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Abstract

:

More accurate data of hourly Global Horizontal Irradiance (GHI) are required in the field of solar energy in areas with limited ground measurements. The aim of the research was to obtain more precise and accurate hourly GHI by using new input from Satellite-Derived Datasets (SDDs) with new input combinations of clear sky (Cs) and top-of-atmosphere (TOA) irradiance on the horizontal surface and with observed climate variables, namely Sunshine Duration (SD), Air Temperature (AT), Relative Humidity (RH) and Wind Speed (WS). The variables were placed in ten different sets as models in an artificial neural network with the Levenberg–Marquardt training algorithm to obtain results from training, validation and test data. It was applied at two station types in northeast Iraq. The test data results with observed input variables (correlation coefficient (r) = 0.755, Root Mean Square Error (RMSE) = 33.7% and bias = 0.3%) are improved with new input combinations for all variables (r = 0.983, RMSE = 9.5% and bias = 0.0%) at four automatic stations. Similarly, they improved at five tower stations with no recorded SD (from: r = 0.601, RMSE = 41% and bias = 0.7% to: r = 0.976, RMSE = 11.2% and bias = 0.0%). The estimation of hourly GHI is slightly enhanced by using the new inputs.
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1. Introduction


Several studies have estimated Global Horizontal Irradiance (GHI) from various methods, but a higher temporal resolution of GHI is likely necessary for several applications such as photovoltaic panel and concentrated solar power projects. Recently, the demand for GHI has increased for solar energy projects. This is owing to problems related to non-renewable energies, a lack of other energy sources, increasing the use of energy and potential availability of solar energy [1,2,3,4]. Stations with long historical measurements of GHI are limited because of the cost of installation and maintenance, and issues related to the pyranometers [5]. Therefore, several studies have tried to estimate GHI empirically from the early 20th century until now from other climate variables, namely, Sunshine Duration (SD), Air Temperature (AT), cloud cover, and other variables, using the top-of-atmosphere irradiance on the horizontal surface (TOA) [6,7,8,9,10,11] and with linear regression models [12,13,14]. Recently, machine learning approaches have also been broadly used [15,16], which mostly include Artificial Neural Networks (ANNs), which will be discussed in a later section, Support Vector Machines, Random Forest [5,17,18] and some other machine learning models [19,20]. Some of these and other approaches have used satellite image data and interpolation techniques to cover the limitation of spatial resolution [3,21,22,23].



Geostationary satellites such as Meteosat First Generation (MFG), Meteosat Second Generation (MSG)/Spinning Enhanced Visible, Infrared Imager (SEVIRI), the Japanese Geostationary Meteorological Satellite (GMS), and the Geostationary Operational Environmental Satellite system (GOES) are considered to be more acceptable for obtaining high temporal resolution of GHI data than other satellites. Heliosat-2 is a method that has been widely used for converting satellite images to GHI. The reader is referred to Refs [24,25] for further information about Heliosat-2. Some other approaches can also be found in the literature with the same aim [26,27]. Consequently, several datasets and services are providing GHI data with various spatial and temporal resolutions globally. More detailed information about them can be found in [28]. The HelioClim-3 (HC3) and Copernicus Atmosphere Monitoring Service (CAMS) Radiation Service (CRS) are the most widely used Satellite-Derived Datasets (SDDs) which cover Europe, Africa and Asia [29]. They provide GHI data at the sub-hourly scale and have been built using the Heliosat-2 and Heliosat-4 algorithms, respectively. Their data have been validated in several climate regions, with overall results that show good agreements with quality-controlled ground data [30,31,32,33]. Full information and its availability can be found in [29]. Therefore, this study will use hourly GHI data from HC3 version-5 (HC3v5) and CRS version-3 (CRSv3) and combine them with climate variable ground data in an ANN algorithm for modelling GHI in areas where recorded GHI ground data are scarce.



SDDs have also been utilised with ground data to improve GHI datasets. For instance, Journee et al. in two different studies have merged SDD from MFG and MSG with GHI ground data to make a solar map over Belgium using kriging interpolation [34,35]. A map of GHI has been created by the combination of those datasets. SDDs are also important for other uses, such as for showing long-term trends of GHI over Europe and updating existing records [36]. It has also been used for a crop estimation model [37] and to obtain a coefficient of regression for calibrating a model for the same purpose [38]. Those studies revealed that SDDs are affordable for improving the results of GHI estimation.



Other research has used ANN models to analyse satellite images for estimating GHI and other components of solar radiation. For example, Meteosat-6 images have been analysed to estimate monthly GHI over Turkey [39]. Similarly, Meteosat-9 images have also been used with extra data in a model in Andalusia, Spain [40]. ANNs have also been used with Heliosat-2 for converting multi-spectral MSG images to estimate hourly GHI [41]. In addition, images from the Japanese Multifunctional Transport Satellites (MTSAT) have been analysed and combined with other data in an ANN for predicting GHI [42]. Other studies have analysed satellite images for obtaining climate variable data (such as land surface temperature) which were then paired with ground measurements in a model to estimate GHI [43,44]. Another case is Qin et al. [45], who input monthly precipitation calculated from TRMM satellite data with surface temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) to a model with GHI as an output. These papers have examined the use of ANNs with some climate parameters from satellite images to estimate GHI, but the high temporal availability of those parameters is limited.



ANNs have also been used to forecast GHI with various data and over various time intervals. For example, HC3, climate variables and other inputs have been analysed in ANN models to forecast GHI in intra-day and 1–6 h ahead in Gran Canary, Spain in two different studies [46,47]. They demonstrated that the SDD improved the forecasting results. Cloud properties and metric velocity data from satellite images with ground data have been used in an ANN model to forecast GHI at 30, 60, 90 and 120 min time scales [48]. Clear sky irradiance on a horizontal surface (Cs) and weather research data have been used to forecast 24 h ahead with an ANN model [49]. Hybrid ANN models have also been used to forecast one hour ahead [2,50]. Those papers demonstrated the role of ANNs in forecasting GHI at various time scales, and the role of SDDs and Cs as inputs to improve the model results. Another study has utilised machine learning algorisms to forecast GHI on a tilted panel based on several inputs namely climate variables, satellite data and solar position [19].



ANNs are considered one of the most powerful algorithms to find relationships between dependent and independent variables. They have been used broadly in literature to estimate GHI and other solar components with different types of data. For instance, geographical and meteorological parameters at different time scales as various inputs have been used with ANN models for a variety of climate regions and countries. For example, two cities in Oman [51]; eight cities [52] and nine cities [53] in China; 195 cities in Nigeria [54]; 27 stations [55], seven cities [56] and 30 cities [57] in Turkey; five stations in Argentina [12]; six cities in the Yucatan peninsula, Mexico [18]; five cities in Italy [58]; four cities in the USA; and two cities [59], 10 cities [60] and 12 cities in Iran [61]; and Cairo city in Egypt [17]. Generally, the results of those models in the literature show good agreement with ground data. This indicates the importance of various types of ANN models and algorithms for estimating GHI. However, those studies mainly focused on daily timescales and in a few cases on monthly scales, not at an hourly time scale, which is the focus of this study.



After an extensive review of recent literature, only four studies have been found that have used ANNs to estimate GHI on the hourly timescale. The studies focused on one city each in Algeria [62], Malaysia [63] and Morocco [64], and on five cities in North Africa and Jordan [5]. They are fully described and compared to this study in Table 1. On the other hand, other studies have estimated Direct Normal Irradiance (DNI) [58,65], Diffuse Horizontal Irradiance (DHI) [66,67] and have forecasted GHI, as mentioned in the previous paragraphs using ANN models on hourly time scales.



The studies (Table 1) also used other machine learning approaches with ANNs, estimated other solar components and estimated timescales, whereas the descriptions in the table are focused on the ANNs for estimating hourly GHI.



It seems clear from the literature that studies using SDDs and combining them with observed climate variables (SD, AT, Relative Humidity (RH) and Wind Speed (WS)) and with TOA and Cs as several new input combinations in an ANN model to estimate hourly GHI are limited. The aim of this study was to model hourly GHI in areas with few ground measurements by using new input variable combinations, which have not been seen in the previously mentioned studies on hourly scales or even on daily scales.




2. Materials and Methods


2.1. Study Site, Ground Data and Satellite-Derived Datasets


The case study is located between latitudes [34°08′20″–37°22′36″], and longitudes [42°32′00″–46°14′29″] in northeast Iraq. The Mediterranean Sea and semi-arid climate regions are seen in the area according to the Koppen classification [68] (Figure 1).



The hourly ground data of SD AT, RH and WS and GHI, were collected from two station types. First, the data from tower stations are all the above variables except SD. The pyranometer used for recording GHI in these stations is the Kipp and Zonen CMP6 Pyranometer. The data were collected for the period 2011–2014 from five stations, some of which lacked data from some years, from the Ministry of Electricity, Kurdistan Regional Government (KRG) (Table 2). Others are automatic stations at which SD is also recorded as well as the above variables. The GHI equipped in these stations is the Vaisala QMS101 Pyranometer. The data were collected from 2013–2016 by the General Directorate of Meteorology and Seismology, KRG, for four stations (Table 3). Both datasets are missing date from some months or years.



The SDDs, which are HC3v5 and CRSv3 with Cs and TOA, are collected from the Solar Radiation Data (SoDa) portal [29]. The SDDs are calculated with the Heliosat-2 and Heliosat-4 algorithms, utilising cloud properties from MSG images; full details can be found at [29,32,69,70]. The temporal resolution of MSG image is 15 min, and its spatial resolution is 5 km in the case study. The data were provided by SoDa based on those resolutions from 15 min, sub-hourly, hourly and monthly data with aggregation. Cs uses the McClear sky model data; full details about this can be found at [71]. The McClear sky is a model for providing hourly GHI under clear-sky conditions which are based on several inputs (solar zenith angle, ground albedo, ozone and water vapour column, aerosol, gases, time interval, location and its elevation) some of the inputs are measured with physical low, and some others came from satellite products [71]. The TOA is irradiance of the sun at the top of the atmosphere, which is calculated, based on blackbody radiation with Stefan–Boltzmann law, and it is adjusted with the sun-earth distance. Then it is multiplied by the cosine of the solar zenith angle of an area to calculate it on a horizontal plane of that area [72]. TOA and Cs are available at SoDa.




2.2. Quality Control of GHI Measurements and Evolution of SDDs


A full quality control procedure was applied to all nine stations of ground measurements to detect systematic errors, to select questionable data and to find gaps and not applicable (NA) values. The quality control procedure is published in a study with full details [73].



The station data were harmonised with SDDs (HC3v5 and CRSv3) and with TOA and Cs. All data were merged into one dataset. The dataset was configured based on true solar time when the solar elevation angle was above 15°. Systematic errors, NA values and a few questionable data points were then removed. In this way, the SDDs are evaluated against quality-controlled ground data. The validation is published in full detail in another study [30].



The output data from the nine stations in the study area in the two mentioned studies from which ground measurements were tested [73] and SDDs were evaluated [30], were used in this study.




2.3. Data Pre-Processing


The data were normalised to 0–1, as is recommended for the ANNs. The input normalised data of SD, AT, RH, WS, Cs, TOA, HC3v5 and CRSv3 were set as ten different inputs. Each input contained some of the above variables in both tower and automatic stations (Table 4). Each set of input combinations were named model-1 (M1) to model-10 (M10). Hereafter, each combination of inputs in each station M1–M10 was trained, and the results were presented using those names, as demonstrated in Table 4. The data in each station were randomly distributed for each model from M1–M10 as training (70%), validation (15%) and test (15%) data.




2.4. Artificial Neural Networks


ANNs are soft computing techniques which are based on how the human brain works. ANNs are considered one of the most powerful algorithms for finding a relationship between inputs and outputs. They have been used broadly in the literature for modelling GHI and have been described in detail (Section 1). ANNs contain three primary layers, which are the input layer, hidden layer and output layer (Figure 2). The weight and bias in each layer’s neurons are adjusted based on the activation function and algorithms for training the model, which depend on error minimising between the desired output and the target.



The neural network fitting toolbox (nftool) of MATLAB R2016a academic use [74] was used in this study. After the data were normalised to 0–1 and inputs and outputs were designated as M1–M10 for each station, the data were divided into training, validation and test sets. The Levenberg–Marquardt backpropagation algorithm was used to train each model with activation functions, sigmoid in the hidden layer and linear in the output layer (Figure 2). The number of neurons in the hidden layer for each model was selected after several tests based on the performance and balance of under or overfitting among the training, validation and test datasets. All other processes such as initial weight and bias and connections between layers were automatically completed.



The Levenberg–Marquardt algorithm was used due to its reduced time required for convergence, and its results are better than others such as the Bayesian Regularization and Scaled Conjugate Gradient in the case of modelling GHI [54,75,76,77]. However, another reason is that we compared the initial results of Levenberg–Marquardt to the other two training algorithms and its results were better than they were. Therefore, it was the only method utilised in this study.



The methodology steps are illustrated in Figure 3.




2.5. Evaluation Criteria


The performance and reliability of the results for models M1–M10 for training, validation and test data against ground measurements were evaluated by statistical indicators such as correlation coefficient (r) in Equation (1), the bias in Equation (2), and the relative bias in Equation (3), the root mean square error (RMSE) in Equation (4), and the relative RMSE (rRMSE) in Equation (5).


r=∑i=1n(Xi−X¯)(Yi−Y¯)∑i=1n(Xi−X¯)2∑i=1n(Yi−Y¯)2



(1)






Bias=∑i=1n(Yi−Xi)n



(2)






rBias=BiasMeanXi∗100



(3)






RMSE=∑i=1n(Yi−Xi)2n



(4)






rRMSE=RMSEMeanXi∗100



(5)




where n = the number of observations, Xi = the GHI of ground data and Yi = the estimated GHI.





3. Results


The results of hourly GHI with ANN models from M1–M10 based on variable inputs for training, validation and test data were averaged for four automatic stations and five tower stations and are presented in Table 5 and Table 6 respectively. However, the same results with the number of neurons in the hidden layer, number of datasets used and mean of GHI ground data for every individual station types are presented in Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8 and Table A9 with two Figure A1 and Figure A2 of relative bias and RMSE of test data for further demonstration. Figure 4 and Figure 5 show a further comparison of the relative bias and RMSE between the models and the station types in the test data. In addition, the results of M1–M10 in the test data are shown with scatterplots of ground vs models and estimated vs residuals in Figure 6, Figure 7, Figure 8 and Figure 9 for both station types respectively.



As can be seen in Table 5 (tower stations) and Table 6 (automatic stations), there is no significant difference (the differences are lower than 3% in all individual cases) when comparing training and validation data with test data, which is in line with the stated methodology. Therefore, the results will be presented and discussed according to the models’ independent test data, which is more important to demonstrate the reliability of each model.



The overall results of GHI estimation by ANN models compared to ground data show the better performance of automatic stations than tower stations in all models based on r values, bias and RMSE (Table 5 and Table 6, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9).



The lowest r value range among the models are 0.601 and 0.755 in M1 for both station types, respectively. The highest r value is 0.983 in M9 automatic stations and 0.976 in M10 tower stations. Other r values range from 0.903–0.982 in both station types (Table 5 and Table 6). Despite both high and low r values, the values of M3 and M5 compared to other remaining values are low in automatic stations. This is also true for M2, M3 and M6 to others at tower stations.



The values of bias were significantly low in all cases in the study area, which is under 1% of mean ground data for M1–M10. In the tower stations, the highest bias was recorded in M1 (3.4 W/m2) 0.7%. It was 0.4% (2.3 W/m2) in M2, a negative bias of −0.4% (−2 W/m2) in M7 and the others’ rates were below 0.3%. However, in the automatic stations, the highest bias was recorded in M3 (−2 W/m2) −0.4%. It was 0.3% in M1 and M5, and the others were below that value. The lowest bias was recorded at M8, M9 and M10, which were close to zero in both station types (Table 5 and Table 6, Figure 4). Figure 4 demonstrates the low rates of relative bias among M1-M10 for both station types.



The RMSE results showed similarity with bias. The highest RMSE in tower stations was recorded in M1 (209.5 W/m2 41%). It decreased to 111.8 W/m2 (21.5%) and to 104.4 W/m2 (20.2%) in M3 and M2 respectively. The lowest recorded RMSE values were 57.8 W/m2 (11.2%), 60 W/m2 (11.6%) and 60.4 W/m2 (11.6%) in M10, M9 and M7 respectively. Other rates are between 12–19%.



On the other hand, the RMSE at automatic stations are low compared to tower stations for each model. However, the highest one was recorded in M1 (163.6 W/m2 33.7%). It decreased to 60 W/m2 (12.4%) in M3. The lowest RMSE was recorded in M9 (46.3 W/m2 9.5%) and there were slightly higher values in M7 (47.6 W/m2 9.8%) and M10 (47.2 W/m2 9.8%). The other remaining values were between 10–12% (Table 5 and Table 6, Figure 5). Figure 5 shows the stability of relative RMSE in automatic stations after M1 among the other models whereas it shows fluctuations for tower stations for the same situation.



Those rates of RMSE can be noted clearly by a close look at the scatterplots of each model in Figure 6 (tower stations) and Figure 8 (automatic stations), which are demonstrating the results of hourly GHI models in test data against ground measurements. The observations are concentrated around the 1:1 line in better performance models (M8, M9 and M10), where the regression lines are correspondingly close to the 1:1 line. The opposite is seen in M1 for both station types. However, in models M2, M3 and M6 (tower stations) the observations are far from the 1:1 line and the regression line in red is not close to the 1:1 line, corresponding to high recorded RMSE compared to other models (Figure 6).



Figure 7 (for tower stations) and Figure 9 (for automatic stations) show the scatterplots of residuals against estimated hourly GHI of test data in each model. The clustered patterns of residuals are seen only in M1 in both station types whereas all other residuals are randomly distributed and the densities of observation are around zero. However, low performance can be noted at M2, M3 and M6 (Figure 7).




4. Discussion


The hourly GHI was estimated over nine stations in Iraq by using observed inputs (SD, AT, RH and WS), calculated inputs (TOA and Cs) and new input from SDDs (HC3v5 or CRSv3) to the ten M1-M10 ANN models based on the number and combination of inputs. The results of the overall performance are r values from 0.601–0.976, bias from −0.4–0.0–0.7% and RMSE from 11.2–41% at tower stations and r values from 0.755–0.983, bias from −0.4–0.0–0.3% and RMSE from 9.5–33.7% at automatic stations. Excellent performance was recorded in M9 (9.5%), and M10 (11.2%) and low performance was recorded in M1 at automatic and tower stations respectively. The better results of those models at hourly time scales compared to the previous studies for similar estimation (Table 1) are related to the new inputs such as Cs, TOA and SDDs together in this study.



The overall better performance, with a lower percent of automatic stations than tower stations in all models, is obtained by the use of SD as inputs in automatic stations—SD is unrecorded in tower stations. It is also reported [6,62,64,77] that the role of SD increases the performance of models.



The low performance of M1 in both station types is related to the small number of inputs, which do not include any of the calculated inputs. The calculated inputs such as Cs have a unique role to increase the model performance as seen in M2 compared to M1 in both stations. This is in agreement to improved results in some limited studies which used Cs as inputs either for modelling or forecasting GHI [47,49,78,79].



The low recorded bias in most of the models is related to the good estimation of GHI by ANN models as mentioned in several studies [12,17,62,64]. We presented the overall bias among stations, which led to a decrease in the bias because of positive bias in some stations and negative bias in others in the same model, whereas the bias in all individual stations was lower than 2% except one case of 2.2% (Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8 and Table A9, Figure A1).



The fluctuation of RMSE among models at tower stations and its stability among models at automatic stations (Figure 5 and Figure A2, Table 5 and Table 6) are mainly related to the role of SD, which was used as input in the later ones. The highest record of RMSE in M1 in both station types is related to inputs which contain only four climate variables. This is reported by literature where GHI was estimated at a daily time scale [55,77]. The improved performance in M2 and M3 compared to M1 is related to the use of additional variables of Cs and TOA in those models respectively (Table 4). Hence, the low performance of M2, M3 and M6 compared to better performance in M4 and M5 are related to the use of SDDs as new inputs with climate variables. This has been reported by studies which have used SDDs in foresting GHI [46,47]. The better performance of M7 and M8 compared to the previous M1–M6 is related to the use of Cs with SDDs in those models. The role of Cs is mentioned in literature [49,79], but in those cases, it was not combined with SDDs. The overall better performances of M9 and M10 from the other models (M1–M8) are related to the combination of all variables in those models. These demonstrate the better performance of this study compared to similar studies [5,62,63,64].



The performance of HC3v5 as input with only four climate variables is better than CRSv3 as demonstrated in the comparison between M4 and M5 in both station types, whereas in other models (M7–M10) the difference between them are minimal. The former result (M4–M5) is related to the accurate reproduction of the GHI ground data by HC3v5 as described in the literature [30,32,33]. The latter (M7–M10) is related to the use of Cs and TOA as separate inputs.



This study revealed that using SDDs, Cs, and TOA with climate variables in ANN models has improved the results of estimation for hourly GHI with an overall r value of 0.980, bias lower than 2% and RMSE lower than 10% compared to similar studies with no combination of those inputs [5,62,63,64].



The results of this study demonstrate that this way of modelling allows the retrieval or management of a dataset of GHI for decades where the inputs are available, but where GHI is not recorded as in most areas in the case study and similar regions with a scarcity of ground data, it can be achieved by using the trained models.



The new inputs of SDDs and Cs which improved the results are easily and openly available for most regions [29] unlike other variables such as cloud cover and SD [21,73,80]. Therefore, the mentioned new variables can be used for modelling and forecasting the solar components for better results.



The limitations are principally as follows: This study estimated GHI but no other solar components, which are required directly in fields such as DNI in concentrated solar power. Hence, some studies have estimated DNI and DHI from GHI [64,81,82]. However, further research is required for that in this type of area with a scarcity of ground data. Another limitation is the scarcity of long-term GHI ground data at timescales beyond five years or more, which are better for training this kind of model.




5. Conclusions


This paper aimed to use a new input of SDDs together with Cs, TOA and observed climate variables SD, AT, RH and WS as new input combinations in ten ANN models to estimate GHI at the hourly time scale with a Levenberg–Marquardt training algorithm. The inputs were arranged into ten different sets, as models M1–M10, to demonstrate the role of new inputs. The data at four automatic stations of all the above variables and five tower stations without SD in northeast Iraq were used.



The test results demonstrated a good improvement from M1 to M10 based on adding the new inputs such as TOA with observed variables (M3), Cs with observed variables (M2), SDDs with all observed climate variables (M4–M5), other combinations (M6–M8) and all together (M9–M10) with low percent fluctuation between both station types. The best results are r = 0.983, RMSE = 9.5% and bias = 0.0% in M9 and r = 0.976, RMSE = 11.2% and bias = 0.0% in M10 and the worst results are r = 0.755, RMSE = 33.7% and bias = 0.3% in M1 and r = 0.601, RMSE = 41% and bias = 0.7% in M1 at automatic and tower stations, respectively.



This study demonstrated the role of new input combinations for estimating hourly GHI with high accuracy. While the models have been trained with a few years of data, it would be better to train them with more years of data with such algorithms.



Further research is required for using new inputs with other machine learning approaches and empirical models.
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Table A1. Statistical results of hourly GHI models and neuron numbers in the hidden layer for Batufa tower station. Mean, bias and RMSE units are W/m2.






Table A1. Statistical results of hourly GHI models and neuron numbers in the hidden layer for Batufa tower station. Mean, bias and RMSE units are W/m2.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
523

	
0.03

	
0.01

	
211

	
40

	
0.654

	
514

	
7.11

	
1.38

	
212

	
41

	
0.639

	
512

	
9.87

	
1.93

	
215

	
42

	
0.639

	
70




	
M2

	
523

	
3.34

	
0.64

	
110

	
21

	
0.919

	
511

	
7.61

	
1.49

	
112

	
22

	
0.914

	
517

	
4.54

	
0.88

	
110

	
21

	
0.92

	
80




	
M3

	
519

	
2.68

	
0.52

	
115

	
22

	
0.912

	
528

	
−0.42

	
−0.08

	
117

	
22

	
0.906

	
518

	
−0.18

	
−0.03

	
120

	
23

	
0.904

	
140




	
M4

	
517

	
0.93

	
0.18

	
66

	
13

	
0.971

	
534

	
0.86

	
0.16

	
65

	
12

	
0.973

	
522

	
0.3

	
0.06

	
66

	
13

	
0.972

	
70




	
M5

	
518

	
−0.6

	
−0.12

	
83

	
16

	
0.955

	
523

	
1.11

	
0.21

	
79

	
15

	
0.959

	
528

	
0.18

	
0.03

	
82

	
16

	
0.956

	
70




	
M6

	
521

	
1.32

	
0.25

	
100

	
19

	
0.932

	
506

	
1.41

	
0.28

	
108

	
21

	
0.923

	
533

	
0.83

	
0.16

	
101

	
19

	
0.935

	
90




	
M7

	
522

	
−5.23

	
−1

	
64

	
12

	
0.974

	
514

	
−2.29

	
−0.45

	
66

	
13

	
0.971

	
519

	
−4.86

	
−0.94

	
64

	
12

	
0.973

	
70




	
M8

	
521

	
0.53

	
0.1

	
79

	
15

	
0.959

	
525

	
−1.32

	
−0.25

	
80

	
15

	
0.957

	
513

	
0.63

	
0.12

	
81

	
16

	
0.957

	
70




	
M9

	
519

	
2.51

	
0.48

	
64

	
12

	
0.974

	
526

	
1.79

	
0.34

	
64

	
12

	
0.974

	
522

	
1.5

	
0.29

	
65

	
12

	
0.973

	
50




	
M10

	
522

	
−0.55

	
−0.11

	
61

	
12

	
0.976

	
513

	
0.98

	
0.19

	
63

	
12

	
0.975

	
521

	
0.07

	
0.01

	
61

	
12

	
0.976

	
90
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Table A2. As in Table A1, but for Enjaksor tower station.






Table A2. As in Table A1, but for Enjaksor tower station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
BIAS

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
518

	
−1.36

	
−0.26

	
207

	
40

	
0.608

	
521

	
−3.85

	
−0.74

	
208

	
40

	
0.6

	
515

	
−2.67

	
−0.52

	
209

	
41

	
0.596

	
90




	
M2

	
518

	
−2.02

	
−0.39

	
103

	
20

	
0.919

	
520

	
−2.97

	
−0.57

	
105

	
20

	
0.916

	
512

	
−0.57

	
−0.11

	
104

	
20

	
0.917

	
120




	
M3

	
514

	
2.27

	
0.44

	
112

	
22

	
0.903

	
530

	
0.42

	
0.08

	
113

	
21

	
0.901

	
524

	
−1.84

	
−0.35

	
113

	
22

	
0.898

	
100




	
M4

	
514

	
0.21

	
0.04

	
57

	
11

	
0.976

	
529

	
−2.32

	
−0.44

	
57

	
11

	
0.975

	
524

	
0.04

	
0.01

	
57

	
11

	
0.976

	
60




	
M5

	
517

	
3.93

	
0.76

	
75

	
15

	
0.958

	
521

	
2.45

	
0.47

	
75

	
14

	
0.958

	
517

	
4.09

	
0.79

	
75

	
15

	
0.959

	
90




	
M6

	
518

	
−0.83

	
−0.16

	
98

	
19

	
0.926

	
519

	
−2.64

	
−0.51

	
102

	
20

	
0.92

	
517

	
4.12

	
0.8

	
100

	
19

	
0.925

	
70




	
M7

	
519

	
0.24

	
0.05

	
54

	
10

	
0.979

	
512

	
−1.03

	
−0.2

	
56

	
11

	
0.977

	
519

	
−2.45

	
−0.47

	
56

	
11

	
0.977

	
60




	
M8

	
517

	
5.47

	
1.06

	
73

	
14

	
0.96

	
521

	
4.34

	
0.83

	
73

	
14

	
0.961

	
519

	
4.49

	
0.87

	
72

	
14

	
0.961

	
50




	
M9

	
516

	
−0.45

	
−0.09

	
54

	
10

	
0.978

	
525

	
0.56

	
0.11

	
55

	
10

	
0.977

	
520

	
0.49

	
0.09

	
54

	
10

	
0.979

	
60




	
M10

	
520

	
0.73

	
0.14

	
52

	
10

	
0.98

	
513

	
0.63

	
0.12

	
51

	
10

	
0.98

	
511

	
−0.14

	
−0.03

	
52

	
10

	
0.98

	
100
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Table A3. As in Table A1, but for Hojava tower station.






Table A3. As in Table A1, but for Hojava tower station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
504

	
−1.63

	
−0.32

	
205

	
41

	
0.634

	
514

	
−6.44

	
−1.25

	
207

	
40

	
0.618

	
491

	
6.66

	
1.36

	
208

	
42

	
0.621

	
90




	
M2

	
504

	
5.03

	
1

	
106

	
21

	
0.918

	
495

	
0.47

	
0.09

	
106

	
21

	
0.916

	
509

	
−0.44

	
−0.09

	
103

	
20

	
0.92

	
90




	
M3

	
504

	
1.82

	
0.36

	
112

	
22

	
0.908

	
503

	
−0.78

	
−0.16

	
111

	
22

	
0.906

	
501

	
1.25

	
0.25

	
110

	
22

	
0.908

	
90




	
M4

	
503

	
0.45

	
0.09

	
64

	
13

	
0.97

	
501

	
0.11

	
0.02

	
64

	
13

	
0.97

	
509

	
0.3

	
0.06

	
65

	
13

	
0.969

	
80




	
M5

	
504

	
−2

	
−0.4

	
79

	
16

	
0.955

	
498

	
2.35

	
0.47

	
83

	
17

	
0.947

	
504

	
−1.46

	
−0.29

	
79

	
16

	
0.955

	
80




	
M6

	
501

	
−4.56

	
−0.91

	
98

	
20

	
0.93

	
512

	
−0.81

	
−0.16

	
100

	
20

	
0.925

	
504

	
−3.23

	
−0.64

	
99

	
20

	
0.927

	
100




	
M7

	
501

	
−3.24

	
−0.65

	
64

	
13

	
0.97

	
507

	
−2.2

	
−0.43

	
62

	
12

	
0.972

	
511

	
−2.67

	
−0.52

	
64

	
13

	
0.97

	
80




	
M8

	
504

	
−4.46

	
−0.88

	
75

	
15

	
0.959

	
504

	
−3.53

	
−0.7

	
78

	
15

	
0.957

	
500

	
−6.12

	
−1.22

	
78

	
16

	
0.957

	
80




	
M9

	
504

	
0.32

	
0.06

	
64

	
13

	
0.971

	
503

	
−0.83

	
−0.17

	
64

	
13

	
0.97

	
499

	
2.7

	
0.54

	
63

	
13

	
0.971

	
80




	
M10

	
502

	
4.01

	
0.8

	
57

	
11

	
0.976

	
514

	
4.16

	
0.81

	
63

	
12

	
0.972

	
499

	
2.56

	
0.51

	
61

	
12

	
0.974

	
80
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Table A4. As in Table A1, but for Jazhnikan tower station.






Table A4. As in Table A1, but for Jazhnikan tower station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
518

	
−1.85

	
−0.36

	
208

	
40

	
0.59

	
518

	
−0.13

	
−0.03

	
208

	
40

	
0.584

	
519

	
−6.91

	
−1.33

	
209

	
40

	
0.586

	
100




	
M2

	
516

	
8.12

	
1.57

	
99

	
19

	
0.924

	
516

	
10.19

	
1.97

	
102

	
20

	
0.918

	
530

	
3.36

	
0.63

	
102

	
19

	
0.917

	
110




	
M3

	
518

	
0.99

	
0.19

	
108

	
21

	
0.907

	
512

	
0.03

	
0.01

	
111

	
22

	
0.906

	
526

	
−1.78

	
−0.34

	
109

	
21

	
0.903

	
110




	
M4

	
521

	
3.41

	
0.65

	
62

	
12

	
0.97

	
509

	
3.59

	
0.71

	
63

	
12

	
0.97

	
516

	
3.67

	
0.71

	
66

	
13

	
0.968

	
120




	
M5

	
518

	
−1.5

	
−0.29

	
72

	
14

	
0.96

	
521

	
−3.16

	
−0.61

	
75

	
14

	
0.958

	
514

	
2.21

	
0.43

	
71

	
14

	
0.96

	
100




	
M6

	
518

	
0.63

	
0.12

	
89

	
17

	
0.938

	
514

	
−1.4

	
−0.27

	
91

	
18

	
0.934

	
522

	
0.39

	
0.07

	
96

	
18

	
0.927

	
130




	
M7

	
514

	
−0.4

	
−0.08

	
58

	
11

	
0.974

	
524

	
−1.07

	
−0.2

	
60

	
11

	
0.973

	
530

	
0.01

	
0

	
60

	
11

	
0.972

	
120




	
M8

	
517

	
−2.8

	
−0.54

	
70

	
14

	
0.963

	
524

	
−3.44

	
−0.66

	
69

	
13

	
0.964

	
516

	
−0.39

	
−0.08

	
75

	
15

	
0.955

	
140




	
M9

	
516

	
−0.58

	
−0.11

	
56

	
11

	
0.976

	
525

	
−1.27

	
−0.24

	
57

	
11

	
0.976

	
523

	
−3.2

	
−0.61

	
59

	
11

	
0.974

	
140




	
M10

	
520

	
3.27

	
0.63

	
53

	
10

	
0.979

	
503

	
3.45

	
0.69

	
59

	
12

	
0.972

	
523

	
0.65

	
0.12

	
59

	
11

	
0.973

	
130
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Table A5. As in Table A1, but for Tarjan tower station.






Table A5. As in Table A1, but for Tarjan tower station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
523

	
3.01

	
0.58

	
202

	
39

	
0.598

	
514

	
4.39

	
0.85

	
207

	
40

	
0.557

	
517

	
11.55

	
2.23

	
207

	
40

	
0.552

	
100




	
M2

	
520

	
3.83

	
0.74

	
99

	
19

	
0.917

	
526

	
4.76

	
0.9

	
102

	
19

	
0.917

	
518

	
5.33

	
1.03

	
102

	
20

	
0.912

	
80




	
M3

	
519

	
0.89

	
0.17

	
111

	
21

	
0.895

	
521

	
−1.26

	
−0.24

	
112

	
21

	
0.894

	
528

	
−6.07

	
−1.15

	
106

	
20

	
0.907

	
70




	
M4

	
524

	
4.08

	
0.78

	
61

	
12

	
0.97

	
519

	
2.51

	
0.48

	
64

	
12

	
0.969

	
510

	
3.79

	
0.74

	
62

	
12

	
0.967

	
100




	
M5

	
521

	
1.2

	
0.23

	
71

	
14

	
0.959

	
519

	
2.33

	
0.45

	
71

	
14

	
0.959

	
523

	
2.82

	
0.54

	
71

	
14

	
0.959

	
20




	
M6

	
522

	
0.49

	
0.09

	
90

	
17

	
0.932

	
519

	
−0.66

	
−0.13

	
91

	
18

	
0.935

	
518

	
1.22

	
0.24

	
93

	
18

	
0.929

	
80




	
M7

	
522

	
1.01

	
0.19

	
59

	
11

	
0.972

	
508

	
0.95

	
0.19

	
58

	
11

	
0.972

	
527

	
0.18

	
0.03

	
59

	
11

	
0.972

	
60




	
M8

	
520

	
−2.17

	
−0.42

	
68

	
13

	
0.962

	
522

	
−2.81

	
−0.54

	
71

	
14

	
0.96

	
521

	
0.41

	
0.08

	
71

	
14

	
0.96

	
60




	
M9

	
523

	
0.1

	
0.02

	
58

	
11

	
0.973

	
514

	
1.69

	
0.33

	
58

	
11

	
0.974

	
517

	
−0.04

	
−0.01

	
60

	
12

	
0.971

	
40




	
M10

	
522

	
−1.16

	
−0.22

	
56

	
11

	
0.975

	
520

	
−0.32

	
−0.06

	
55

	
11

	
0.975

	
516

	
−4.35

	
−0.84

	
57

	
11

	
0.973

	
60
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Table A6. As in Table A1, but for Halsho automatic station.






Table A6. As in Table A1, but for Halsho automatic station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
482

	
1.13

	
0.23

	
153

	
32

	
0.835

	
468

	
2.39

	
0.51

	
153

	
33

	
0.834

	
474

	
8.11

	
1.71

	
155

	
33

	
0.827

	
80




	
M2

	
479

	
−0.76

	
−0.16

	
57

	
12

	
0.979

	
487

	
−1.08

	
−0.22

	
59

	
12

	
0.977

	
472

	
1.11

	
0.24

	
61

	
13

	
0.976

	
120




	
M3

	
478

	
−2.87

	
−0.6

	
62

	
13

	
0.974

	
475

	
0.32

	
0.07

	
67

	
14

	
0.97

	
485

	
−3.28

	
−0.68

	
66

	
14

	
0.972

	
120




	
M4

	
481

	
−0.11

	
−0.02

	
55

	
11

	
0.98

	
476

	
2.36

	
0.5

	
55

	
12

	
0.98

	
474

	
−0.49

	
−0.1

	
56

	
12

	
0.98

	
60




	
M5

	
477

	
0.64

	
0.13

	
60

	
13

	
0.976

	
481

	
1.44

	
0.3

	
62

	
13

	
0.974

	
484

	
0.31

	
0.06

	
62

	
13

	
0.975

	
100




	
M6

	
479

	
−0.52

	
−0.11

	
58

	
12

	
0.978

	
482

	
−0.14

	
−0.03

	
57

	
12

	
0.978

	
477

	
1.6

	
0.34

	
60

	
13

	
0.976

	
40




	
M7

	
478

	
1.45

	
0.3

	
49

	
10

	
0.984

	
479

	
1.37

	
0.29

	
50

	
10

	
0.984

	
481

	
1.81

	
0.38

	
49

	
10

	
0.984

	
20




	
M8

	
478

	
−0.37

	
−0.08

	
51

	
11

	
0.983

	
481

	
0.95

	
0.2

	
54

	
11

	
0.981

	
482

	
0.65

	
0.13

	
51

	
11

	
0.983

	
30




	
M9

	
477

	
−0.14

	
−0.03

	
48

	
10

	
0.985

	
483

	
1.54

	
0.32

	
48

	
10

	
0.985

	
484

	
−0.1

	
−0.02

	
49

	
10

	
0.984

	
50




	
M10

	
476

	
0.4

	
0.08

	
47

	
10

	
0.985

	
489

	
0

	
0

	
46

	
9

	
0.986

	
481

	
0.73

	
0.15

	
49

	
10

	
0.985

	
40
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Table A7. As in Table A1, but for Bazian automatic station.






Table A7. As in Table A1, but for Bazian automatic station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
482

	
−0.46

	
−0.1

	
166

	
34

	
0.724

	
477

	
−3.28

	
−0.69

	
168

	
35

	
0.712

	
468

	
5.49

	
1.17

	
168

	
36

	
0.716

	
70




	
M2

	
480

	
3.41

	
0.71

	
62

	
13

	
0.966

	
482

	
0.25

	
0.05

	
63

	
13

	
0.965

	
473

	
0.78

	
0.16

	
62

	
13

	
0.967

	
60




	
M3

	
479

	
−0.11

	
−0.02

	
60

	
13

	
0.968

	
475

	
−0.63

	
−0.13

	
63

	
13

	
0.965

	
484

	
−1.32

	
−0.27

	
61

	
13

	
0.967

	
70




	
M4

	
477

	
0.94

	
0.2

	
55

	
12

	
0.973

	
490

	
4.31

	
0.88

	
55

	
11

	
0.973

	
477

	
1.11

	
0.23

	
56

	
12

	
0.973

	
50




	
M5

	
480

	
2.78

	
0.58

	
61

	
13

	
0.967

	
471

	
4.94

	
1.05

	
64

	
14

	
0.963

	
483

	
2.97

	
0.61

	
61

	
13

	
0.969

	
60




	
M6

	
478

	
−0.31

	
−0.06

	
57

	
12

	
0.971

	
484

	
−0.26

	
−0.05

	
61

	
13

	
0.967

	
476

	
0.88

	
0.18

	
58

	
12

	
0.971

	
70




	
M7

	
478

	
2.47

	
0.52

	
50

	
10

	
0.979

	
486

	
−0.62

	
−0.13

	
50

	
10

	
0.978

	
476

	
−2.14

	
−0.45

	
50

	
11

	
0.978

	
20




	
M8

	
480

	
−0.04

	
−0.01

	
52

	
11

	
0.976

	
476

	
2.2

	
0.46

	
53

	
11

	
0.976

	
476

	
1.18

	
0.25

	
53

	
11

	
0.975

	
20




	
M9

	
478

	
2.6

	
0.54

	
46

	
10

	
0.982

	
484

	
0.74

	
0.15

	
46

	
10

	
0.982

	
477

	
2.93

	
0.61

	
48

	
10

	
0.979

	
40




	
M10

	
480

	
0.37

	
0.08

	
46

	
10

	
0.981

	
480

	
1.82

	
0.38

	
47

	
10

	
0.98

	
472

	
−0.31

	
−0.07

	
49

	
10

	
0.978

	
50
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Table A8. As in Table A1, but for Maydan automatic station.






Table A8. As in Table A1, but for Maydan automatic station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
503

	
0.06

	
0.01

	
165

	
33

	
0.723

	
501

	
13.04

	
2.6

	
170

	
34

	
0.701

	
507

	
−0.72

	
−0.14

	
169

	
33

	
0.7

	
60




	
M2

	
503

	
−0.1

	
−0.02

	
43

	
9

	
0.983

	
506

	
−1.09

	
−0.22

	
45

	
9

	
0.982

	
499

	
−0.16

	
−0.03

	
46

	
9

	
0.982

	
60




	
M3

	
506

	
0.42

	
0.08

	
45

	
9

	
0.982

	
494

	
1.64

	
0.33

	
48

	
10

	
0.98

	
498

	
0.02

	
0

	
47

	
9

	
0.981

	
50




	
M4

	
503

	
0.17

	
0.03

	
48

	
10

	
0.98

	
509

	
−1.94

	
−0.38

	
50

	
10

	
0.978

	
499

	
0.19

	
0.04

	
49

	
10

	
0.978

	
60




	
M5

	
504

	
−2.29

	
−0.45

	
54

	
11

	
0.974

	
499

	
−2.64

	
−0.53

	
59

	
12

	
0.969

	
505

	
−2.93

	
−0.58

	
57

	
11

	
0.971

	
70




	
M6

	
500

	
−1.41

	
−0.28

	
42

	
8

	
0.984

	
514

	
−1.11

	
−0.22

	
43

	
8

	
0.983

	
506

	
−3.86

	
−0.76

	
44

	
9

	
0.982

	
80




	
M7

	
504

	
0.96

	
0.19

	
37

	
7

	
0.988

	
499

	
1.26

	
0.25

	
39

	
8

	
0.986

	
503

	
2.02

	
0.4

	
40

	
8

	
0.986

	
60




	
M8

	
503

	
0.16

	
0.03

	
40

	
8

	
0.986

	
503

	
−0.32

	
−0.06

	
42

	
8

	
0.984

	
505

	
0.28

	
0.06

	
43

	
9

	
0.983

	
60




	
M9

	
505

	
0.6

	
0.12

	
35

	
7

	
0.989

	
488

	
−1.37

	
−0.28

	
35

	
7

	
0.989

	
511

	
−2.43

	
−0.48

	
39

	
8

	
0.987

	
50




	
M10

	
504

	
0.33

	
0.07

	
38

	
8

	
0.987

	
502

	
0.18

	
0.04

	
40

	
8

	
0.986

	
500

	
−0.46

	
−0.09

	
41

	
8

	
0.985

	
70
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Table A9. As in Table A1, but for Kalar automatic station.






Table A9. As in Table A1, but for Kalar automatic station.





	
Models

	
Train

	
Validation

	
Test

	
Neurons




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
473

	
−1.63

	
−0.34

	
158

	
33

	
0.689

	
479

	
−7.26

	
−1.52

	
157

	
33

	
0.695

	
479

	
−9.24

	
−1.93

	
161

	
34

	
0.705

	
70




	
M2

	
475

	
−0.91

	
−0.19

	
55

	
12

	
0.968

	
471

	
1.17

	
0.25

	
56

	
12

	
0.966

	
475

	
0.84

	
0.18

	
56

	
12

	
0.966

	
60




	
M3

	
475

	
0.03

	
0.01

	
55

	
12

	
0.968

	
473

	
−6.31

	
−1.33

	
58

	
12

	
0.965

	
474

	
−3.22

	
−0.68

	
58

	
12

	
0.962

	
50




	
M4

	
475

	
−1.14

	
−0.24

	
57

	
12

	
0.966

	
477

	
−1.44

	
−0.3
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Figure A1. Comparison of rBias for the hourly GHI among models, stations, and overall results of station types. 
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Figure A2. As in Figure A1, but for rRMSE. 
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Figure 1. Climate regions and station types in the study area. 
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Figure 2. ANN architecture description. 
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Figure 3. Flowchart of the methodology steps. 
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Figure 4. Comparison of rBias for the hourly GHI among models and for the overall results of station types. 
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Figure 5. As in Figure 4, but for relative Root Mean Square Error (rRMSE). 
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Figure 6. Scatterplots of hourly GHI ground measurements and ANN model estimated from M1–M10 at test data for overall results at tower stations. 
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Figure 7. Scatterplots of hourly GHI residuals versus ANN model estimated from M1-M10 at test data for overall results at tower stations. The plots clearly reveal that the models were a good fit at M4, M5 and M7–M10 whereas it is not fit at M1 and low fit are seen at M2, M3 and M6. 
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Figure 8. Scatterplots of hourly GHI ground measurements and ANN model estimated from M1–M10 at test data for overall results at automatic stations. 
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Figure 9. Scatterplots of hourly GHI residuals versus ANN model estimated from M1–M10 at test data for overall results at tower stations. The plots clearly reveal that the models were a good fit for all except M1. 






Figure 9. Scatterplots of hourly GHI residuals versus ANN model estimated from M1–M10 at test data for overall results at tower stations. The plots clearly reveal that the models were a good fit for all except M1.



[image: Energies 12 00148 g009]







[image: Table]





Table 1. The literature for estimating Global Horizontal Irradiance (GHI) with Artificial Neural Networks (ANN) models on hourly time scales.
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	Reference
	Inputs
	Neurons in the Hidden Layer
	Training Algorithm
	Best RMSE





	[62]
	SD, AT, RH, WS, TOA, precipitation, Pressure, Declination, Zenith angle and Wind direction
	1–8 By 1 or 2
	feed-forward backpropagation Levenberg–Marquardt
	13.3%



	[63]
	AT, RH, sunshine ratio, Day number, Month number, Number of an hour per day
	3 and 6
	Firefly algorithm
	18.9%



	[64]
	SD, AT, RH, WS, Declination angle, GHI daily, daylight hours, TOA, a sunshine fraction
	10, 15 and 20
	feed-forward Levenberg–Marquardt
	13.1%



	[5]
	TOA, Solar time and Day number
	100, 180, 210 and 300
	-
	17%



	This study
	SD, At, RH, WS, Cs, TOA, HC3v5 and CRSv3
	20–140 by 10
	feed-forward backpropagation Levenberg–Marquardt
	?










[image: Table]





Table 2. Tower stations with hourly data of Air Temperature (AT), Relative Humidity (RH) and Wind Speed (WS) and GHI at ground measurements with GHI of two Satellite-Derived Datasets (SDDs) and with calculated clear sky (Cs) and top-of-atmosphere (TOA) irradiance.






Table 2. Tower stations with hourly data of Air Temperature (AT), Relative Humidity (RH) and Wind Speed (WS) and GHI at ground measurements with GHI of two Satellite-Derived Datasets (SDDs) and with calculated clear sky (Cs) and top-of-atmosphere (TOA) irradiance.





	
Station

	
Coordinates (Degrees)

	
Elevation a.s.l (m)

	
Period (dd/mm/yy)






	
Batufa

	
37.1764 N

	
43.0236 E

	
947

	
01/01/2011–31/12/2013




	
Enjaksor

	
37.0603 N

	
42.4353 E

	
509

	
01/01/2011–31/12/2014




	
Hojava

	
37.0075 N

	
43.0369 E

	
933

	
01/01/2011–31/12/2013




	
Jazhnikan

	
36.3564 N

	
43.9556 E

	
430

	
01/01/2011–31/10/2013




	
Tarjan

	
36.1258 N

	
43.7353 E

	
276

	
01/01/2011–31/12/2013
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Table 3. Automatic stations as data in Table 2, plus SD.






Table 3. Automatic stations as data in Table 2, plus SD.





	
Station

	
Coordinates (Degrees)

	
Elevation a.s.l (m)

	
Period (dd/mm/yy)






	
Halsho

	
36.2097 N

	
45.2598 E

	
1105

	
01/01/2013–31/12/2016




	
Bazian

	
35.6021 N

	
45.1376 E

	
892

	
01/04/2014–30/12/2016




	
Maydan

	
34.9194 N

	
45.6224 E

	
330

	
01/01/2014–31/12/2016




	
Kalar

	
34.6244 N

	
45.3049 E

	
218

	
01/01/2014–31/12/2016
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Table 4. Inputs and output to the ANN models.






Table 4. Inputs and output to the ANN models.





	Models
	Inputs (Automatic Stations)
	Inputs (Tower Stations)
	Output





	M1
	SD, AT, RH, WS
	AT, RH, WS
	GHI



	M2
	SD, AT, RH, WS, Cs
	AT, RH, WS, Cs
	GHI



	M3
	SD, AT, RH, WS, TOA
	AT, RH, WS, TOA
	GHI



	M4
	SD, AT, RH, WS, HC3v5
	AT, RH, WS, HC3v5
	GHI



	M5
	SD, AT, RH, WS, CRSv3
	AT, RH, WS CRSv3
	GHI



	M6
	SD, AT, RH, WS, Cs, TOA
	AT, RH, WS, Cs, TOA
	GHI



	M7
	SD, AT, RH, WS, Cs, HC3v5
	AT, RH, WS, Cs, HC3v5
	GHI



	M8
	SD, AT, RH, WS, Cs, CRSv3
	AT, RH, WS, Cs CRSv3
	GHI



	M9
	SD, AT, RH, WS, Cs, TOA, HC3v5
	AT, RH, WS, Cs, TOA, HC3v5
	GHI



	M10
	SD, AT, RH, WS, Cs, TOA, CRSv3
	SD, AT, RH, WS, Cs, TOA, CRSv3
	GHI
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Table 5. Statistical results of hourly GHI models averaged for each model M1–M10 for tower stations. Mean, bias and RMSE units are W/m2.






Table 5. Statistical results of hourly GHI models averaged for each model M1–M10 for tower stations. Mean, bias and RMSE units are W/m2.





	
Models

	
Train

	
Validation

	
Test




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
517.2

	
−0.4

	
−0.1

	
206.6

	
40

	
0.617

	
516.2

	
0.2

	
0.0

	
208.4

	
40.2

	
0.600

	
511

	
3.4

	
0.7

	
209.5

	
41

	
0.601




	
M2

	
516.2

	
3.7

	
0.7

	
103.4

	
20

	
0.919

	
513.6

	
4.0

	
0.8

	
105.4

	
20.4

	
0.916

	
516.7

	
2.3

	
0.4

	
104.4

	
20.2

	
0.917




	
M3

	
514.8

	
1.7

	
0.3

	
111.6

	
21.6

	
0.905

	
518.8

	
−0.4

	
−0.1

	
112.8

	
21.6

	
0.903

	
519.7

	
−1.7

	
−0.3

	
111.8

	
21.5

	
0.903




	
M4

	
515.8

	
1.8

	
0.3

	
62

	
12.2

	
0.971

	
518.4

	
1.0

	
0.2

	
62.6

	
12

	
0.971

	
516.7

	
1.5

	
0.3

	
62.9

	
12.2

	
0.971




	
M5

	
515.6

	
0.2

	
0.0

	
76

	
15

	
0.957

	
516.4

	
1.0

	
0.2

	
76.6

	
14.8

	
0.956

	
517.2

	
1.7

	
0.3

	
75.6

	
14.6

	
0.958




	
M6

	
516

	
−0.6

	
−0.1

	
95

	
18.4

	
0.932

	
514

	
−0.8

	
−0.2

	
98.4

	
19.4

	
0.927

	
518.7

	
0.9

	
0.2

	
98.1

	
18.9

	
0.929




	
M7

	
515.6

	
−1.5

	
−0.3

	
59.8

	
11.4

	
0.974

	
513

	
−1.1

	
−0.2

	
60.4

	
11.6

	
0.973

	
521.1

	
−2.0

	
−0.4

	
60.4

	
11.6

	
0.973




	
M8

	
515.8

	
−0.7

	
−0.1

	
73

	
14.2

	
0.961

	
519.2

	
−1.4

	
−0.3

	
74.2

	
14.2

	
0.960

	
514

	
−0.1

	
0.0

	
75.3

	
14.6

	
0.958




	
M9

	
515.6

	
0.4

	
0.1

	
59.2

	
11.4

	
0.974

	
518.6

	
0.4

	
0.1

	
59.6

	
11.4

	
0.974

	
516.3

	
0.3

	
0.1

	
60

	
11.6

	
0.974




	
M10

	
517.2

	
1.3

	
0.2

	
55.8

	
10.8

	
0.977

	
512.6

	
1.8

	
0.4

	
58.2

	
11.4

	
0.975

	
513.8

	
−0.2

	
0.0

	
57.8

	
11.2

	
0.976
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Table 6. As in Table 5, but for automatic stations.






Table 6. As in Table 5, but for automatic stations.





	
Models

	
Train

	
Validation

	
Test




	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r

	
Mean

	
Bias

	
%

	
RMSE

	
%

	
r






	
M1

	
485

	
−0.2

	
−0.1

	
160.5

	
33.0

	
0.743

	
481.2

	
1.2

	
0.2

	
162.0

	
33.8

	
0.736

	
482.2

	
1.4

	
0.3

	
163.6

	
33.7

	
0.755




	
M2

	
484.2

	
0.4

	
0.1

	
54.3

	
11.5

	
0.974

	
486.5

	
−0.2

	
0.0

	
55.8

	
11.5

	
0.973

	
479.9

	
0.7

	
0.1

	
56.8

	
11.8

	
0.974




	
M3

	
484.5

	
−0.6

	
−0.1

	
55.5

	
11.8

	
0.973

	
479.2

	
−1.2

	
−0.3

	
59.0

	
12.3

	
0.970

	
485.4

	
−2.0

	
−0.4

	
58.8

	
12.1

	
0.971




	
M4

	
484

	
0.0

	
0.0

	
53.8

	
11.3

	
0.975

	
488

	
0.8

	
0.2

	
54.5

	
11.3

	
0.974

	
480.4

	
−0.5

	
−0.1

	
54.6

	
11.4

	
0.976




	
M5

	
484.7

	
1.5

	
0.3

	
58.8

	
12.5

	
0.970

	
480.5

	
2.0

	
0.4

	
61.8

	
13.0

	
0.967

	
484.4

	
1.6

	
0.3

	
60.0

	
12.4

	
0.970




	
M6

	
482.5

	
−0.7

	
−0.1

	
52.8

	
10.8

	
0.976

	
491.2

	
−1.3

	
−0.3

	
54.0

	
11.0

	
0.974

	
482.6

	
−0.5

	
−0.1

	
54.1

	
11.2

	
0.976




	
M7

	
483.5

	
1.2

	
0.3

	
46.0

	
9.3

	
0.982

	
486.5

	
0.4

	
0.1

	
47.3

	
9.5

	
0.981

	
483.3

	
1.1

	
0.2

	
47.6

	
9.8

	
0.981




	
M8

	
484

	
0.1

	
0.0

	
48.5

	
10.3

	
0.979

	
481.7

	
−0.1

	
0.0

	
50.0

	
10.3

	
0.978

	
486

	
0.3

	
0.1

	
49.5

	
10.2

	
0.980




	
M9

	
484

	
0.7

	
0.1

	
43.5

	
9.0

	
0.984

	
480

	
0.0

	
0.0

	
44.3

	
9.3

	
0.983

	
487.9

	
−0.2

	
0.0

	
46.3

	
9.5

	
0.983




	
M10

	
484.5

	
0.3

	
0.1

	
44.5

	
9.5

	
0.983

	
483.2

	
0.6

	
0.1

	
45.3

	
9.3

	
0.982

	
482.1

	
0.3

	
0.1

	
47.2

	
9.8

	
0.982
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