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Abstract: Selective catalytic reduction (SCR) has been exhibited as a promising method of NOx

abatement from diesel engine emissions. Long-term durability is one of the key requirements for
the automotive SCR system. A high NOx conversion, droplet distribution and mixing, and fluid
film and solid deposit formation are the major challenges to the successful implementation of the
SCR system. The current study is therefore three-fold. Firstly, high-speed images disclose detailed
information of the spray impingement on the heated impingement surface. The spray impingement
investigation took place in a specially-designed optically-accessible visualization chamber where the
Z-type shadowgraph technique was used to capture the high-speed images. Wall temperature has
a great influence on the film formation and wall wetting. A higher wall temperature can significantly
increase the droplet evaporation, and consequently, wall wetting decreases. The numerical analysis
was performed based on the Eulerian-Lagrangian approach using STAR CCM+ CFD code. Secondly,
the resultant phenomena due to spray-wall impingement such as fluid film generation and transport,
solid deposit formation, and thermal decomposition were recorded using a high-speed camera
operating at a low frame rate. Infrared thermal imaging was used to observe the spray cooling
effect after impingement. Spray impingement caused local cooling, which led to wall film formation,
which introduced urea crystallization. Finally, solid deposits were analyzed and characterized using
Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). FTIR analysis
revealed that urea decomposition products vary based on the temperature, and undecomposed urea,
biuret, cyanuric acid, ammeline, and melamine can be formed at different temperatures. TGA analysis
showed that accumulated deposits were hard to remove. Moreover, complete thermal decomposition
of deposits is not possible at the regular exhaust temperature, as it requires a comparatively long
time span.
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1. Introduction

Energy is omnipresent with respect to life, and the quest to obtain energy without interrupting
the environment is growing at an exponential rate. At present, 27% of global energy is being
utilized by the transportation sector, which mainly in the form of crude oil (about 95%) to power
automobiles [1]. As a result of better thermal efficiency, which can effectively lead to a better fuel
economy, an increased interest can be seen in diesel engines. An improved injection system and
application of the EGR system [2] or improvement of fuel properties [3] significantly increase the
output power. There is no effective alternative to diesel engines in the case of heavy-duty transportation,
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off-road machinery, construction, and the agricultural and mining industries because of their proven
fuel economy, durability, and reliability. Unfortunately, diesel engine gaseous exhaust emissions
contain a significant percentage of NOx, a combustion by-product that is generated in the combustion
chamber, due to the high temperatures produced by compression in the engine cylinders because of
diesel fuel ignition. NOx, a major air pollutant induced by the transportation sector, has detrimental
effects on the environment and human health, contributes to smog formation, and can cause heart
disease, various respiratory problems, lung cancer, and exacerbation of asthma. By reducing the
combustion temperature, NOx generation may be controlled. To maintain a high engine performance,
the combustion temperature cannot be lowered. Instead, mitigation of NOx emissions can be obtained
by post-treatment of the exhaust gas stream from diesel engines. To meet the challenges of current
strengthened emission standards like EURO 6, automobile brands are being pressured to include
emission reduction devices in their newly-manufactured engines. The current EURO 6 emission
standard has introduced a significant NOx limit of 80 gm/km from the 180 gm/km one in EURO
5 [4]. To fulfill this rising challenge, an effective emission reduction method is necessary. Over the
last few years, the SCR system has been a proven technology for NOx emission reduction for the
transportation sector, which can achieve over 90% NOx conversion to satisfy the existing emission
standards [5]. Usually, this method uses an injector to inject the urea water solution (UWS) (the
commercial name is AdBlue) in the exhaust gas flow before the catalyst. After the injection into the
hot exhaust stream, urea decomposes into NH3, which chemically reacts with the NOx molecules and
subsequently produces N2 [6]. This urea decomposition process is completed as follows: (i) liquid
droplet evaporation, (ii) ammonia (NH3) and isocyanic acid formation through urea thermolysis,
and (iii) hydrolysis of isocyanic acid [7–9]. A uniform urea droplet distribution [10,11] and the
reduction of undesired solid deposit formation [12,13] are the main challenges in implementing the
SCR NOx reduction system in the transportation sector. The recent modern SCR system requires
a complex exhaust pipe geometry design including a mixer [14], and complete thermal decomposition
of urea requires long time scales, so droplet impingement on the exhaust pipe wall and the mixer blade
cannot be avoided [15]. Because of spray impingement, the wall temperature falls at a definite level;
therefore, liquid film formation occurs [15]. Further cooling occurs due to liquid film evaporation,
which raises deposit formation risk [16–18]. The conventional pressure-driven urea-SCR injector works
at a low injection pressure; hence, no secondary droplet breakup occurs, and relatively large-sized
droplets are produced, which leads to spray cooling, as well as wall film generation, which is the
predecessor to urea deposit generation [19].

During urea thermal decomposition, two molecules of NH3 are produced by the thermolysis (1)
and hydrolysis (2) reaction of urea:

NH2CONH2 → NH3 + HNCO (1)

HNCO + H2O→ NH3 + CO2 (2)

The SCR solid deposit chemical composition is temperature dependent [20], and several deposit
components can be produced at various decomposition temperatures [17,21]. In the first step of the
urea decomposition process, the generated isocyanic acid can make a chemical reaction with the
undecomposed urea, which produces biuret, triuret, and other heterocyclic compounds like ammelide,
cyanuric acid, melamine, and ammeline; these contribute to the solid deposit formation depending
on the decomposition temperature [17,22,23]. Solid deposit formation is not only harmful to SCR
hardware components like the injector, mixer, and exhaust pipe, but also generate backpressure,
which reduces engine performance. Moreover, deposit accumulated on the SCR catalyst can lower
the catalyst activity, which seriously affects the NOx conversion rate. In order to prevent the solid
deposit formation or to remove the accumulated deposits efficiently, it is important to investigate
the chemical composition [20,21] and thermal decomposition behavior of the urea solid deposits [24].
Figure 1 shows the overall process (spray to solid deposit formation) in the SCR system.
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Figure 1. Overall process (spray to deposit creation) in the SCR system.

Several numerical simulation studies regarding urea-SCR sprays have been conducted [7,15,25,26].
On the other hand, recently, a limited amount of SCR experimental spray investigation data has been
made available to disclose the droplet breakup, distribution, and associated phenomena [4,14,27–30].
Investigation of UWS spray impingement and urea-SCR spray optimization can be the possible measure
for discovering the mechanisms and subsequent phenomena for spray-wall impingement, hence,
to mitigate the solid deposit formation risk [20]. In the case of UWS spray impingement, multi-step
droplet evaporation phenomena of UWS droplets [31,32] and the impingement regime map depending
on the kinetic features of the droplets and impingement wall temperature have been reported [7,15,19].
Besides, droplet wall impingement of fuel spray [33,34], spray cooling [35], and other applications
by implementing Mie scattering [28], backlight imaging [4], or other imaging techniques have been
conducted, and these techniques can be successfully implemented for urea-SCR spray impingement
investigation. Therefore, the basic perspective of the UWS spray impingement and associated
circumstances of wall film and solid deposit formation have not been thoroughly investigated.

Abu-Ramadan et al. [36], F. Birkhold [37], and Shahariar et al. [19] conducted numerical
investigations of UWS spray-wall impingement. A complete SCR CFD model includes spray
parameters, droplet evaporation, and heat transfer, spray-wall impingement, etc. [38]. Conventional
CFD models include complicated meshing, which should be done using an advanced method
and having delayed solver time. However, the execution of the automatic meshing technique can
be operative here [39]. Spray wall interaction is a very complicated phenomenon modeled by
Bai-Gosman [40,41] and further developed by other researchers [42]. Different modeling concepts have
been established for SCR numerical analysis, like droplet evaporation [43], deposit formation [44],
ammonia homogenization [45], etc. However, to understand the UWS spray impingement phenomena
and the mechanisms underlying urea deposit creation to mitigate the process, a proper investigation is
mandatory in an intensive closed vessel environment having clear optical access [19,27,36,37,46,47].

The present work is a methodical investigation of UWS spray impingement and subsequent
phenomena in the SCR system in an intensive closed vessel environment, where the physical
and chemical analysis were combined to obtain a complete understanding of the spray to solid
deposit formation. The SCR spray impingement phenomenon was investigated both qualitatively
and quantitatively to disclose the droplet interaction behavior at varying physical conditions.
The spray-wall impingement process of the SCR system has been researched by both numerical
and experimental study. A high-speed imaging technique together with the Z-type shadowgraph were
used to capture the spray impingement process. Numerical analysis was performed based on the
Eulerian-Lagrangian approach using STAR CCM+ simulation code. A halogen lamp was illuminated
during the capturing of the film generation, urea crystallization, and deposit creation process. Infrared
thermography was implemented to assess the spray cooling of the impingement wall surface at
an improved temporal and spatial resolution along the impingent area. Solid deposits formed because
of wall impingement and imperfect urea decomposition were characterized by FTIR measurement
to obtain the chemical composition at different operating temperature. Furthermore, the thermal
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decomposition behavior of the solid deposits was investigated by TGA analysis. Results and analysis
of the current study provide detailed insights into the UWS spray impingement, which leads to solid
deposit formation and the thermochemical properties of urea deposits. The information can be used
for the layout of an effective NOx post-treatment system design and offers the possibility to validate
numerical simulations.

2. Experimental Setup and Method

2.1. Optical Chamber and Heating Arrangement

Visualization and capturing of the UWS spray structure in the SCR setup are not possible because
of the high density of particulate matter (PM) and smoke elements in the exhaust stream. Exhaust pipe
vibration due to the random fluctuation of pressure may also cause distortion in the spray structure
while capturing. Researchers have introduced optically-accessible visualization chambers to capture
the urea-SCR spray images [27,48]. An optical chamber was designed and constructed to visualize the
UWS spray-wall impingement phenomena in the current investigation. The chamber contained four
optically-visible windows made of Pyrex glass, which has a high resistance to temperature and pressure.
Figure 2a shows the schematic diagram of the UWS spray-wall impingement experimental setup.
Figure 2b shows the injector setup and impingement wall heating unit in the optical visualization
chamber. A 3-hole commercial urea-SCR injector was mounted in the vertical direction to the
specially-designed injector holder, which allows the flexibility of adjusting the injection height and
position with respect to the impinging wall depending on the experiment requirements. The spray
impingement wall was a stainless-steel plate having a dimension of 150 × 150 mm and a thickness
of 2 mm, which was placed 30 mm down toward the injector tip. The impinged plate was heated
using a plate-type heater, and the heater temperature was controlled by means of a solid-state relay
(SSR) and PID temperature controller. The impingement surface temperature was maintained by
a k-type thermocouple with a flat probe, and this thermocouple was connected to the PID controller.
A high-pressure urea dosing system injected the UWS, and the pressure and duration of the injection
were maintained by the dosing control unit. The injection quantity of the experimental injector was
measured in our previous study for different rpm to determine the injector mass flow rate, and the
value was found as 4.824 kg/h [27].
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Figure 2. (a) The schematic diagram of the UWS spray-wall impingement experimental setup;
(b) the pictorial layout of the injector and the impingement wall temperature control unit inside
the optical chamber.

2.2. Optical and Imaging Arrangement

A Z-type focused shadowgraph imaging technique was applied to capture the spray-wall
impingement. A 532-nm high-power diode-pumped solid state (DPSS) green-type laser was used



Energies 2019, 12, 125 5 of 18

as the illumination source (Model MGL-W-532 8W). A pair of cylindrical lenses was used to diverge
the point laser beam initially, then a concave mirror of 150 mm in diameter and having a 2000-mm
focal length was used to collimate the beam. The collimated light beam then passed through the
optical window, refocused by another concave mirror of the same type, and finally, the returning
beam from the second mirror was guided towards the high-speed camera lens to capture the transient
spray-wall impingement image sequence. Using a Photron SA3 high-speed camera with a 300-mm
cylindrical lens (AF Nikkor 300 mm), the experimental images were captured at 7500 fps, and the
image resolution was 512 × 512 pixels. Figure 3a presents the schematic diagram of the optical setup
and camera arrangement for the investigation. The captured images were recorded in the computer,
and the high-speed camera signal was triggered as the injector’s transistor-transistor logic (TTL) signal.
The high intensity of the laser helped to obtain an excellent spatiotemporal quality in the spray-wall
impingement images with a clearly-defined boundary and sharp edges. Table 1 presents the relevant
high-speed camera configurations for the spray-wall impingement image capturing. The obtained
images were analyzed by a digital image processing technique. First, the RGB images were transformed
into grayscale images. The spatial intensity distribution of the grayscale images was rectified by the
background subtraction. Then, the relevant dimensions (axial and radial distance after impingement,
penetration length, film and deposit area, etc.) of the obtained images were measured. UWS spray-wall
impingement dimensions can be seen in Figure 3b. The fluid film and deposit creation because of
wall impingement and imperfect urea decomposition were captured using the high-speed camera
at a frame rate of 60 fps and a resolution of 768 × 512 pixels. The high-speed camera was vertically
mounted above the spray impingement surface, and a halogen light source was implemented to
provide the illumination.
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Table 1. Camera configuration for the high-speed imaging.

Parameter Value Unit

Frame rate 7500 fps
Resolution 512 × 512 Pixels
Aperture f/2.8 -

Shutter speed 1/300,000 Seconds

2.3. Experimental Conditions and Method

Ambient temperature, injector configuration, optical arrangement, and illumination properties
were kept unchanged during the plenary experiment. The investigation conditions and associated
parameters are provided in Table 2. Each experimental condition was repeated five times to obtain the
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best average result for each experimental condition. The spray cooling of the heated wall due to wall
impingement was captured by infrared thermography. The infrared thermal camera was fixed below
the impingement wall, and the thermal images were recorded on the computer. The urea deposit
formed due to spray-wall impingement and imperfect urea decomposition were characterized by FTIR
and thermogravimetric analysis (TGA) to discover the deposit’s chemical composition and thermal
decomposition behavior.

Table 2. Experimental conditions and parameters.

Parameter Value

Working fluid UWS (32.5% urea by weight)
Injection duration, ting 10, 30, 60 ms
Injection pressure, Ping 5 bar

Injection rate, Ring 40,824 kg/h
Nozzle diameter, d 0.12 mm

Number of nozzle holes, n 3
Injection height, h 30 mm

3. Numerical Modeling

In multiphase flow modeling, the most popular approaches with better accuracy are direct
numerical simulation (DNS), the Eulerian-Eulerian model, and the Eulerian-Lagrangian model.
Multiphase flow modeling by the DNS approach can predict more accurate results, but this is
a relatively bulky computational method. It can take a number of weeks to complete the computation
with the increased computational expense; that is why this is not preferred by experts for use in
industry [49]. The convenience of using the Eulerian-Lagrangian approach over the Eulerian-Eulerian
approach is a thorough indication of the discrete behavior of the particles rather than continuum
dynamics. Eulerian-Eulerian modeling causes a high computational cost, while multiplex sets of
equations are adopted. On the other hand, the Eulerian-Lagrangian approach works in two different
ways, the droplet particles usually being modeled as individual droplets or simultaneously as a bundle.
Separate droplet particle modeling can predict a comparatively precise outcome over parcels or bundles;
however, this approach causes high computational cost. The bundle’s dynamic features (e.g., size,
velocity) are usually analogous within the same bundle. The particles’ or parcels’ interaction among
each other with the continuous phases is modeled by the Eulerian-Lagrangian concept applying
the incompressible and unsteady Reynolds-averaged Navier–Stokes (RANS) equations for mass,
momentum, energy, and species. The realizable k-ε model is implemented to model the turbulent flow
as it shows better accuracy than the standard k-εmodel to estimate the turbulence, and temperature
effects were included by using the temperature heat flux model. A better mesh can result in precise
calculations of urea-SCR wall impingement; though, traditional CFD modeling applies a complex mesh,
which requires an improved technique, as well as extending the computational period. The current
study implemented an automatic meshing technique where the volume mesh of a base of a size of
5 mm was used. Two prism layers were implemented to resolve the near-wall region flow precisely
with a 2-mm thickness. Prism layers have an important role when determining the forces and heat
transfer on the walls and near-wall flow separation. It also interrupts the numerical diffusion and leads
to an accurate result. The STAR CCM+ commercial code was used to solve the modeled governing
equations. The second order upwind scheme was implemented for multiphase flow calculation, as it
provides precise results over the first order. The temporal discretization scheme implemented was
the implicit method, which is bounded unconditionally, having a longer time step. Droplet particle
influence on the continuous phases and the phases’ interactions were included in the simulation by
two-way couplings with an under relaxation factor of 0.7. The Leidenfrost temperature effect was
included in the droplet wall interaction model by using a specially-developed user-defined function
(UDF) subroutine. All y+ treatment was implemented together with the two-layer concept, which can
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perform high y+ wall treatment in the coarse mesh zone and low y+ treatment in the fine mesh
zone. Sensitivity analysis was performed for a 4-mm and a 3-mm mesh size; prism layers and the
other settings were kept constant. The residuals for energy, momentum, turbulent kinetic energy,
temperature, continuity, turbulent dissipation rate, and each species were monitored until stabilization
to confirm the convergence. The detailed numerical modeling and parameters were described in our
previous study [19], which were implemented in the current investigation.

4. Results and Discussion

4.1. UWS Spray-Wall Impingement Phenomena

In the SCR system, investigation of UWS spray-wall impingement is important because droplet
impingement has significant effects on urea distribution, mixing of the reductant with the exhaust
gas, and thus, urea decomposition and solid deposit formation. UWS spray-wall impingement,
spray propagation, and distribution in the SCR system mainly depend on injection pressure, injector
position, and exhaust pipe wall temperature. Figure 4 shows the comparison of the experimental and
numerical spray-wall impingement phenomena of UWS for a 30-mm injection height.
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After the injection, UWS droplets impinged on the exhaust pipe wall. These impinging
droplets caused an interaction and propagated on to the wall surface. Several fluid-dynamic and
thermo-dynamic phenomena can occur during the process, which have remarkable effects on droplet
evaporation, fluid film formation, and consequently, overall system performance. UWS spray droplets
interacted with the impinging wall, and depending on the governing parameters, such as droplet
velocity, droplet diameter, and wall surface temperature, different phenomena can occur [50,51].
Different outcomes can occur by relying on these parameters, for example the wetting regime causes
a liquid film that acts as the precursor of urea deposit creation. On the other hand, the boiling
regime leads to droplet evaporation, which will produce active substances for NOx conversion in the
SCR system.

After the droplet entrainment depending on the droplet Weber number and wall surface
temperature, different phenomena can occur for an impinging droplet, such as deposition, rebounding,
or thermal breakup. The rebounding and thermal breakup of the droplets are advantageous, as breaking
up large-sized droplets due to thermal breakup causes improved droplet evaporation and the
generation of more active substances. Hence, proper mixing of SCR reductant and exhaust gas
can take place. During droplet rebounding, momentum and surface energy loss occur in the droplets,
and a secondary breakup may happen. This phenomenon accelerates the droplet evaporation,
which resultantly increases the urea decomposition rate. On the other hand, the deposition of droplets
on the impinging wall causes wall wetting, which introduces the wall film generation. This wall film
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acts as the nucleus of the solid deposit, which is a significant threat for efficient operation of the SCR
system in diesel engines.

UWS impingement and spray propagation after impingement for 313 K and 573 K wall
temperatures are shown in Figure 5a,b. The experimental and numerical spray-wall impingement
images are given for the time frame from 4 ms–12 ms and for a time interval of 12 ms. The impingement
wall height from the injector tip was h = 30 mm, and the injector was connected perpendicular to the
wall. The spray droplets of the images obtained from the numerical simulation are colored based on
their velocities.
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The measurement of axial and radial distance traveled after the impingement can be the measure
of the contact surface of the spray droplets and the exhaust pipe wall. If the axial and radial distance are
higher, especially at a lower wall temperature, this may increase the wall wetting area, which increases
the risk of fluid film formation and solid deposit formation. In Figure 5a, the working wall temperature
(313 K) is much lower than the decomposition temperature of urea. Therefore, the atomization of
the droplets is not good, and most of the droplets adhere to the impingement wall and cause further
local cooling on the impinged area. At a high wall temperature (573 K) in Figure 5b, rebounding
and thermal breakup occurred; thus, the evaporation rate after impingement increased significantly.
At a higher temperature, the heat transfer rate between the UWS droplets and the impinging wall was
better, and due to the rapid droplet evaporation, a significant amount of gas was produced. Moreover,
because of the urea decomposition, NH3 and HNCO gases were produced. These gaseous elements
together formed a hot turbulence zone and lifted and squeezed the UWS droplets. In Figure 5b
can be seen a significant curl and bouncing occurring after the impingement on the hot surface at
a 573 K wall temperature. During the continuous injection, spray droplets impinged on this very
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hot turbulence zone; a better mix formed, and the chance of droplet wall impingement reduced
significantly. As a result, droplet evaporation and urea decomposition increased dramatically, and the
risk of wall wetting reduced remarkably.

Figure 6a,b presents a detailed look at the axial and radial distance measurement of UWS spray
impingement at wall temperatures of 313 K and 573 K. At a 313 K wall temperature, the axial height of
the impinging spray was much higher than the 573 K wall temperature. This is a clear indication that
at a low wall temperature, more wall wetting occurred, and the wall film thickness also became much
greater. On the other hand, the radial distance was larger at a high wall temperature. This is because,
at a high temperature, due to the rapid evaporation, the generated turbulence propagated the spray
more quickly along the impinged wall. Hence, the hot spray droplets distributed in a comparatively
bigger area of the impinging wall, which is advantageous for urea decomposition and for the mitigation
of solid deposit formation.
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Figure 7a shows the experimental and numerical spray projection area after impingement
for the wall temperatures of 313 K and 573 K. The spray projection area was large at a low wall
temperature because at a low temperature, the droplet evaporation rate was very slow. Therefore,
most of the droplets impinged on and adhered to the wall. Hence, wall wetting, and the fluid film
formed, and finally, the solid deposit formed, which may block the exhaust pipe and increase the
engine backpressure.

Figure 7b shows the experimental and numerical spray tip penetration of UWS spray until the
droplet impingement. A high wall temperature slightly influenced the spray droplet velocity as the
wall temperature depends on the exhaust temperature; at 573 K, the wall temperature impingement
occurred around 1750 µs, and at a 313 K wall temperature, impingement occurred at 2250 µs. Therefore,
the temperature had an effect on spray propagation, and this may affect the wall impingement, droplet
evaporation, and other associated phenomena.
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4.2. Effects of UWS Spray-Wall Impingement

During the spray impingement on the heated wall surface, the accumulated liquid due to the wall
wetting was transported and distributed by the momentum of each spray injection, and eventually,
the wall film was formed. Figure 8a,b shows the wall film formation phenomena and film area
development after impingement. ASOI denotes the time instant of the start of the first injection.
The impingement surface temperature was kept at 573 K during the investigation. After the start of
the injection, UWS spray droplets impinged on the hot surface of the impingement wall, hence the
resultant initial footprint of the fluid film, which can be seen in Figure 8a (i). UWS droplets partially
evaporated after the first injection, which is seen in Figure 8a (ii); however, the droplet evaporation
rate between two injections was much low than the further impinging droplets during continuous
injection. The liquid film area showed an increasing trend from injection to injection (Figure 8a
(iii)). Kuhnke [42] and Liao et al. [52] showed in their study that the spray-wall interaction of the
droplets led to rebounding and thermal breakup if the impinging surface temperature was above
553 K. As the impingement surface temperature was maintained at 573 K in the current study and
yellowish smoke was emitted in downstream of the fluid film area (Figure 8a (iii)), it is evident from
the image that thermal breakup of the UWS droplets occurred in the rebounding droplets; hence,
urea particles decomposed to ammonia and isocyanic acid. After the end of the injection, the water
content evaporated gradually due to the high wall surface temperature, and the initial footprint of
the solid deposit can be seen in Figure 8a (iv), which acted as the nuclei for further deposit formation.
During continuous injection, wall wetting increased over time. Wall film area was estimated for
the injection durations of 30 ms and 60 ms. The measurement (Figure 8b) reveals that the injection
duration significantly influenced fluid film development when other conditions remained unchanged.
The liquid film accumulated on the plate surface was a urea-enriched solution. Due to the film
formation, wall temperature dropped, and local cooling occurred; as result, urea started to crystallize.
Increasing the injection duration led to faster development of the film area; hence, the risk of solid
deposit formation increased in the corresponding impingement region for a longer injection duration.
The measurements and visualization of this investigation reveal that the optical chamber can disclose
the film formation phenomena in a more realistic pathway, and the outcomes clearly indicate that all the
areas associated with wall wetting can be the subject to film formation prior to solid deposit formation.
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After the end of injection, water particles started to evaporate from the wall film, and the first
footprint of solid deposit could be visualized; thus, urea began to crystallize from the urea-enriched
wall film (Figure 9a (i)). Twelve seconds after the end of injection (AEOI) for that specific injection
event, the maximum amount of solid deposit formed, which can be seen in Figure 9a (ii). After that,
as the UWS injection stopped, there was no more spray impingement; hence, further local cooling
was not occurring, and the impinged surface started to recover the temperature. As a result, the solid
deposit started to decompose due to the high heat, which can be seen in Figure 9a (iii). The solid
deposit components almost disappeared after 40 s, which can be seen in Figure 9a (iv). From the
graph (Figure 9b), it is evident that the solid deposit growth rate was much higher than the thermal
decomposition, and the decomposition process strongly depended on the heat transfer rate of the
plate. The complete thermal decomposition of the accumulated solid deposits may not be possible
in the regular exhaust physical conditions, and this takes a long time to decompose. Therefore,
redesigning the SCR spray system by improving the droplet properties may avoid or minimize
the spray impingement, which can reduce the deposit formation risk. Solid deposits can form
on the geometrical features like blade edge, holes, and gaps, as well as on the plane surfaces,
which can seriously affect the SCR system performance. Moreover, the exhaust pipe can be blocked
by the accumulated solid deposits, which will directly affect the engine performance by increasing
the backpressure.

The spray cooling of the heated wall due to UWS spray impingement was captured by infrared
thermography. The thermograph image sequence indicated the temperature drop of the impingement
region and heat recovery phenomena after the end of injection. UWS was injected at an injection
duration of 60 ms with five successive injections in each event. Figure 10a shows the impingement
wall surface temperature map before the start of injection. Figure 10b–d displays the first, second,
and third group of the injection events. After the injection, the temperature of the front cone of
the impingement region dropped gradually, and the low-temperature region increased injection to
injection. UWS injection was stopped after the third group of injections, and after that, the impingement
plate started to recover the temperature, which can be seen in Figure 10e,f. The spray impingement
caused strong spray cooling in the impingement area, creating a huge temperature difference with the
non-impingement area, and liquid film formation occurred in the cooled region, which was the initial
footprint of the solid deposit. However, due to the increasing number of injections, the local cooling



Energies 2019, 12, 125 12 of 18

increased, and the wall wetting area propagated radially by the injection momentum. Therefore,
during continuous operation, the overall plate temperature decreased and the cooled zone increased,
leading to water droplets’ evaporation and incomplete urea decomposition; finally, this accelerated the
solid deposit formation.
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4.3. Characterization of Urea Deposits

Solid deposits formed on the injector tip and wall surface because of spray impingement and
imperfect urea decomposition, as shown in Figure 11. The generated deposits were removed and
made into finely-ground samples for IR spectroscopy and TGA measurement. To mitigate the solid
deposit formation, to remove the accumulated solid deposits successfully, and therefore, to ensure the
efficient operation of the SCR system, the proper investigation of the chemical composition and thermal
decomposition behavior of the deposit components is mandatory. From the IR spectra, the chemical
composition of the solid deposit elements can be revealed, which were formed at different operating
temperature. The IR spectra of the primary components are presented in Figure 12 [21], used as the
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standard for the identification of the chemical species available in the urea deposit samples generated
at different operating temperatures. The UV-visible spectra of the deposit components showed a single
strong peak in the UV region, mostly for a very low wavelength. The IR spectra obtained for the acting
temperature of 423 K are shown in Figure 13, which were analyzed to identify the major components
present. From the IR spectra bands at 1460 cm−1, 1680 cm−1, and 3430 cm−1, it can be seen that
there are strong peaks for urea, that is the mean major amount of unreacted urea present in the
decomposition product. The other major product detected in the FTIR spectra of the 423 K residue
was biuret, with bands at 1070 cm−1 and 1406 cm−1 attributable to it. There may also have been some
cyanuric acid present, as there was a band at 3042 cm−1, and the 3202 cm−1 band could also be due to
cyanuric acid. The IR spectrum of the urea deposit product at 573 K (Figure 14) had 1049 cm−1 and
1460 cm−1 bands, which indicated that there may have been some cyanuric acid present. However,
the major mass percentage of highly dense peaks for the bands at 780 cm−1, 1708 cm−1, and 3068 cm−1

stands for ammeline, and the 3322 cm−1 and 3470 cm−1 bands indicate melamine, which are the major
components at 573 K of the decomposition product.
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The TGA measurements showed that urea deposit products’ thermal decomposition occurred in
multiple steps. The obtained urea deposit samples, representative of the different product compositions
of the urea deposits at different operating temperatures, were thermally decomposed under a nitrogen
atmosphere while heating from 313 K–873 K. Figure 15 shows the TGA measurement for the
423 K urea deposit sample. From the IR spectrum, it was found that this deposit sample contained
undecomposed urea, which is the major percentage, biuret, and a small amount of cyanuric acid.
The TGA measurement shows that the thermal decomposition completed in four steps. In the first
step, a small amount (6.692%) of urea and biuret decomposed at 463 K, and more than 19.35% of the
mass decomposed at 528 K. The majority of the mass decomposed from 533–638 K, which is analogous
to the decomposition behavior of urea and cyanuric acid. Figure 16 shows the TGA measurement
for the 573 K deposit sample, which contained ammeline, melamine, and a small amount of cyanuric
acid. Around 40% of the mass decomposed until the 535 K temperature, and the majority of the mass
percentage decomposed until the temperature of 638 K, which is analogous to the decomposition
behavior of melamine. From the TGA measurements, it can be concluded that most of the urea
deposits formed at different operating temperature conditions, usually decomposing around the 673 K
temperature, which can be obtained in the exhaust system under standard engine operating conditions.
In the current TGA measurement, a small amount of deposit (10–15 mg) was taken as the sample,
which took about 10 minutes to decompose. However, in the real SCR system, the large-scale deposit
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formed cannot be thermally decomposed by the regular hot exhaust gas flow within this short time
period. The thermal decomposition of the urea solid deposit strongly depends on the mass percentage.
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5. Conclusions

A detailed investigation of UWS spray-wall impingement in the SCR system has been conducted in
a closed vessel environment. First, the spray impingement was captured using the Z-type shadowgraph
imaging technique and numerically by the STAR CCM+ CFD code. Then, the fluid film and solid
deposit formation due to impingement were captured by high-speed imaging at a lower frame rate.
Moreover, impingement spray cooling was assessed by infrared thermography. Finally, the solid
deposit chemical composition was analyzed by FTIR, and thermal decomposition was measured by
TGA analysis. The key conclusions and findings of the overall investigation can be summarized
as follows:

• Because of the droplet entrainment and evaporation, spray-wall impingement has significant
effects on SCR performance. At a low temperature, droplets adhered on the wall increase wall
wetting, which can maximize the deposit formation risk. On the other hand, at a high wall
temperature, rebounding and thermal breakup occur, which increase the droplet evaporation.
Rapid heat transfer between the droplets and wall surface causes enhanced urea decomposition,
and a significant amount of gas is produced. As a result, a hot turbulence zone is formed by
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curl and bouncing, and the chance of wall wetting, as well as the risk of deposit formation
reduced significantly.

• The liquid film formed on the wall due to droplet spray-wall impingement and the accumulated
film was further transported and distributed by the momentum of the subsequent injections.
This liquid film is a urea-enriched solution, and solid deposits are generated in the film
accumulation area.

• The spray cooling first starts at the spray cone core region and then spreads radially to the
periphery of the impingement region.

• The chemical composition of the solid deposit samples obtained from FTIR analysis significantly
varies depending on the decomposition temperature. The major compounds found at different
temperatures are unreacted urea, biuret, cyanuric acid, ammeline, and melamine.

• TGA measurements show that the majority of the solid deposits thermally decompose around the
673 K temperature. Though this temperature can be achieved by the regular exhaust temperature
condition, complete thermal decomposition takes a long time period, and the decomposition rate
strongly depends on the mass percentage.

The accumulated solid deposits on the exhaust pipe wall surface, mixing blade, and injector tip
are hard to remove completely. A high wall temperature can significantly reduce the film formation
and urea crystallization.
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