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Abstract: In order to develop more sustainable district heating systems, the district heating sector
is currently trying to increase the energy efficiency of these systems. One way of doing so is to
identify customer installations in the systems that have poor cooling performance. This study aimed
to develop an algorithm that was able to detect the poorly performing installations automatically
using meter readings from the installations. The algorithm was developed using statistical methods
and was tested on a data set consisting of data from 3000 installations located in a district heating
system in Sweden. As many as 1273 installations were identified by the algorithm as having poor
cooling performance. This clearly shows that it is of major interest to the district heating companies
to identify the installations with poor cooling performance rapidly and automatically, in order to
rectify them as soon as possible.
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1. Introduction

Sub-optimal performance of faulty components in the district heating (DH) systems of today
forces the DH system temperatures to be above those theoretically needed to deliver enough heat
to the DH customers [1]. These high temperatures cause heat losses in the system and prevents the
utilization of low-grade heat such as industrial excess heat [2]. Finding the faulty components is key to
increasing the energy efficiency of the DH systems.

Previous studies conclude that there are a number of issues in the customers’ installations that
cause increased return temperature levels in the DH system [1,3–8]. The customer installation includes
the internal heating system of the customer’s building and the substation, which transfers heat from
the DH system to the internal heating system.

The internal heating system is most commonly divided into two separate systems: the space
heating system and the system for domestic hot water (DHW) preparation. Both of these systems
include a number of different components, including control valves, temperature sensors, actuators,
pumps, and piping. The space heating system also includes a heat transferring unit in the rooms that
are to be heated, e.g., radiators or floor heating, and the DHW system includes faucets where hot water
tapping occurs [9].

The substation design varies depending on different national requirements and/or traditions.
In some countries, it is common practice to have a so called direct connection where the DH water
is directly used in the internal heating system. In other countries, the indirect connection is the most
common solution, where the substation separates the DH system from the customer’s internal heating
system. If an indirect connection is used, the heat is transferred to the internal heating system via one or
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several heat exchangers [1]. This study focuses on installations with indirect connections, which means
that the substations include heat exchanger(s), temperature and flow sensors, control valves, pumps,
controller and control system, and a heat meter which delivers data to the DH utility that operates the
DH system [10].

The issues, or faults, in the customer installations may occur in a number of different
components and include faults and problems such as fouling of heat exchangers, broken temperature
sensors, control valves stuck in an open position, temperature sensors placed on the wrong pipe,
DHW circulation connected before the pre-heater, high return temperatures from the customer’s
internal heating system, and high set point values in the customer system [1,5–7,11–13]. All of these
faults may not be seen as an actual fault where something is broken, but they still lead to high
return temperatures.

As the DH utilities are now aiming to decrease their overall system temperature, it becomes
increasingly important that the vast majority of the faulty installations are detected and corrected.
Traditionally, the poorly performing installations have been detected using manual analysis
methods [1]. Due to the vast amount of customer installations in the DH systems, this can be a
time-consuming task. Hence, the main focus has been to detect the installations that has the largest
impact on the system energy efficiency. This has primarily been done by investigating the excess
flow, or overflow, i.e., the difference between the anticipated ideal flow and the actual flow in the
installations [1,14,15]. A large overflow indicates that the customer installation is poorly performing,
which means that the installations with the largest overflow have been prioritized when conducting
the system analysis.

In order to increase the detection rate, the DH utilities can utilize the increasing amount of
customer data that has become available during the last few years due to different national legislations
and international directives, e.g., the Energy Efficiency Directive adopted by the EU [16]. This data is
collected using the meter device of the substation, and includes supply and return temperature levels,
volume flow rate, and the heat amount being used by the customer [1]. The data is usually used for
billing purposes but contains a lot of information about how the customer installations are performing
in terms of energy efficiency. This indicates that it is also possible to detect customer installations that
are not performing as expected using this data. By investigating the measurements originating from
the installations, it is also possible to detect the faults shortly after they have occurred.

Using this customer data, Gadd and Werner used a statistical fault detection method that uses the
temperature difference signature of the substation to detect temperature difference faults [3]. In the
study, 140 substations were investigated, out of which 14 were found to be poorly performing. In a
subsequent study [4], Gadd and Werner investigated data from 135 different substations manually.
In this study, the results showed that 74% of the substations contained faults, including unsuitable load
patterns, low annual average temperature differences, and poor control of the substations. A similar
approach was taken by Sandin et al. who used statistical methods, e.g., limit checking and outlier
detection, in order to identify poorly performing installations [8].

A different fault detection approach was presented by Johansson and Wernstedt,
using visualization methods to show the operational functionality of individual installations [17].
In order to aid the subjective visual interpretation, a number of performance metrics describing the
relationship between different installation variables were calculated. Xue et al. proposed a fault
detection method based on data mining techniques [18]. The authors investigated data from two
installations using cluster analysis and association analysis. The combination of the two methods
generated a set of association rules that should be fulfilled in a well performing installation.

Yliniemi et al. presented a method of detecting faults in temperature sensors in a DH
substation [19]. The method was developed in order to detect increasing noise levels in the sensor
readings. Zimmerman et al. presented a method capable of detecting faults in pressure sensors and
leakages in the DH systems using a Bayesian Network [20]. Pakanen et al. uses a series of different
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methods in order to detect faults in the entire customer installation, as well as in three different
components of the substation: a control valve, a heat exchanger, and a mud separating device [21].

The previous studies show that there has been some success in obtaining fault detection methods
that can detect the poorly performing customer installations. However, many of the presented methods
require an amount of manual handling and/or interpretation. Some of the methods also presume a
certain amount of understanding for more advanced computer science and data handling methods.
The focus of this study has been to try and eliminate as many manual stages as possible in the fault
detection process. The focus has also been to utilize knowledge that is already commonly used in the
DH industry to create a fault detection tool that is easy to understand and interpret.

This study presents an automated statistical method for fault detection, which has been developed
to detect faults automatically in larger data sets. The method utilizes linear regression and outlier
identification, testing the performance of the installation in terms of temperature difference over the
installation, the return temperature from the installation, and the heat extracted in the installation.

Furthermore, the method is tested in a case study using real data from a DH system located
in Sweden. The data set consists of hourly measurements during one year from 3000 customer
installations. The results from the case study show that 43% of the customer installations in the data
set are poorly performing.

2. Performance of the Customer Installation

When investigating the performance of the customer installation, a number of different
measurements are of interest. One of these is the temperature difference between the primary supply
and return temperature in the installation. This temperature difference is often called the cooling,
or deltaT (∆T), of the installation. The cooling depends on both the supply temperature of the DH
system, and the return temperature from the customer’s internal heating system. A DH system with
higher supply temperature naturally has a larger delta T if the installations are able to cool the DH
water well. However, high ∆T’s in a system with high supply temperatures do not necessarily mean
that all customer installations are performing well in terms of cooling. When having high supply
temperature levels, it is also important to investigate the return temperature levels from the installations
to see how well they are actually performing. An installation with high return temperatures from the
customer’s internal heating system will not be able achieve a good cooling performance, since the
return temperature level from the installation will never fall below the return temperature level in the
internal heating system [1,3,10].

Figure 1 displays the cooling pattern as a function of the outdoor temperature for a well
performing installation. The grey circles in the figure represent the average cooling in the installation
during one day. The red line represents the average cooling in the same installation as a function of the
outdoor temperature. The data that the figure is based on originates from a customer located in a city in
the south of Sweden where the climate is relatively mild. This explains why Figure 1 does not display
any values for outdoor temperatures below −5 ◦C. The average supply and return temperatures for
the DH system that the installations is located in are 90 ◦C/49 ◦C. Hence, the temperature levels of this
DH system are quite high and the DH utility is currently working in different ways to obtain lower
system temperatures, including performing analysis of the cooling of the customer installations.
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Figure 1. Daily averages of the cooling values for a well performing district heating customer installation.

As can be seen in the figure, the daily cooling values display a somewhat scattered structure,
and the value of ∆T is not necessarily the same for days with the same outdoor temperature.
This reflects the fact that the heat demand in the same installation varies from day to day, primarily
depending on the varying need for DHW preparation [22].

As can be seen in the figure, the cooling of this customer installation fluctuates around 50 ◦C values
for outdoor temperatures below 0 ◦C and then decreases linearly for higher outdoor temperatures.
This is visible in the figure where the inclination of the cooling curve (red line in figure) increases
for outdoor temperatures above 0 ◦C. The scattering of the daily cooling values also increases.
For temperatures above approximately 15 ◦C, the need for DH decreases since there is no need
for space heating. DH is merely used for DHW preparation at these temperatures, or for industrial
processes that require heat during the entire year. This means that the amount of heat that the customer
uses is less temperature dependent. Days with an outdoor temperature above 15 ◦C are in this study
called non-heating days. The temperatures where the cooling curve inclination starts to decrease,
and the space heating ceases, are called breakpoints. The breakpoints may have other values than in
this study, depending on which DH system is being investigated. There may also be more than one
breakpoint, depending on the nature of the cooling pattern.

Another measure that may be considered when investigating the customer performance is the
heat that is transferred to the building, i.e., the heat that is needed to meet the heat demand of the
customer. This heat demand can be calculated according to Equation (1) [1]:

Pd = V̇ρcp(Ts − Tr) = V̇ρcp∆T (W) , (1)

where

V̇ = volume flow (m3/s),
ρ = density (kg/m3),
cp = specific heat capacity for water (J/(kg·◦C)),
Ts = supply temperature (◦C),
Tr = return temperature (◦C).
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The heat being transferred is proportional to the volume of water that passes through the
substation and the ∆T of the installation. This implies that an increase of one of these parameters
would enable a decrease of the other. As it is highly desirable to increase the ∆T, the focus should be
on improving the value of ∆T for as many individual customer installations as possible. Furthermore,
it is highly desirable to lower the volume flow, since a lower flow rate results in a lower pressure drop
in the distribution pipes [1]. The reduced pressure drop allows for smaller pipe dimensions to be used,
which in turn may reduce the building costs of the DH system. A decrease of the pressure drop will
also mean that less pump work is needed in the systems [1,23].

The decreased volume flow may also be beneficial for the DH customers. Many DH utilities have
decided to include a flow price component in their price models for some or all of their customers [24].
This means that the customers pay for the amount of water mass flow that passes through the customer
substation each month, and it is often introduced as an incentive for the customers to improve the
performance of their installation [25].

As mentioned in Section 1, one of the historically most common methods to identify poorly
performing customer installations has been to calculate the overflow, or overconsumption, of DH
water for each installation. According to Equation (1), an installation with a smaller, and hence poorer,
value of ∆T will need a larger volume of heat medium to pass through it in order to extract the same
amount of energy as an installation with a larger value of ∆T. The extra amount of heat medium is the
overflow, which can be calculated using Equation (2):

over f low = Vactual − Videal = Vactual −
Eactual

ρ · cp · ∆Tideal

(
m3
)

, (2)

where

Vactual = actual annual volume (m3),
Videal = ideal annual volume (m3),
Eactual = actual annual energy (J),
ρ = fluid density (kg/m3),
cp = specific heat capacity (J/(kg · K)),
∆Tideal = ideal temperature difference (◦C).

∆Tideal is the ideal temperature difference between the supply and return temperature when
the installation is performing ideally. This value may vary depending on what DH system is
being investigated, since it depends on the temperature difference between the return and supply
temperatures. In this study, ∆Tideal was chosen to be 45 ◦C, in accordance with [3].

3. Description of Fault Detection Method

3.1. Data Set

The data used in this study was gathered from the business system of a DH utility in Sweden.
The time interval was April 2015–March 2016 and it was important to use data from one year since the
heat loads of the customer installations are different throughout the year. The data set included data
from the 3000 installations that had the largest energy consumption in the system. The installations with
the largest energy consumption should be the ones with the largest system impact, and these should
be prioritized when performing maintenance work on the DH system in order to improve the system
performance. The data set consisted of installations with a wide variety of purposes. The internal
heating systems were designed differently for the different buildings depending on purpose of the
installation. Hence, no general information was given regarding what specific equipment was used
in the space heating and DHW system, e.g., the type of room heaters and if the installations had
DHW circulation.

The investigated data set contained values for energy consumption, volume passing through the
installation, return temperature and supply temperature for each of the 3000 installations. In addition,



Energies 2019, 12, 113 6 of 18

the installation ID for the installation where the installation was located, the postal code of the
installation, and the outdoor temperatures during the investigated time interval were collected from
the business system of the DH utility.

The DH system from which the data was gathered was said to contain weak and non-weak areas.
The weak areas were areas known to have a low differential pressure, which means that in these
areas it might be harder to deliver heat to the customer installations. This is due to the fact that there
has to be a certain amount of differential pressure over the installation for the control valves of the
installation to work as they should. If the differential pressure is too low, the installation will not
receive the amount of heat that is needed at the installation’s maximum heat load since the control
valves will not operate as they should [10]. The weak areas were well known by the company, and
their locations were based on measurements, calculations and simulations of different operation modes
of the system. A poorly performing installation had a larger system impact on the DH system if it was
located in an area with lower differential pressure than an installation in an area with high differential
pressure. Therefore, it was important to be able to distinguish between the installations located in
the different areas, and, in this study, the postal code of the area where the installation is located was
used to determine if it was located in an area with high differential pressure, or in an area with low
differential pressure.

3.2. Data Preprocessing

The data set being investigated in this study originally consisted of hourly values for energy,
volume, return temperature and supply temperature for 3000 customer installations in a DH system
located in Sweden. Since the hourly values were found to contain some errors which affected the
analysis result, the data was first investigated in order to find the errors and handle them according
to the nature of the error. After this, the hourly meter readings were converted into daily values as
follows: the volume and energy were calculated as the total daily heat use, the supply temperature was
calculated as the daily mean value of the measured values, and the return temperature was calculated
from Equation (1). The reason to why the return temperature was calculated in this way was that the
measured values of the supply temperature from this DH system were often more reliable than the
measured values of the return temperature. This meant that the return temperature values would be
more reliable if calculated from Equation (1). These daily values were then analyzed in order to find
the poorly performing installations. A schematic illustration of the data handling process, from the
hourly values to the results from the fault detection algorithm, can be seen in Figure 2, and Table 1
displays the data included in the data set. The additional data consist of the information about the
customers and the investigated time interval that were described in Section 3.1.

Figure 2. Schematic view of the data handling process.
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Table 1. Data included in the data set.

Quantity Unit Time Aspect

Energy kWh Daily
Volume m3 Daily
Cooling ◦C Daily
Return temp. ◦C Daily
Dates - Daily
Outdoor temp. ◦C Daily
Installation ID - Fixed
Postal Code - Fixed
Weak area - Fixed

3.3. Choice of Programming Language

The automatic fault detection algorithm developed in this study was developed in the
programming language R. R is mainly used for statistical computing and graphics, and include
functions for linear and nonlinear modelling, time-series analysis and clustering [26]. Furthermore,
R is an open source program and it is therefore easily accessible to the public.

3.4. Three Signatures

To determine if an installation was poorly performing, three different criteria were used:
the cooling performance, the return temperature level, and the energy consumed in the building.
The three criteria were used to create three signatures: one cooling signature, one return temperature
signature, and one energy signature. The signatures consisted of a reference case, and threshold values
which were used for outlier detection.

Since this study primarily focused on identification of installations with poor cooling performance,
the cooling and return temperature signatures were considered to be of greater importance than the
energy signature. This meant that the installation did not necessarily have outliers according to the
energy signature to be considered as a poorly performing installation. The energy signature was
mainly developed in order to provide the user of the analysis tool with extra information regarding
the installations which were identified as poorly performing.

3.5. Reference Cases

The reference cases of the three signatures were created using data from customers in the
investigated data set. This made sure that the reference cases were representative of the system
in question. The reference cases contained data from the installations with lowest overflows in the
data set.

The reference cases for the cooling and energy signatures were created using piecewise linear
regression with one breakpoint for the non-heating days. Piecewise linear regression is typically used
to model the relationship between two or more variables in large data set, where it may be hard to
find a linear regression model that explains the relationship well for all data. When this is the case,
the data set may be divided into smaller segments of data and fit a linear regression model to each of
these segments. The segments are divided at the breakpoints, and the combination of the individual
regression models is the final piecewise linear regression. The mathematical relationship for a piecewise
linear regression model with one breakpoint H may be described according to Equation (3) [27]:

Yi = β0 + β1Xi + β2(Xi − H) · I(Xi, H) + εi, where I(Xi, H) =

{
1, Xi > H,
0, Xi ≤ H.

(3)

In the equation, βn, n = 0, 1, 2 are the parameters of the regression model, Yi is the dependent
variable being modeled, Xi is the independent variable which is used to model the dependent variable,
and εi is the model error. In the cooling signature, the cooling of the substation was modeled as a
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function of the outdoor temperature, and in the energy signature the energy consumption was modeled
as a function of the outdoor temperature.

The breakpoint for the piecewise linear regression was determined by visually inspecting the data
set. As could be seen in Figure 1, there was a clear change of the inclination of the cooling patterns for
lower outdoor temperature levels. This pattern was also visible in the energy consumption patterns.
However, when comparing the energy consumption patterns, it was important to keep in mind that
different customers consume different amounts of heat. Therefore, it was important to scale the heat
consumption so that they were on the same scale. This was done by dividing all heat consumption
values for one customer with the maximum heat consumption for that individual customer. After this
was done, the breakpoints were determined to assume the values of the outdoor temperature where the
inclination of the two patterns changed. This meant that one linear regression modelled the behaviour
from the lowest outdoor temperature of the data set to the breakpoint temperature, and the other linear
regression modelled the behaviour from the breakpoint temperature to the temperature at which the
non-heating days started.

The values for temperatures corresponding to non-heating days were treated separately from
the rest of the values. For the cooling signature, the summer days were not considered, since the
cooling values for these days only gave information about the size of ∆T for DHW preparation in the
installations. This may vary greatly from day to day depending on the need for hot water, and hence
the analysis of ∆T for summer days is not of interest in this study. For the energy signature, the median
of the values for summer days was used to create a constant threshold for outlier detection.

The pattern of the return temperature was completely different from the pattern for the cooling and
energy signatures, and linear regression was not a good choice of method for the return temperature
reference case. Instead, two constant thresholds were calculated: one for heating days and one for
non-heating days. Both of the thresholds were calculated as the mean of the return temperature for the
reference case installations.

3.6. Identification of Deviating Values

The performance of the installations not included in the reference cases was investigated to identify
deviating behaviours and values, so called outliers. Outliers may be described as values deviating
significantly from the expected behaviour of a certain parameter [28]. The outliers were identified
using the mean and the standard deviations of the reference case values. If the distance between the
mean and a certain value was larger than three standard deviations for a certain outdoor temperature,
the value was considered to be an outlier, in accordance with [8,29]. This created thresholds located ±3
standard deviations from the mean. For the cooling and energy signatures, piecewise linear regression
was used to model the mean of the reference case and so the thresholds were also linear. For the
return temperature signature, the mean was modeled using a constant value, resulting in constant
thresholds. The three resulting signatures can be seen in Figures 3–5. The reference data set for the
return temperature included some measurements that were unreasonable considering the nature
of the data. As may be seen in Figure 4, the return temperature levels sometimes fell below 0 ◦C,
which is not plausible in DH systems. These values have appeared when the return temperature was
calculated, as described in Section 3.2. Since the values were calculated in this way, these values were
not considered further in the analysis.
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Figure 3. Cooling signature (black lines) and the cooling values for the substations in the reference case
(grey circles). Values located outside the black lines may be considered to be outliers.

Figure 4. Return temperature signature (black lines) and the return temperature values for the
substations in the reference case (grey circles). Values located outside the black lines may be considered
to be outliers.

Figure 5. Energy signature (black lines and the energy values for the substations in the reference case
(grey circles)). Values located outside the black lines may be considered to be outliers.



Energies 2019, 12, 113 10 of 18

4. Description of Fault Detection Algorithm

The algorithm developed in this study consisted of a main function and several different functions
which performed different parts of the analysis. The structure of the program can be seen in Figure 6,
and the different functions will be described in detail in the following sections.

Figure 6. Structure of the algorithm used for identification of poorly performing customer installations.

4.1. Main Algorithm

The main algorithm, mainAnalysis, loaded and structured the data which was used to perform the
analysis. There were also a number of constant parameters that were needed to perform the analysis,
e.g., the ideal cooling values. These parameters were determined in mainAnalysis, and can be find in
the following bullet list:

• The outdoor temperature after which the days were considered to be non-heating days. In this
study, the non-heating days occurred for outdoor temperatures higher than 15 ◦C.

• The ideal cooling value. In this study, ∆Tideal was chosen to be 45 ◦C.
• The specific heat capacity of the heat medium of the system. In this study, the heat medium was

water and so cp = 4185.5 J/(kg·◦C) was used.
• The number of breakpoints that should be used for the linear regression, in this study, one

breakpoint due to the nature of the heating and cooling patterns (Figure 1).
• The temperatures which should be used as breakpoint values for the linear regression. In this

study, two different breakpoints were used: one for the energy signature and one for the cooling
signature. The breakpoint for the energy signature was located at 3 ◦C, and the breakpoint for the
cooling signature was located at −1 ◦C.

• The threshold values for the return temperature signature, for heating days 45.7 ◦C and 42.4 ◦C
for non-heating days.

• The share of installations that should be used in the reference case. In addition, 25% of the
substations were used for the reference case in this study.

• The number of outliers that were acceptable before the installation was considered to be poorly
performing in each signature; in this study, 0 outliers were used.

• The number of standard deviations which were used to create the reference case. In this study,
three standard deviations were used.

Some of these parameters were system specific, and will have different values depending on
which DH system is being investigated. In mainAnalysis, it is also possible to determine if all three
signatures should be investigated when running the analysis program. This made it possible to
perform analysis of one, two, or three of the signatures, depending on what results the user was
interested in.
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4.2. Analysis Function

The first subfunction, analysis, was to developed to perform a number of different tasks. The first
was to identify which days that were heating days and which were non-heating days, and divide
the entire data set in two subsets according to if the data belonged to a heating or a non-heating day.
The next task of analysis was to determine what installations to include in the reference case. This was
done by ranking the installations according to their overflow, and using the share of installations
that was determined in mainAnalysis and had the lowest overflows. The next task of analysis was to
determine the number of outliers in each of the three signatures. This was done using three separate
functions, dTsign, Trsign and Esign. The function consolidate compiled the results and a created a list
of the results. This was returned to analysis, which in turn returned the results to mainAnalysis from
which the results were presented to the user.

4.3. Linear Regression

The function linreg was used to create piecewise linear regression models of the reference case
values, and calculate the standard deviation values of the reference cases in the energy and cooling
signatures. The breakpoints were placed at the predefined breakpoint value between heating and
non-heating days. The parameters of the linear regression models were approximated using the least
squares method. The non-heating days were treated differently in the different signatures, and this
will be described in further detail in Sections 4.4 and 4.6.

4.4. Cooling Signature

The function dTsign was implemented to create the cooling signature. A linear model of the
reference case values, as well as two linear thresholds, were created using linreg. The linear model of
the reference case and the linear thresholds constituted the cooling signature of the analysis program.
The values of the non-heating days were not included in the cooling signature, and were not considered
when investigating the number of outliers in the signature. To find the outliers, dTsign compared the
cooling values of each individual installation to the cooling signature and used the linear thresholds
to identify the installations which had outliers according to the cooling criterion. The results were
compiled in a matrix containing information about the installations and the number of outliers they
had according to the signature.

4.5. Return Temperature Signature

The return temperature signature was implemented in a function called Trsign. In the function,
two constant thresholds were used to perform the outlier detection: one for the heating days and
one for the non-heating days. The thresholds were calculated using the mean value of the return
temperatures for the reference case installations. To identify the outliers, the return temperature values
of each individual installation were then compared to the constant threshold values and the results
were compiled in a matrix.

4.6. Energy Signature

The function Esign was implemented to identify installations that had outliers in the energy
signature. The function was similar to the function dTsign, described in Section 4.4, but some additional
features were added. As described in Section 3.5, the different installations consumed different
amounts of heat depending on the size of the building and what the building was used for. To enable a
comparison of the different installations in the data set, the heat consumption values were first scaled
so that they were of the same order of magnitude.

After scaling the values, a piecewise linear regression was created for the energy reference case
for the heating days using linreg, and the standard deviation for the reference case substations was
calculated. For the non-heating days, the median of the heat consumption values was used to create a
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constant reference case, and linear thresholds were calculated for the heating days using the standard
deviation of the reference case. Esign then identified outliers for both heating and non-heating days
and the results were compiled in a matrix.

4.7. Compilation of Results

The functions dTsign, Trsign and Esign returned the results matrix to the function consolidate,
which compiled the results from the three signatures to identify the installations that were poorly
performing. When running the algorithm with all three signatures, the cooling and return temperature
signatures were primarily considered when compiling the results (as described in Section 3.4.
This resulted in the compiled result list possibly containing installations that had no outliers at
all according to the energy signature. If only two signature functions have delivered result lists,
the consolidate function created the final result list from the available results. If the algorithm only
investigated the installations using one of the signatures, consolidate used the results matrix from that
signature function. When more than one signature was used, consolidate compared the installation IDs
in the result lists from the different signature functions. If the installation appeared in more than one
list, it was included in the final result list with poorly performing installations.

Due to the nature of the DH system that the data originated from, two result lists were created.
One contained installations located in the weak areas of the system, and one contained installations
located in the non-weak areas of the system. The installations in the list were ranked according to the
overflow of the installations. The list contained the installation IDs, the number of outliers for each of
the three signatures, if the installation was located in a weak or non-weak area, and the overflow of the
installations. The compiled list was then returned to the analysis function and presented to the user in
the mainAnalysis function.

5. Results

5.1. Output from Analysis Algorithm

The customer installation analysis algorithm rapidly identified the poorly performing substations,
even though it investigated a large amount of data (3000 installations with 365 values for each variable
plus additional data). The total number of installations being identified as poorly performing was
1273, corresponding to approximately 43%.

Tables 2 and 3 display the five installations that were identified by the algorithm to be the most
poorly performing installations in the weak and non-weak areas. In order not to violate the customer
privacy, all installations IDs and their corresponding postal codes have been anonymized. As can be
seen in Table 3, installation number nine did not have any outliers in the energy signature but was still
considered to be poorly performing due to the large amount of outliers in the other two signatures.
109 customer installations were identified in the weak areas, and 1164 installations were identified in
the non-weak areas.

Table 2. The five most poorly performing customer installations in the weak areas.

Installation Number 1 2 3 4 5

Installation ID XXXXXX19 XXXXXX61 XXXXXX77 XXXXXX26 XXXXXX91
Outliers dT 243 210 148 112 232
Outliers Tr 312 354 255 136 330
Outliers energy 4 4 71 78 9
Weak area Yes Yes Yes Yes Yes
Overflow (m3) 21,346 17,948 17,089 12,652 12,641
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Table 3. The five most poorly performing customer installations in the non-weak areas.

Installation Number 6 7 8 9 10

Installation ID XXXXXX54 XXXXXX93 XXXXXX45 XXXXXX41 XXXXXX21
Outliers dT 277 277 169 201 277
Outliers Tr 366 366 316 363 366
Outliers energy 131 123 18 0 38
Weak area No No No No No
Overflow (m3) 125,581 102,885 64,824 57,121 55,927

5.2. Well and Poorly Performing Installations

Figures 7–9 gives a visual representation of one well performing and one poorly performing
customer installation. The red circles in the figures are values that originate from the poorly performing
installation and the blue circles are values that originate from the well performing installation.
The reference case values are represented as grey circles, and the signature for each case is also
visualized in the figures (black lines). As can be seen in the figure, the values of the well performing
installation do not appear as outliers, while a large share of the values for the poorly performing
installation appears outside of the thresholds determined by the functions.

Figure 7. Example of one well performing (blue circles) and one poorly performing (red circles)
substation according to the cooling signature.

Figure 8. Example of one well performing (blue circles) and one poorly performing (red circles)
substation according to the return temperature signature.
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Figure 9. Example of one well performing (blue circles) and one poorly performing (red circles)
substation according to the energy signature.

6. Analysis and Discussion

The results from the customer installations analysis algorithm state that 43% of the total amount
of the investigated installations are performing poorly. This indicates that it is possible to make large
improvements in the overall DH system performance, if the poorly performing installations are fixed.
In the future DH systems, this will be necessary to maintain the low temperatures that enable the use
of other and more efficient heat sources. Therefore, some sort of automatic installation analysis method
will most likely be a necessity in all future DH systems.

Even though the entire system was not investigated, the number of investigated installations is
larger than those of previous studies. The use of the analysis tool could easily be extended to an entire
DH system by using larger data sets. The results from this study clearly show that it is possible to
identify poorly performing DH customer installations in large data sets, without having to perform
the time-consuming manual analysis that a lot of DH companies are relying on today.

Regarding the results in Tables 2 and 3, it is clear that the installations presented all have a large
overflow. Two of the installations in Table 3 have overflow values over 100,000 m3, which means
that a very large additional amount of DH water is passing through the installation each year.
These installations are located in the non-weak areas of the system and so have a smaller impact
on the system performance than they would in a weak area. However, the large overflows are a clear
indication that there is room for significant improvements of the system efficiency if action is taken
to fix the installations in question. From Table 2, it is clear that there are a number of installations
located in weak areas that have a very large overflow per year. Due to the increased amount of
flow that passes through the installation to meet the heat demand of the customer, the pressure drop
over the installation will increase. This means that the areas where it is already hard to maintain
the differential pressure levels will be even more affected by installations that are not working as
they should, giving further incentives that the installations in the weak areas should be fixed as soon
as possible.

The analysis method used in this study is based on customer data and patterns that are very
familiar to the DH utilities. This is a big advantage since the method is easier to understand compared
to other, more advanced computer science methods. When developing a new analysis method, it is
important to keep the end user in mind and, by utilizing what is already very familiar within the
industry, it will be easier to also implement the developed method and the understanding for it would
be more intuitive. For example, figures similar to Figures 7–9 give a nice overview of the performance
of the installations using patterns that are very familiar to people in the DH industry, and could be
used to present the results to the end user of the algorithm.



Energies 2019, 12, 113 15 of 18

The share of poorly performing installations that was identified in this study deviates from the
shares that have been identified in previous studies. For example, Gadd and Werner show that 74%
were poorly performing [4]. One of the reasons to why this is the case might be that the definition of
what is considered to be a well performing installation is different in the different studies. This means
that the reference case will have different properties, depending on the definition of a well performing
installation. This will have a large impact on the result, since the reference case values decide the
threshold lines. If the reference case contained less installations, it might be that the standard deviation
of the reference case values is smaller, hence creating a narrower reference case signature. A narrower
signature results in more installations being identified as poorly performing.

Another reason for the deviation might be that a larger data set includes more installations of
different purposes, which uses heat differently during the day. The different building types have
heating patterns that might differ largely from each other due to which type of heating control system
is used in the buildings. Some types of buildings have a very wide heat pattern, e.g., office buildings,
since their daily average heat demand is significantly lower during days when nobody is present in the
premises. This means that an office building can have a wide range of different values for one single
outdoor temperature, and this causes a wider heat pattern. If the reference case includes installations
with these wide heat patterns, they may contribute to the reference case being wider than it would be
if only installations with a narrow heat pattern were to be included. Since the data set in this study
contains a larger number of installations compared to the previous studies, it is likely that the reference
case in this study contains a larger variation of buildings. This indicates that the thresholds in the
reference cases of this study will be more allowing than for a smaller data set, and therefore less values
in the data set will be identified as outliers. However, the number of installations that was identified
as poorly performing in this study is still very high. This clearly indicates how important it is to be
able to identify the poorly performing installations in a quick and efficient way in order to be able to
improve the overall performance of the DH systems.

In this study, the ideal value for ∆T was chosen to be 45 ◦C, in accordance with the results from
other studies. However, this is a parameter which is very dependent on the system that is being
investigated since the temperatures of the system might not allow that a value of 45 ◦C is obtained.
If the temperature difference between the supply and return temperature is, e.g., 30 ◦C, then it will
not be possible to obtain the ideal ∆T used in this study. It might also be that a DH system has very
high supply temperatures, which means that it is “easier” to obtain high ∆T’s. This indicates that, in
some systems, the ideal ∆T in this study might be small in a system with high supply temperature.
Therefore, it is of great interest to find another way to determine what value should be used as the
ideal ∆T if this analysis program is to be used in other DH systems.

When considering the fault detection method used in this study, there are some variables and
approaches that could be done differently. One example is the value of the ideal ∆T as described
above, and another is how the reference case installations were chosen. In this study, the reference
case was decided based on the overflow of the installations. Hence, the installations with the lowest
overflow were included in the reference case. There might be other ways to determine the reference
case installations, e.g., by choosing the installations with the lowest return temperatures. It might
also be interesting to rank the poorly performing installations differently. In this study, they were
ranked according to their overflows. Other possibilities would be to rank them according to the
number of outliers in each signature, or to rank them according to the total number of outliers in
all signatures. It would also be possible to choose the breakpoint of the piecewise linear regression
differently. In this study, one breakpoint was used and the value of this was determined by visual
inspection of the customer data. The choice of breakpoints could have been further improved by using
statistical methods.
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7. Conclusions

The analysis tool developed in this study is a first version of an automatic DH analysis tool.
The algorithm developed was able to rapidly identify poorly performing installations in a large data
set. The main conclusions from the paper may be found in the bullet list below:

• The algorithm could identify poorly performing installations in a data set containing data from
3000 customer installations.

• The algorithm identified 1273 installations to be poorly performing. In addition, 109 installations
were located in weak areas, and 1164 installations were located in non-weak areas.

• The overflow of the identified installations were very large and indicates that the poorly
performing installations have a large impact on the system efficiency.

• The method used in this paper has the end user in focus and utilizes data and data patterns that
are well familiar to people in the DH industry.

Although the analysis algorithm performs well for the task at hand, there is some room
for improvement:

• The algorithm would benefit from being able to separate different building types from each other.
This would provide the user with more detailed information about the performance of the district
heating installation. This could be done by using hourly meter readings instead of daily values.

• The parameters used in this study should be tested further. For example, the breakpoints of the
linear regressions are decided manually, and the values of these could probably be improved by
using, for example, statistical methods.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

DH District heating
∆T Temperature difference over substation (◦C)
V̇ Volume flow (m3/s)
ρ Density (kg/m3)
cp Specific heat capacity for water (J/(kg·◦C))
Ts Supply temperature (◦C)
Tr Return temperature (◦C)
Vactual Actual annual volume flow (m3/s)
Videal Ideal annual volume flow (m3/s)
Eactual Actual annual energy (J)
∆Tideal Ideal temperature difference (◦C)
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