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Abstract: The accurate and stable forecasting of carbon prices is vital for governors to make
policies and essential for market participants to make investment decisions, which is important
for promoting the development of carbon markets and reducing carbon emissions in China.
However, it is challenging to improve the carbon price forecasting accuracy due to its non-linearity
and non-stationary characteristics, especially in multi-step-ahead forecasting. In this paper,
a hybrid multi-step-ahead forecasting model based on variational mode decomposition (VMD),
fast multi-output relevance vector regression (FMRVR), and the multi-objective whale optimization
algorithm (MOWOA) is proposed. VMD is employed to extract the primary mode for the carbon
price. Then, FMRVR, which is used as the forecasting module, is built on the preprocessed data.
To achieve high accuracy and stability, the MOWOA is utilized to optimize the kernel parameter
and input the lag of the FMRVR. The proposed hybrid forecasting model is applied to carbon price
series from three major regional carbon emission exchanges in China. Results show that the proposed
VMD-FMRVR-MOWOA model achieves better performance compared to several other multi-output
models in terms of forecasting accuracy and stability. The proposed model can be a potential and
effective technique for multi-step-ahead carbon price forecasting in China’s three major regional
emission exchanges.

Keywords: carbon price forecasting; variational mode decomposition; fast multi-output relevance
vector regression; multi-objective whale optimization algorithm; Chinese carbon emission exchange

1. Introduction

Global climate change induced by greenhouse emissions has become a serious challenge to the
sustainable development of society, which has attracted worldwide attention recently. An emission
trading scheme as an effective market mechanism to reduce carbon emission is widely applied
worldwide [1]. The additional cost of excess emissions mitigates companies’ motivation for excessive
production and stimulates them to seek a more green production approach, which results in overall
carbon emission mitigation. China is the largest carbon emitter [2–4], accounting for 28% of the world
emissions [5] in 2015, and reaching 10,433 Mton CO2 emission eq/yr (equivalent per year) in 2016 [6].
In response to the challenge of global warming, China has established eight pilot regional emission
exchanges in Shenzhen, Guangdong, Hubei, Tianjin, Shanghai, Chongqing, Beijing, and Fujian since
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2013 [2,7]. Accurate carbon price forecasting is not only critical for governors to make policies [3] but
also important for the reasonable production arrangement of carbon emission companies to reduce
costs and increase profit. Additionally, it is vital for investors to mitigate price risk and maximize
investment revenue [8]. However, carbon prices are impacted by both the external environmental
variation [9] and investors’ heterogeneous beliefs, which makes carbon prices non-stationary and
non-linear. Therefore, promoting the accuracy of carbon price forecasting is a challenge for academics
and an important topic in the field of energy policy and energy consumption.

Accurate carbon price forecasting has attracted extensive attention worldwide. Recent studies
on carbon price series forecasting can be divided into three categories: econometrics models,
artificial intelligence models, and hybrid (ensemble) models. The first category includes multiple
linear regression [10], generalized autoregressive conditional heteroskedasticity (GARCH) [11],
and heterogeneous autoregressive with realized volatility (HAR-RV) models [12]. The limitation
in econometric models is the difficulty in dealing with the non-linearity of a carbon price series.
To overcome such limitations, artificial intelligence models are applied widely in carbon price series
forecasting, such as the least square support vector machine (LSSVM) method [13], multi-layered
perceptron (MLP)-artificial neural network (ANN) model [14]. The hybrid model shows better
performance compared to a single model in time series forecasting [15–18]. To further improve the
forecasting performance in carbon price forecasting, the hybrid (ensemble) models are proposed.
Sun et al. [19] proposed a combined variational mode decomposition (VMD)-spiking neural network
(SNN) model to forecast carbon price from Intercontinental Exchange (ICE). Zhou et al. [20] proposed
a multiscale ensemble model based on ensemble empirical mode decomposition (EEMD), extreme
learning machine (ELM), and support vector machine (SVM) models to forecast carbon price in the
Shenzhen Emissions Exchange. Zhu et al. [1] proposed a novel ensemble model based on empirical
mode decomposition (EMD) and LSSVM with a kernel function prototype for ICE carbon price
forecasting. Zhu et al. [3] proposed a multiscale ensemble model based on EMD and the evolutionary
least squares support vector regression for carbon price forecasting in the European Climate Exchange.
Zhu and Wei [21] proposed a novel hybrid model based on autoregressive integrated moving average
model (ARIMA) and LSSVM to forecast two main carbon future prices from the European Climate
Exchange. Atsalakis [22] proposed a computational intelligence technique called PATSOS (a forecasting
model consisted of two ANFIS models) based on two adaptive neuro-fuzzy inference system (ANFIS)
sub-systems to manage the risk in carbon price trading in the European Energy Exchange.

In general, the hybrid method achieves better performance in carbon price forecasting [1,3,19–22].
However, there are three deficiencies which exist in recent studies: (1) Existing studies focus on the
one-step forecasting of carbon price series, and few studies focus on multi-step forecasting which is
important to allow market participants to make more long-term decisions. (2) Most existing studies
focus on the carbon price in the European market. Few studies have paid attention to carbon price series
in carbon emission exchanges in China. However, as the largest carbon emitter worldwide, studies on
Chinese carbon emission exchanges are of significance. (3) The existing ANN and SVR methods
can’t provide probabilistic forecasting (i.e., variance in the forecasted value) without additional
computation. To compensate for the above gaps and promote the accuracy in multi-step-ahead
carbon price forecasting, we propose a hybrid multi-step-ahead forecasting model based on VMD,
fast multi-output relevance vector regression (FMRVR), and the multi-objective whale optimization
algorithm (MOWOA) for carbon price series from three major carbon emission exchanges in China.

The proposed hybrid multi-step-ahead forecasting model VMD-FMRVR-MOWOA contains three
modules. First, the VMD is used as the preprocessing module to eliminate persistent noise in the
price series. Then, the FMRVR, which is utilized as the forecasting module is estimated based on the
preprocessed data. Finally, the MOWOA is applied to optimize the kernel parameter and input lag for
the FMRVR to obtain better performance. The proposed model is applied to three carbon prices from
three major pilot regional emission exchanges in China: Shenzhen emission allowance 2016 (SZA2016),
Guangdong emission allowance (GDEA), and Hubei emission allowance (HBEA). The results show that
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the proposed method achieves better performance compared to other multi-output models. The main
contributions of our study are as follows: (a) FMRVR is used to forecast carbon price for the first time.
(b) MOWOA is used to optimize the FMRVR for the first time. (c) As far as we know, the proposed
VMD-FMRVR-MOWOA is the first multi-step-ahead forecasting model applied to carbon price series.
(d) The carbon price series from three major regional emission exchanges in China are analyzed.

The remainder of this paper is organized as follows: Section 2 describes the framework of
the proposed model and presents a brief description of VMD, FMRVR, and MOWOA, respectively.
Section 3 introduces a case study of three major regional emissions exchanges in China and analyses
the results. Section 4 concludes our study.

2. Materials and Methods

2.1. The Proposed Method

The proposed model VMD-FMRVR-MOWOA contains three modules. (1) Preprocessing module:
For non-linear and non-stationary characteristics [9], the carbon price is often preprocessed to extract
the main mode hidden in the series. EMD and VMD are two commonly used methods [1,23–25].
VMD is used to denoise the original series in our study since VMD demonstrates better noise
robustness than EMD [26]. (2) Forecasting module: FMRVR is applied as the multi-step forecasting
module of the proposed model. The RVR, which is a Bayesian learning method using the kernel-trick,
is applied widely in time series analysis [27–32] because it has significant advantages of sparsity
formulation and probabilistic output, the ability to use non-Mercer kernels but only one output.
Thayananthan, et al. [33] extended RVM to multi-output relevance vector regression (MRVR); however,
it still has the limitation of low computational efficiency. The FMRVR used in this paper is a fast version
of the MRVR proposed by Ha [34]. The kernel parameter and input lag are crucial in the use of FMRVR.
(3) Optimization module: MOWOA, which is an efficient meta-heuristic multi-objective optimization
algorithm, is applied to optimize these two parameters. Multi-step-ahead forecasting needs to
compare multi-objective performance simultaneously; thus, the multi-objective optimization method
is essential [35–38]. As MOWOA achieves better performance than two recently developed algorithms
(i.e., multi-objective ant lion optimization algorithm (MOALO) and multi-objective dragonfly algorithm
(MODA)) [39], it is chosen as the optimization method in this study.

The structure of the hybrid model is shown in Figure 1. The whole data set is split into two parts:
training set and test set. The proposed method consists of five main steps.

Step 1: setting a moving window (window length equal to M) to select the input data for the
VMD-FMRVR models.

Step 2: denoising the data series in the fixed number window by VMD to obtain the denoised
data series.

Step 3: estimating the parameters in FMRVR based on the denoised data series in the given window
and then forecasting to obtain the values of the three steps beyond the given window. The input
lags and width of the kernel function in FMRVR module are randomly given.

Step 4: repeating VMD-FMRVR modeling with the movement of the window.
Step 5: finding the best input lags and width of the kernel function in the FMRVR by the MOWOA.
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Figure 1. Flow chart of VMD-FMRVR-MOWOA. VMD = variational mode decomposition;
FMRVR = fast multi-output relevance vector; MOWOA = multi-objective whale optimization algorithm.

2.2. Modules in Proposed Model

2.2.1. Variational Mode Decomposition (VMD)

The VMD algorithm is a signal decomposition technique proposed by Dragomiretskiy and
Zosso [40], which decomposes the original signal into K intrinsic mode functions (IMFs). The key idea
of VMD in obtaining the final K IMFs is to minimize the bandwidth sum of the IMFs. To obtain the
mode bandwidth, three steps are applied:

(1) Obtaining the unilateral frequency spectrum of each mode uk by a Hilbert transformation.(
δ(t) +

j
πt

)
× uk(t) (1)

(2) Shifting the mode’s frequency spectrum to “baseband”[(
δ(t) +

j
πt

)
× uk(t)

]
e−jωkt (2)

(3) Estimating the bandwidth by the H1 Gaussian smoothness. The decomposition process is realized
by solving the following optimization problem [22]:

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.∑

k
uk = s

(3)

where {uk} = {u1, u2, · · · , uK} are the modes, {ωk} = {ω1, ω2, · · · , ωK} are the center
frequencies of the modes. δ(t) is the Dirac function, and ∗ is the convolution operation. s is the
original signal. The alternate direction method of multipliers (ADMM) is used to solve the above
optimization problem. The complete algorithm of ADMM for obtaining the final parameters and
modes in VMD is shown in Figure 2 (modified based on Dragomiretskiy’s pseudo-code [40]).
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Figure 2. The pseudo-code of the alternate direction method of multipliers (ADMM) algorithm
for VMD.

2.2.2. Fast Multi-Output Relevance Vector Regression (FMRVR)

The RVM, which was invented by Tipping [41], is used for multi-input but single-output
regression. Thayananthan [42] and Thayananthan et al. [33] extended the RVM to the MRVR, which has
the limitation of low computational efficiency. To overcome this limitation, Ha [34] proposed the
FMRVR to decrease the time complexity of the MRVR.

Model Specification of the FMRVR

Given a data set of input-output pairs
{

xi ∈ RU×1, ti ∈ R1×V}N
i=1, a V-dimensional multi-output

U-dimensional input regression can be expressed as follows:

ti = y(xi; W) + εi (4)

where W ∈ R(N+1)×V is the weight matrix, and εi ∈ R1×V is the noise vector. y(xi; W) =
[1 K(xi, x1)K(xi, x2) · · · K(xi, xN)]W. K(x, x′) is a kernel function. The U-input V-output model can be
also expressed as follows:

T =ΦW + E (5)

where T =[t1 t2 · · · tN]
T ∈ RN×V, Φ = [φ(x1) φ(x2) · · · φ(xN)]

Ti = 1, 2, · · · , N ∈ RN×(N+1), and
φ(x) = [1 K(x, x1)K(x, x2) · · · K(x, xN)]

T ∈ R(N+1)×1, E =[ε1 ε2 · · · εN]
T ∈ RN×V is the noise matrix.

To clarify the relation between inputs and outputs, the U-input V-output model can be expressed in
elements form as follows:
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t11 t12 · · · t1V
t21 t22 · · · t2V
...

...
. . .

...
tN1 tN1 · · · tNV

 =


1 K(x1, x1) · · · K(x1, xN)

1 K(x2, x1) · · · K(x2, xN)
...

...
. . .

...
1 K(xN, x1) · · · K(xN, xN)




w11 w12 · · · w1V
w21 w22 · · · w2V

...
...

. . .
...

wN1 wN2 · · · wNV



+


e11 e12 · · · e1V
e21 e22 · · · e2V
...

...
. . .

...
eN1 eN2 · · · eNV


(6)

The FMRVR is tuned within a general Bayesian learning framework. Under the assumption of
noise independence, the likelihood of the data set is as follows:

p(T|W, Ω) = (2π)−
VN

2 |Ω|−
N
2 exp

(
−1

2
tr
(

Ω−1(T−ΦW)T(T−ΦW)
))

(7)

where Ω is the noise covariance matrix. To avoid over-fitting, W is assumed to obey the following
distribution:

p(W|α, Ω) = (2π)−
V(N+1)

2 |Ω|−
N+1

2 |A|
V
2 exp

(
−1

2
tr
(

Ω−1WTAW
))

(8)

where A−1= diag
(

α−1
0 , α−1

1 , · · · , α−1
N

)
=

E[WTW]
tr(Ω)

, and α = [α0 α1 · · · αN ] is the hyperparameters.

Inference

The posterior distribution of all the unknowns can be decomposed as following:

p(α, W, Ω|T) = p(W|T,α, Ω)p(α, Ω|T) (9)

The p(W|T, A, Ω) can be given out directly as following:

p(W|T,α, Ω) = (2π)−
V(N+1)

2 |Ω|−
N+1

2 |Σ|−
V
2 exp

(
−1

2
tr
(

Ω−1(W−M)TΣ−1(W−M)
))

(10)

where Σ =
(

ΦTΦ + A
)−1

is the posterior covariance and M =ΣΦTT is the posterior mean.
To maximize the posterior distribution p(α, W, Ω|T) is equal to maximize p(α, Ω|T). Since p(α, Ω|T) ∝
p(T|α, Ω)p(α)p(Ω), the maximizing of p(α, Ω|T) is equal to maximize p(T|α, Ω). p(T|α, Ω) can be
given as follows:

p(T|α, Ω) = (2π)−
VN

2 |Ω|−
N
2

∣∣∣I + ΦA−1ΦT
∣∣∣− V

2 exp
(
−1

2
tr
(

Ω−1TT
(

I + ΦA−1ΦT
)−1

T
))

(11)

To estimate the final αMP and ΩMP by maximizing the above marginal likelihood, the expectation-
maximization (EM) algorithm is applied.

Making Predictions

Given a new input x∗ ∈ RU×1, we can get the predicted mean and covariance by:

y∗ = φ(x∗)
TM (12)

Ω∗ = ΩMP

(
1 + φ(x∗)

TΣφ(x∗)
)

(13)
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where y∗ is the predicted mean, and Ω∗ is the predicted covariance. Σ =
(

ΦTΦ + AMP

)−1
y∗Ω∗ and

M =ΣΦTT, αMP and ΩMP are obtained from the EM algorithm.

2.2.3. The Multi-Objective Whale Optimization Algorithm (MOWOA)

The whale optimization algorithm proposed by Mirjalili and Lewis [43] is a nature-inspired
meta-heuristic single-objective optimization algorithm. Wang et al. [39] further proposed the MOWOA
for multi-objective optimization. The MOWOA introduces the concept of Pareto domination into the
optimization process.

Multi-Objective Optimization Problems

In multi-objective optimization problems, the concept of “dominates” proposed by Edgeworth [44]
and extended by Pareto [45] is widely used in solution comparisons to find the global optimum.
The relative definitions of the multi-objective optimization are given as follows:

Definition 1: Multi-objective minimization problem:
Minimize: F

(→
x
)
=
{

f1

(→
x
)

, f2

(→
x
)

, · · · , fO

(→
x
)}

Subject to: inequality, equality, and boundary constraints.

Definition 2: Pareto Dominate:
Vector

→
x = (x1, x2, . . . , xI) dominates

→
y = (y1, y2, . . . , yI) (i.e.,

→
x ≺ →y ) if and only if:

∀i ∈ [1, I], f (xi) ≤ f (yi) and ∃j ∈ [1, I], f
(
xj
)
< f

(
yj
)

(14)

Definition 3: Pareto Optimal:
A solution

→
x
∗

is called Pareto optimal if and only if :

∃→y ∈ X s.t. F
(→

y
)
� F

(→
x
∗)

(15)

Definition 4: Pareto Optimal Set:

Ps :=
{→

x ∈ X
∣∣∣∃→y ∈ X s.t. F

(→
y
)
� F

(→
x
)}

(16)

Definition 5: Pareto Optimal Front:
Pf :=

{
F
(→

x
)∣∣∣→x ∈ Ps

}
(17)

WOA

In the whale optimization algorithm (WOA), whales (i.e., search agents) have three modes to
update their positions: random search mode, shrinking encircling mode, and spiral feeding mode.

Random search mode

In this mechanism, search agents update their positions randomly, which makes it possible for
the WOA to perform a global search. The updating process is as follows:

→
D =

∣∣∣∣→C · →
Xrand −

→
X(t)

∣∣∣∣
→
X(t + 1) =

→
Xrand −

→
A ·
→
D

(18)
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where
→
X is the position of the search agent, t is the iteration number.

→
Xrand is a random search agent,

→
A and

→
C are the coefficient vectors calculated by:

→
A = 2

→
a ·→r −→a

→
C = 2 ·→r

(19)

where
→
a decreases from 2 to 0 over the iterations and

→
r is a random number in [0,1].

Shrinking encircling mode

In this mechanism, search agents update their positions in a shrinking movement towards current
best solution as follows:

→
D =

∣∣∣∣→C ·→X∗(t)−→X(t)
∣∣∣∣

→
X(t + 1) =

→
X
∗
(t)−

→
A ·
→
D

(20)

where
→
X
∗
(t) is the position of current best search agent.

Spiral feeding mode

In this mechanism, search agents update their positions in a spiral movement towards the current
best solution as follows:

→
X(t + 1) =

→
D
′
· ebl · cos(2πl) +

→
X
∗
(t) (21)

→
D
′
=

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ (22)

where b is a constant and l is a random number in [−1].
Search agents adopt a circling mechanism to update their positions in both random search and

shrinking encircling modes and perform a spiral mechanism in spiral feeding mode. The probabilities
to choose a circling mechanism or spiral mechanism are both 50%. In the circling mechanisms, if |A| < 1,
search agents update their positions in the shrinking encircling mode. If |A| ≥ 1, the positions are
updated in random search mode.

MOWOA introduces the Pareto-dominate concept into the WOA to find the non-dominated
solution, as shown in line 28 of Figure 3. Furthermore, the archive, roulette wheel selection
mechanisms [46] are also adopted in the MOWOA. The pseudo-code of the MOWOA algorithm
(modified based on Wang’s pseudo-code [39]) is shown in Figure 3.
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3. Results and Analyses

3.1. Data Descriptions

Considering the data availability, continuity, and comparability, three carbon price series used in
this paper: SZA2016 from Shenzhen emission exchange, GDEA from Guangzhou emissions exchange,
and HBEA from Hubei emissions exchange. SZA2016, HBEA, and GDEA are three actively traded
assets that help to provide continuous carbon prices for study. The samples are obtained from
1 September 2016 to 11 September 2018, excluding non-trading days, with 496 data points included
per series [47]. Three carbon prices are plotted in Figure 4. The basic information of the three regional
emission exchanges is shown in Figure 5. The total carbon trading volume of these emission exchanges
account for 77.1% of China’s total carbon trading volume, and the total carbon trading turnover of
these emissions exchanges account for 71.4% of China’s total carbon trading turnover. These emission
exchanges are three major pilot regional carbon emission exchanges in China.
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The statistical descriptions of the three carbon price series are shown in Table 1. The average
carbon price and price volatility of SZA2016 are higher than those of the HBEA and GDEA, which is
also evident in Figure 4.

Table 1. Data descriptions for the three carbon price series.

Asset Data Count Mean Std Min 25% 50% 75% Max Skew Kurt

All samples 496 29.99 5.23 19.80 25.91 29.81 33.23 46.20 0.47 −0.14
SZA2016 Training 350 29.09 4.53 19.80 25.60 28.99 32.39 42.00 0.22 −0.31

Testing 146 32.13 6.12 20.64 26.87 30.63 36.83 46.20 0.28 −0.92
All samples 496 13.74 1.52 9.80 12.87 13.70 14.69 18.90 0.27 0.86

GDEA Training 350 13.62 1.71 9.80 12.59 13.50 14.70 18.90 0.42 0.43
Testing 146 14.01 0.86 12.00 13.29 13.99 14.63 16.35 0.09 −0.51

All samples 496 16.62 3.39 11.26 14.93 15.85 17.29 29.70 2.05 4.64
HBEA Training 350 15.73 1.91 11.26 14.31 15.70 16.91 19.97 0.09 −0.57

Testing 146 18.76 4.90 14.07 15.46 16.54 20.40 29.70 1.14 −0.34

Notes: Count denotes the number of samples, std is short for standard deviation, min denotes the minimum,
max denotes the maximum, skew is short for skewness, and kurt is short for kurtosis. SZA2016 is short for
Shenzhen emission allowance 2016, GDEA is short for Guangdong emission allowance, and HBEA is short for
Hubei emission allowance.

3.2. Evaluation Criteria

To measure the forecasting performance, three criteria (the mean absolute percentage error (MAPE)
as calculated in Equation (23), the mean absolute error (MAE) as calculated in Equation (24), and the
root mean square error (RMSE) as calculated in Equation (25)) are used. The process of the evaluation
criteria is detailed in Table 2.

Table 2. The evaluation metrics of forecasting performance.

Metric Definition Equation

MAPE the mean absolute percentage error MAPE = 1
n

n
∑

t=1

∣∣∣ yactual−ŷ f orecasted
yactual

∣∣∣× 100% (1)

MAE the mean absolute error MAE = 1
n

n
∑

t=1

∣∣∣yactual − ŷ f orecasted

∣∣∣ (2)

RMSE the root mean of square error RMSE =

√
1
n

n
∑

t=1

∣∣∣yactual − ŷ f orecasted

∣∣∣2 (3)

where yactual is the actual value and ŷ f orecasted is the forecasted value, and n is the number of forecasted points.
The smaller the above three criteria are, the higher forecasting accuracy the model achieves.

3.3. Data Preprocessing

As shown in Figure 4 and Table 1, carbon price series are heavily random and highly volatile.
To eliminate noise, VMD is applied to preprocess the raw carbon price series. After VMD, the raw
carbon price series are decomposed into some IMFs. Furthermore, the IMFs are reconstructed to obtain
the preprocessed data. VMD remains the major mode in the price series. The preprocessed carbon
price series are smoother than the raw series which can significantly improve the effectiveness and
accuracy of time series prediction [46].

3.4. Parameter Setting and Input Selection

The general expression for the input and output of the model can be described as follows:

[xt+1, xt+2, xt+3] = model(xt, xt−1, . . . , xt−m) (26)

where the input lag is m + 1, xt is the observation value at time t, xt+1, xt+2, xt+3 are one-step, two-step,
and three-step forecasted values, respectively. In the FMRVR, the radial basis function (RBF) kernel
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is chosen as the kernel function which is expressed in Equation (27), with kernel width (i.e., a free
parameter) υ:

K
(

x, x′
)
= exp

(
−‖x− x′‖

2υ

)
(27)

The input lag and kernel width are two parameters that are optimized in the MOWOA.
The parameters setting used to train the VMD-FMRVR-MOWOA is shown in Table 3. The objective
function used in MOWOA is {RMSE1, RMSE2, RMSE3}, where the RMSE is achieved in one-step,
two-step, and three-step ahead forecasting, respectively.

Table 3. Parameter setting used in the VMD-FMRVR-MOWOA to train the model.

Modules Parameter Value

VMD Number of IMFs (Intrinsic Mode Functions ) 6
Omegas initialization Uniformly distributed

Tolerance of convergence criterion 10−7

FMRVR Width of kernel function Select within [0.1,5]
Input lags Select within [1,20]

Kernel type Gaussian kernel
Maximum iteration number of EM

(expectation-maximization) algorithm 1000

Tolerance value to check convergence of EM algorithm 0.1
MOWOA Number of search agents 10

Maximum number of iterations 20
Maximum number of archives 10
The dimension of the problem 3

3.5. Compared Models

The proposed model is compared with the other five multi-output forecasting models:
FMRVR-MOWOA (proposed in this paper), MOGP-MOWOA (multi-output Gaussian process
regression optimized [48] by MOWOA, where the Gaussian process regression is also widely used
in time series forecasting [49,50]), MOTP-MOWOA (multi-output student-t process regression [48]
optimized by MOWOA), MSVR (multi-output support vector regression [51]), and BPNN (back
propagation neural network [52,53]).

The parameter setting in FMRVR-MOWOA is similar to that in Table 3. The parameter settings (input
lags, initial covariance, and scale in the kernel function) in MOTP-MOWOA and MOGP-MOWOA
are optimized by the MOWOA. The parameters in MSVR, the ε loss function parameter and the
error trade-off parameter are optimized by a grid optimization algorithm. BPNN is a 6-13-3 structure
network, where the maximum number of iterations is 1000 and the training precision is 0.00004.

3.6. Results and Discussion

Table 4 presents the forecasting results of SZA2016 from the different models. For clarity, the values
of MAPE, MAE, and RMSE are plotted in Figure 6. As shown in Table 4 and Figure 6, VMD-FMRVR
-MOWOA outperforms the other five models in all three steps ahead forecasts. The results show
the following:

(a) The proposed model has the smallest MAPE, MAE, and RMSE in one-step, two-step, and
three-step ahead forecasting performance. The MAPE values achieved by the proposed model are
6.738%, 8.278%, and 9.646% in one-step, two-step, and three-step ahead forecasting, respectively.
The smallest MAPE values from the remaining five models are 7.538%, 9.310%, and 10.457%
in the one-step, two-step, and three-step ahead forecasts achieved by FMRVR-MOWOA,
FMRVR-MOWOA, and BPNN, respectively. The MAE values achieved using the proposed model
are 2.164, 2.677, and 3.122 in one-step, two-step, and three-step ahead forecasting, respectively.
The smallest MAE values from the remaining five models are 2.405, 3.001, and 3.367 in one-step,
two-step, and three-step ahead forecasting achieved by the FMRVR-MOWOA, FMRVR-MOWOA,
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and BPNN, respectively. The RMSE values achieved by the proposed model are 2.655, 3.373,
and 4.009 in one-step, two-step, and three-step ahead forecasting, respectively. The smallest
RMSE values from the remaining five models are 2.960, 3.757, and 4.390 in one-step, two-step,
and three-step ahead forecasting achieved by FMRVR-MOWOA, FMRVR-MOWOA, and BPNN,
respectively. The MAPE, MAE, and RMSE obtained by the proposed model are smaller than
the smallest MAPE, MAE, and RMSE values achieved by the other five models, respectively.
These results show that the proposed method has a high accuracy in forecasting SZA2016
price series.

(b) The proposed model outperforms the FMRVR-MOWOA in all of the one-step, two-step, and
three-step ahead forecasting, which can be mainly attributed to the fact that VMD denoises
the carbon price series. This shows that the VMD algorithm helps to improve the forecasting
performance in carbon price series.

(c) The proposed model outperforms the MOTP-MOWOA and MOGP-MOWOA in one-step,
two-step, and three-step ahead forecasting. These results show that the VMD-FMRVR has
a stronger performance in SZA2016 price forecasting than the MOTP and MOGP.

(d) Forecasting accuracy decreases as the forecasting step size increases. All MAPE, MAE, and RMSE
values increase by the increase in one-step, two-step, and three-step ahead forecasting for all six
models. These results indicate that the difficulty in forecasting increases with the forecasting step.

Table 4. The one-step, two-step, and three-step ahead forecasting performance comparisons of SZA2016
for different forecasting models.

Models
1-Step 2-Step 3-Step

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

VMD-FMRVR-MOWOA 6.738% 2.164 2.655 8.278% 2.677 3.373 9.646% 3.122 4.009
FMRVR-MOWOA 7.538% 2.405 2.960 9.310% 3.001 3.757 11.057% 3.565 4.449
MOTP-MOWOA 8.715% 2.812 3.522 10.830% 3.484 4.309 12.081% 3.896 4.749
MOGP-MOWOA 9.215% 3.076 4.198 10.526% 3.495 4.574 11.448% 3.752 4.772

MSVR 8.237% 2.708 3.525 10.015% 3.269 4.283 11.484% 3.798 5.012
BPNN 7.724% 2.477 3.135 9.361% 3.018 3.932 10.457% 3.367 4.390

Notes: MOTP=multi-output student-t process regression, MOGP=multi-output Gaussian process regression,
MSVR=multi-output support vector regression and BPNN=back propagation neural network.
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The forecasting performances for GDEA and HBEA are presented in Tables 5 and 6, respectively.
For clarity, the MAPE, MAE, and RMSE values are presented in Figures 7 and 8. Similar to the results
for SZA2016 forecasting shown in Table 4, the proposed model outperforms the other five models in
multi-step-ahead forecasting given its stability in GDEA and HBEA price series forecasting.

Table 5. The one-step, two-step, and three-step ahead forecasting performance comparisons of GDEA
with different forecasting models.

MODELS
1-Step 2-Step 3-Step

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

VMD-FMRVR-MOWOA 2.944% 0.411 0.570 3.422% 0.478 0.662 3.620% 0.504 0.694
FMRVR-MOWOA 3.117% 0.435 0.593 3.607% 0.502 0.700 3.796% 0.526 0.735
MOTP-MOWOA 3.005% 0.419 0.579 3.717% 0.518 0.709 3.873% 0.536 0.748
MOGP-MOWOA 2.981% 0.414 0.570 3.537% 0.492 0.676 3.666% 0.508 0.701

MSVR 3.489% 0.486 0.654 3.994% 0.558 0.782 4.183% 0.583 0.819
BPNN 3.128% 0.436 0.599 3.679% 0.518 0.731 4.107% 0.571 0.805
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As shown in Table 5 and Figure 7, there is a small difference among the six models in the
forecasting performance of the GDEA price series. For one-step, two-step, and three-step ahead
forecasting, the smallest MAPE values are 2.944%, 3.422%, and 3.620%, respectively; the smallest
MAE values are 0.411, 0.478, and 0.504, respectively; and the lowest RMSE are 0.570, 0.662, and 0.694,
respectively. These smallest MAPE, MAE, and RMSE values are all achieved by the proposed model,
which implies that the proposed model outperforms the other five models in the multi-step-ahead
forecasting of GDEA price series.
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Table 6. The one-step, two-step, and three-step ahead forecasting performance comparisons of HBEA
for different forecasting models.

MODELS
1-Step 2-Step 3-Step

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

VMD-FMRVR-MOWOA 2.018% 0.390 0.565 2.668% 0.549 0.856 3.149% 0.677 1.125
FMRVR-MOWOA 3.506% 0.799 1.143 3.969% 0.899 1.186 4.267% 0.975 1.250
MOTP-MOWOA 6.271% 1.561 2.615 6.666% 1.632 2.577 6.665% 1.630 2.420
MOGP-MOWOA 6.792% 1.596 2.228 7.302% 1.711 2.322 7.645% 1.804 2.419

MSVR 5.046% 1.236 2.038 5.303% 1.273 1.934 5.299% 1.268 1.807
BPNN 7.701% 1.948 3.343 8.928% 2.248 3.719 8.747% 2.194 3.515
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As shown in Table 6 and Figure 8, the forecasting performance for HBEA price series with the
six models is described. For one-step, two-step, and three-step ahead forecasting, the MAPE values
achieved by the proposed model are 2.018%, 2.668%, and 3.149%; the MAE values achieved by the
proposed model are 0.390, 0.549, and 0.677; and the RMSE values achieved by the proposed model are
0.565, 0.85, and 1.125, respectively. All of these criteria rank first in the six models. These results imply
that the proposed model outperforms the other five models in the multi-step-ahead forecasting of the
HBEA price series.

3.7. Improvement of the Proposed Hybrid Model

Three criteria are applied to measure the improvement ratio of the proposed model compared to
the other five models in terms of forecasting performance, which helps make an intuitionistic analysis.
The criteria are defined in Table 7.
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Table 7. Improvement ratio of MAPE, MAE, and RMSE.

Metric Definition Equation

PMAPE improvement ratio of MAPE PMAPE =
∣∣∣MAPEcompared−MAPEproposed

MAPEcompared

∣∣∣× 100% (4)

PMAE improvement ratio of MAE PMAE =
∣∣∣MAEcompared−MAEproposed

MAEcompared

∣∣∣× 100% (5)

PRMSE improvement ratio of RMSE PRMSE =
∣∣∣ RMSEcompared−RMSEproposed

RMSEcompared

∣∣∣× 100% (6)

where MAPEproposed, MAEproposed, and RMSEproposed are the forecasting performance achieved by the proposed
model. MAPEcompared, MAEcompared, and RMSEcompared are the forecasting performance achieved by the other
model. PMAPE, PMAE, and PRMSE are the improvement ratio in MAPE, MAE, and RMSE, respectively.

The improvement ratio of the proposed model compared to the other five models is calculated
for the three forecasted carbon price series. The improvements in one-step, two-step, and three-step
ahead forecasting with respect to the MAPE, MAE, and RMSE are shown in Tables 8–10, respectively.
Some discussions are as follows:

(a) For the improvement ratio in the MAPE shown in Table 8, the largest improvement ratios for
one-step, two-step, and three-step ahead forecasting of SZA2016 are 26.886%, 23.566%, and
20.153%, and the smallest improvement ratios are 10.614%, 11.082%, and 7.755%, respectively.
These results show that the proposed model outperforms the other five models and shows a
steady performance in forecasting of SZA2016. Similar results are also shown in the MAPE
improvement ratio for GDEA and HBEA.

(b) For the improvement ratio of the MAE and RMSE, consistent with that of MAPE shown in Table 8,
the results presented in Tables 9 and 10 suggest that the proposed model outperforms the other
five models in all SZA2016, GDEA, and HBEA forecasts.

Table 8. Improvement ratio of MAPE with the proposed hybrid model compared to other models in
one-step, two-step, and three-step ahead forecasting.

MODELS
SZA2016 GDEA HBEA

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

FMRVR-MOWOA 10.614% 11.082% 12.763% 5.551% 5.146% 4.643% 42.440% 32.777% 26.191%
MOTP-MOWOA 22.689% 23.566% 20.153% 2.030% 7.950% 6.533% 67.824% 59.977% 52.748%
MOGP-MOWOA 26.886% 21.359% 15.744% 1.221% 3.244% 1.252% 70.292% 63.464% 58.804%

MSVR 18.201% 17.340% 16.007% 15.608% 14.321% 13.457% 60.010% 49.690% 40.573%
BPNN 12.765% 11.571% 7.755% 5.875% 6.991% 11.854% 73.797% 70.117% 63.997%

Table 9. Improvement ratio of MAE with the proposed hybrid model compared to other models in
one-step, two-step, and three-step ahead forecasting.

MODELS
SZA2016 GDEA HBEA

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

FMRVR-MOWOA 10.035% 10.821% 12.415% 5.545% 4.811% 4.111% 51.278% 38.932% 30.576%
MOTP-MOWOA 23.049% 23.172% 19.869% 1.917% 7.665% 5.957% 75.050% 66.372% 58.452%
MOGP-MOWOA 29.656% 23.421% 16.795% 0.840% 2.790% 0.648% 75.602% 67.926% 62.478%

MSVR 20.103% 18.127% 17.798% 15.478% 14.359% 13.419% 68.478% 56.888% 46.598%
BPNN 12.629% 11.312% 7.277% 5.795% 7.598% 11.597% 80.006% 75.583% 69.135%

Table 10. Improvement ratio of RMSE with the proposed hybrid model compared to other models in
one-step, two-step, and three-step ahead forecasting.

MODELS
SZA2016 GDEA HBEA

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

FMRVR-MOWOA 10.301% 10.230% 9.874% 3.984% 5.417% 5.559% 50.561% 27.837% 9.989%
MOTP-MOWOA 24.634% 21.730% 15.574% 1.670% 6.596% 7.167% 78.384% 66.798% 53.507%
MOGP-MOWOA 36.767% 26.261% 15.973% 0.052% 2.041% 0.972% 74.634% 63.151% 53.480%

MSVR 24.696% 21.241% 20.007% 12.838% 15.338% 15.198% 72.270% 55.757% 37.723%
BPNN 15.328% 14.215% 8.662% 4.870% 9.491% 13.768% 83.095% 76.993% 67.986%
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To check the overall performance of the proposed model, the average improvement ratios of the
proposed model over the three carbon price series forecasting are presented in Table 11.

Table 11. Average improvement ratio of the proposed hybrid model with respect to MAPE, MAE,
and RMSE for the three carbon prices series in China’s emissions exchanges.

MAPE MAE RMSE

MODELS 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

FMRVR-MOWOA 19.535% 16.335% 14.532% 22.286% 18.188% 15.701% 21.615% 14.495% 8.474%
MOTP-MOWOA 30.848% 30.498% 26.478% 33.339% 32.403% 28.093% 34.896% 31.708% 25.416%
MOGP-MOWOA 32.799% 29.356% 25.267% 35.366% 31.379% 26.640% 37.151% 30.484% 23.475%

MSVR 31.273% 27.117% 23.346% 34.686% 29.791% 25.938% 36.601% 30.779% 24.309%
BPNN 30.813% 29.559% 27.869% 32.810% 31.498% 29.336% 34.431% 33.566% 30.139%

As shown in Table 11, the smallest average improvements in the MAPE for one-step, two-step, and
three-step ahead forecasting are 19.535%, 16.335%, and 14.532%, and the largest average improvements
in the MAPE are 32.799%, 30.498%, and 27.869%, respectively. These results indicate that the proposed
model outperforms the other five models in terms of MAPE performance.

Similarly, the smallest average improvements in the MAE for one-step, two-step, and three-step
ahead forecasting are 22.286%, 18.188%, and 15.701%, and the largest average improvement in the
MAE are 35.366%, 32.403%, and 29.336%, respectively. These results show that the proposed model
achieves better performance in the MAE than the other five models.

The smallest average improvements in the RMSE for one-step, two-step, and three-step ahead
forecasting are 21.615%, 14.495%, and 8.474%, and the largest average improvements in RMSE are
36.601%, 33.566%, and 30.139%, respectively. These results suggest that the proposed model exceeds
the other five models with regards to the RMSE performance.

The above results show that the proposed model achieved the best forecasting performance
among the six models with respect to the three performance criteria. The proposed model performs
steadily in the multi-step-ahead forecasting of the three carbon price series.

4. Conclusions

The accurate and stable forecasting of carbon prices is important to promote the development of
carbon markets and vital to reduce carbon emissions in China. However, improving forecasting
accuracy is hard work due to the non-stationary characteristics of carbon prices, especially for
multi-step-ahead forecasting. In this paper, we propose a hybrid multi-step-ahead forecasting model,
VMD-FMRVR-MOWOA, for carbon price series. The proposed hybrid forecasting model is applied to
three carbon price series from three major pilot regional carbon emission exchanges in China: SZA2016
from Shenzhen emission exchange, GDEA from Guangzhou emissions exchange, and HBEA from
Hubei emissions exchange. The sample period of the three carbon price series is from 1 September
2016 to 11 September 2018. Compared with the other five multi-output models (FMRVR-MOWOA,
MOTP-MOWOA, MOGP-MOWOA, MSVR, and BPNN), the proposed VMD-FMRVR-MOWOA model
obtained the smallest MAPE, MAE, and RMSE in all of the one-step, two-step, and three-step ahead
forecasting of the three carbon prices from the major regional emission exchange in China. The smallest
average improvement ratio in MAPE, MSE, and RMSE of the proposed hybrid model compared with
the other five models are 14.532%, 15.701%, and 8.474%, respectively. These results show that the
proposed VMD-FMRVR-MOWOA model outperforms the other five multi-output models in terms of
forecasting accuracy and stability, and it can be a potential and effective technique for multi-step-ahead
carbon price forecasting in China’s major regional emission exchanges. The proposed model can help
governors to deeply understand the characteristics of the carbon price in the three major regional
emission exchanges in order to make a more reasonable carbon pricing mechanism, help companies
make reasonable production arrangement to reduce cost and help market investors to control price
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risk. As a newly developed hybrid model, in our future work, we will test the forecasting performance
of the proposed method in other forecasting fields, such as crude oil price and stock index.
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List of Abbreviations

VMD variational mode decomposition
RVR relevance vector regression
RVM relevance vector machine
MRVR multi-output relevance vector regression
FMRVR fast multi-output relevance vector regression
WOA whale optimization algorithm
MOWOA multi-objective whale optimization algorithm
VMD-FMRVR module based on fast multi-output relevance vector regression

FMRVR-MOWOA
hybrid forecasting model based on fast multi-output relevance vector regression optimized by
multi-objective whale optimization algorithm

VMD-FMRVR-MOWOA
hybrid forecasting model based on variational mode decomposition, fast multi-output relevance
vector regression and multi-objective whale optimization algorithm

MOGP-MOWOA multi-output gaussian process regression optimized by multi-objective whale optimization algorithm
MOTP-MOWOA multi-output student-t process regression optimized by multi-objective whale optimization algorithm
GARCH generalized autoregressive conditional heteroscedastic model
HAR-RV heterogeneous autoregressive model for realized volatility
SVM support vector machine
LSSVM least square support vector machine
SVR support vector regression
MSVR multi-output support vector regression
ANN artificial intelligence models
MLP-ANN multi layered perceptron
BPNN back propagation neural network
SNN spiking neural networks
ICE InterContinental Exchange
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
ELM extreme learning machine
ECE European Climate Exchange
ARIMA autoregressive integrated moving average model
ANFIS adaptive neuro-fuzzy inference system
IMF Intrinsic Mode Functions
ADMM alternate direction method of multipliers
EM expectation-maximization algorithm
MAPE mean absolute percentage error
MAE mean absolute error
RMSE root mean square error
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