 1 day, 20 lags 2 week, 20 Lags ~ 239.58 314.53 242.14 317.08
8 Immediate 20 1 week, 20 lags 2 week, 20 Lags ~ 291.51 386.30 251.84 353.36
9 Immediate 20 1 week,20lags  1month,20 Lags 332.86  417.32  234.87  334.80
10 Immediate 20 1 month20lags 2 Month, 201ags 323.88 42879  473.01  585.77

By bringing additional past information using multiple timescale sequences, we further reduced
forecasting errors compared to the single sequence LSTM and GRU models using only immediate
lags. LSTM and GRU models at number ‘2" and ‘6’ in the Table 4 with immediate, past day and past
week lags have the lowest errors. Furthermore, these models allowed automatic identification of
temporal relations using only time lag sequences as inputs without creating manual features, as made
for machine learning models.

The plot of actual versus predicted forecast depicted in Figure 15 is capturing the achievement of
the best performing multi-sequence LSTM model on two weeks of testing data. A good fit and stable
prediction for the medium term horizon is obviously observed. Samples of relative errors values are
captured and shown in different areas of the plot. Because of its small amplitude, we also track the
variation of the relative error depicted down in Figure 15.
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Figure 15. Actual vs. predicted forecast achieved by the multi-sequence LSTM model and relative
error variation.

6. Models Validation

This section describes validation of single and multi-sequence deep learning LSTM and GRU
models and discusses the threat of validity. The following three approaches are used for validation
(a) time series split, (b) validation on short and medium term forecasting horizons and (c) walk forward
sliding window approach.

6.1. Models Validation Using Time Series Split

The chosen time series split is a variation of k-fold cross validation in which training sets are
supersets of the training sets that come before them and the testing sets are chunks of data with higher
indices than training set [34] as illustrated by Figure 16. Note that the test set size remains fixed while
training set size will increase for every fold while retaining sequential order of data.

| Model 1 ‘ ‘ Train ‘ Test | |
| Model 2 ‘ ‘ Train ‘ Test ‘ |
| Model 3 ] ‘ Train ]Test | |
\ Model ‘n’ ‘ | Train‘ ] Test‘

Figure 16. Time Series Split for Model Validation.

We use 10-fold time series validation to check performance of single and multi-sequence GRU
and LSTM models. CV(RMSE) metrics for different models is plotted in Figure 17. The test set error
is initially large on first few folds as we are using smaller training set size. The error decreases on
the following folds. Furthermore, multiple sequence LSTM and GRU models errors are lower and
relatively more stable than single sequence models as illustrated in Figure 17.
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Figure 17. Time series cross validation with multiple Train-Test Splits.

The mean and standard deviation values of MAE and RMSE for single and multiple sequence
models across all folds are shown in Table 5, they confirm our previous results depicted in Table 4.

Table 5. Performance Metrics for single and multiple-sequence models using time series split.

Single Sequence Multiple Sequence

Metric/Model
LSTM GRU LSTM GRU
MAE Mean 294.81 342.28 307.12 329.27
Std. Deviation 66.84 103.96 87.61 110.61
RMSE Mean 403.47 446.62 404.94 425

Std. Deviation 89.65 129.03 115.18 142.02

6.2. Validation on Short and Medium Term Forecasting Horizons

The aim of this section is to illustrate the time-variation in forecast accuracy of machine learning
and deep learning models over short and medium term horizons. We plot the prediction performance
of these models starting from the next few hours, days and up to two months into the future as shown
in Figure 18. Looking at the results, we observe that the ensemble model has high variation in forecast
errors on different forecasting horizons. Single sequence LSTM and GRU models also suffered from
significant time variation in their performance compared to multi-sequence models. XGBoost model
shows highest variation in CV(RMSE). With very comparable performances for both the short term
and the medium term horizons, it is evident that multi-sequences models are more accurate and stable.

——#—— LSTM Single Sequence ——u#—— GRU Single Sequence ——e— LSTM Multipe Sequence
——o—— GRU Multipe Sequence ——+— XgBoost

1.03
0.93
0.83

0.73

CV(RMSE) %

0.53

0.43

0.33
0-12 0-24 036 0-2 1-3 3-5 7-8 8-10 14-15 15-17 30-31 31-33 45-46 46-48 60-61 61-63
Hours Days Days Days
Hours and Days

Figure 18. Forecasting Horizon for Machine Learning and Deep Learning Models.



Energies 2019, 12, 149 17 of 21

In order to establish that the variances of single and multi-sequence models, for different
forecasting horizons, varies significantly, we perform two variances Levene’s and Bonett’s tests.
These tests are inferential statistic tests used to assess the equality of variances and are valid for any
continuous distribution. The statistical test will display the results for both methods. Null and alternate
hypothesis are stated as follows:

Hypothesis 1 (H1). Null Hypothesis, 01/02 = K, i.e., The ratio between multi sequence GRU standard
deviation (1) and single sequence GRU standard deviation (02) is equal to the hypothesized ratio K = 1.

Hypothesis 2 (H2). Alternate Hypothesis, 01/02 < K, i.e., The ratio between multi sequence GRU standard
deviation (0'1) and single sequence GRU standard deviation (c2) is less than the ratio K = 1.

From the test results, it is found that p-value for Bonetts test is 0.027, while for Levene test is 0.038.
Thus, we conclude that the standard deviation of LSTM multiple sequence is significantly less than
LSTM single sequence at 0.05 level of significance with a sample size of 16 as shown in Table 6.

Table 6. Statistics for single and multiple-sequence models on various forecasting horizons.

Standard Deviation . 95% Upper

Model CVRMSE) %  21M€  Bound for o
Single-sequence LSTM 0.126 0.016 0.186
Multiple-sequence LSTM 0.071 0.005 0.099

6.3. Validation Using Sliding Window Approach: t-Test for the Difference in Means

To validate the robustness of the multi-sequence LSTM model, we compare it to the single
sequence model using a sliding window train test split as shown in Figure 19. Two sample t-test
compares the means to determine whether single and multi-sequence models means are significantly
different. The testing and training data sets sizes remains fixed for each window, while traversing the
complete dataset.

Meodel 1‘ Train | Test | I | }
Model 2 | | Train I Test ‘ ‘ |
Model 10 | | ‘ ‘ Train | Test ‘

Figure 19. Sliding window train-test split for comparison of means.

The performance metrics are calculated for the ten models and the mean’s differences are
compared using one tailed {-test assuming equal variances. The following hypothesis are tested:
Null Hypothesis, H1: iy — pp =0,

Alternate Hypothesis, H2: p; < py.

Results obtained are shown in Table 7.

Table 7. t-Test for the difference in means: Sliding window approach.

Model Mean CV (RMSE) (%) Variance

Single Sequence LSTM 0.64231 0.004023
Multiple Sequence LSTM 0.58994 0.001603
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The p-value is 0.01569. Thus, we can conclude that that the mean of multi sequence LSTM is less
than a single sequence at the 0.05 level of significance, with a sample size of ten.

6.4. Comparison with other Studies

Mean absolute percentage error is adopted here to assess the performance of our proposed
forecasting model with existing short and medium term forecasting models as shown in Table 8.
The half-hourly electricity consumption is predicted by the multi-sequence LSTM model for day,
week, month and year horizons. The records of MAPE range between 0.48 and 0.55%. Comparing
the MAPE of our model with the benchmarks in Table 8, shows that the proposed model has a good
prediction accuracy.

Based on electrical forecasting studies [11-14,18-26,35,36], researchers have used three broad
categories of input features for load forecasting namely; historical lags, meteorological and calendar
related features. The type of features used by various researchers depends on the forecasting horizon
(short or medium term), temporal resolution, spatial characteristics and underlying data characteristics
in addition of the data availability and the ways of its collection.

Table 8. Reviewed Papers for features and MAPE.

Ref. MAPE (%) Horizon Features Approach

[20] 1.34-3.59 Annual Predictions Harmonics of sinusoidal variations Linear regression

SARIMA, SARIMAX,

Past loads, Std dev, calendar features

[22] 1.32-2.62 Day ahead (month, day, hour) randgm forests gradlent
boosting regression trees

[23] 0.92-2.64 Day ahead Past loads Random forest

[25] 1.19-3.29 90 days Weather and load data Deep neural network

[35] 0.06-4.68 90 days Electrical load, weather, indoor and MLR, MLP, SVR

calendar data.
[36] 2.97-4.62 2 weeks ahead Meteorological, occupancy, calendar ~ Ensemble bagging trees
[Present work] 0.48-0.55 Day, weak, month, year Multi-sequence past loads LSTM

Compared to other models the multi-sequence LSTM using only past load lags as input features
exhibits superior capability as it is able to learn complex time series patterns with long temporal
dependency characteristics. Furthermore, the proposed model uses only the past load lags as inputs.
It in fact exploits implicit information contained in these lags, which reduces the burden of collecting
meteorological or other categories of data for modeling purposes. However, LSTM based modeling
necessitates careful hyperparameter tuning to avoid overfitting and requires longer training times
than machine learning models.

6.5. Threat to Validity

The threats to construct validity of our study are related to two issues. The first one is the
adequacy of data features used as predictors of energy consumption. This issue has been considered
early in our project, where various features like weather information has been added as input, and then
unselected by several techniques of features selection. The second threat concerns the algorithms used
in our data-mining framework that could be on-the-shelf using assumptions that are incompatible
with energy forecasting context. To alleviate this threat, we developed, tested and tuned all the
algorithms in-house.

The internal validity of our results concerns three threats. The first is the extent to which the size
of training data is suitable to the multi-sequence LSTM model training that requires a long history
of data recording. It should reflect the complex electric load characteristics exhibited by time series,
like periodicity, data frequency, trends, levels, structural breaks and calendar effects. In particular,
the complex daily, weekly, monthly and yearly patterns of electric load. To alleviate such a threat,
we used the power consumption data RTE covering a consumption period of 9 years (i.e., from January
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2008 to December 2017). The second threat is the overfitting of the derive forecasting. In general,
an excessive training in the case of complex prediction models leads to a bad generalization. To prevent
our LSTM overfitting, we have proceeded to randomly modify the training examples for each epoch.
Such a training strategy helps to improve the ability of the model to consider various circumstances
and thus enhance its generalization. In addition, intelligent stopping criteria of the training process
are used to reduce overfitting such as early stopping when the minimum error is achieved on the
test set. The third threat is associated with the selection of machine-learning benchmarks. They may
miss-represent the state of the art of the techniques used in the energy prediction. Accordingly, we have
compared our approach to the most successful machine learning as reported in the recent literature
and including our latest proposed single sequence LSTM forecasting model.

The threat to the external validity is related to the performance of our multi-sequence LSTM when
it is used in new circumstances of energy consumption. This is alleviated by carefully considering the
electric load domain characteristics. Indeed, the rationale behind using multiple sequence of inputs is
to introduce generic domain knowledge such as periodicity, data frequency, trends, levels, structural
breaks and calendar effects. In addition, this threat is initially alleviated by deep learning approach
capability to capture generalizable patterns. Furthermore, three different validation approaches are
used to evaluate the performance of the proposed multi-sequence LSTM on unseen data, namely,
time series split, validation on short and medium term forecasting horizons and walk forward sliding
window. Details on the application of these approaches can be seen in Section 6.3.

7. Conclusions

The rigorous management of sustainable energy systems is very dependent on the accuracy of
forecasting models. Electricity consumption behavior is inherently transient in nature, shaped by
medium and long term dependencies. In this research work, we have used single and multi-sequence
LSTM and GRU models to model these data dependencies in time series. The multi-sequence model
enabled capturing the information in electric consumption time series and exploiting the information
contained in different timescales. For comparison purposes, we implemented ANN and ensemble
based approaches, and the best performing amongst them was used as our benchmark model.

We demonstrated that by using multiple timescale sequences as inputs for both LSTM and GRU
models, we were able to learn accurately crucial information over longer history timeframes. GRU
and LSTM models using immediate, one day and one week before lag inputs gave the most accurate
and stable results. They allow the automation of temporal relations identification using only time
lags features data at the cost of larger sets of parameters to be tuned. In addition, output from
multi-sequence models were found to be more robust against time variations then machine leaning
and single-sequence models. Precisely, with multi-sequence LSTM and GRU, we have reduced the
prediction error by more than 15% and 21%, respectively (i.e., RMSE drops from 346.34 to 293.74 MW
with LSTM and from 339.22 to 266.57 MW with GRU). Thus, we conclude that exploring the relations
between multi-sequence time scales can provided the model with additional information which has
significantly improved the model training and accuracy while providing predictions that were robust
against time variations.

As future works, we will explore various met-heuristics approaches to find the appropriate
settings of the above-proposed multi-sequence LSTM and GRU models. Such approach will avoid
try-and-see based configurations that are not optimal and time consuming especially in the case of
deep learning.
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Nomenclature

ACF autocorrelation function

ANN artificial neural network

AR Autoregressive

ARIMA autoregressive integrated moving average
Ccv coefficient of variation

DNN deep neural networks

GRU gated recurrent unit

LSTM Long short term memory

MAE mean absolute error

MAPE Mean absolute percentage error
MLP multi-layer perceptron

RNN Recurrent neural networks
RMSE root mean squared error

STLF short-term load forecasting
SVM support vector machines
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