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Abstract: For the integration of distributed generations such as large-scale wind and photovoltaic
power generation, the characteristics of the distribution network are fundamentally changed.
The intermittence, variability, and uncertainty of wind and photovoltaic power generation make the
adjustment of the network peak load and the smooth control of power become the key issues of the
distribution network to accept various types of distributed power. This paper uses data-driven
thinking to describe the uncertainty of scenery output, and introduces it into the power flow
calculation of distribution network with multi-class DG, improving the processing ability of data, so as
to better predict DG output. For the problem of network stability and operational control complexity
caused by DG access, using KELM algorithm to simplify the complexity of the model and improve
the speed and accuracy. By training and testing the KELM model, various DG configuration schemes
that satisfy the minimum network loss and constraints are given, and the voltage stability evaluation
index is introduced to evaluate the results. The general recommendation for DG configuration is
obtained. That is, DG is more suitable for accessing the lower point of the network voltage or the
end of the network. By configuring the appropriate capacity, it can reduce the network loss, improve
the network voltage stability, and the quality of the power supply. Finally, the IEEE33&69-bus radial
distribution system is used to simulate, and the results are compared with the existing particle swarm
optimization (PSO), genetic algorithm (GA), and support vector machine (SVM). The feasibility and
effectiveness of the proposed model and method are verified.

Keywords: distribution generation (DG); data-driven; kernel extreme learning machine algorithm
(KELM); voltage stability evaluation index (IVSE); location; capacity

1. Introduction

The world’s energy sources are accelerating in their transition to diversification, cleanliness,
and low carbonization. A hot topic in power systems is the high proportion of renewable energy power
generation. In recent years, a large proportion of renewable energy has been connected to the grid,
but its power generation output is random, which means the analysis and control of power system
has become more important. This fundamentally changes the planning and operation characteristics
of a distribution network. Therefore, studying the problem of distributed generation (DG) location
selection and capacity is of value for the stability and economic operation of distribution networks.

The issues of DG location and capacity selection have received worldwide attention.
Mahmoud et al. [1] and Ehsan and Yang [2] reviewed the benefits of distributed generation in terms of
power supply efficiency, power quality improvement, stability, and safety, and pointed out that these
benefits are mainly determined by the optimal configuration of the location and capacity of distributed
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power sources. The influence of wind power generation on voltage distribution and the active loss
of the distribution network was studied by Vita et al. [3]. Vita [4] proposed a decision algorithm for
distributed power sources’ location and capacity selection, which can be flexibly modified to adapt
to different types of DGs. Asimakopoulou, G.E. et al. [5], from the perspective of the power market,
an aggregation technology was proposed to quantify the benefits of large-scale DG access to the
distribution network. Baghayipour, M.R. et al. [6], in order to solve the layout problem of wind power
generation in the distribution network, presented a model considering the dynamic demand of nodes,
the amplitude of node voltage, and the variation of wind speed was proposed. Li, M. et al. [7] and
Wang, L [8] studied problems of grid-connected distributed power from the perspective of distributed
power output and power distribution system adjustment capability. Chao, Q. et al. [9] proposed
an optimization planning model for multi-energy systems based on the coupling of wind, solar, cold,
heat, and power systems. Multi-stage planning and multi-scenario analyses were carried out with the
goal of economic operation and investment cost optimization. Li, P. et al. [10] proposed an improved
neural network model that effectively describes the external characteristics of various distributed
power sources and meets the needs of engineering simulation. Fu, Y. et al. [11], an improved clustering
algorithm was proposed for problems associated with clustering methods in the location and capacity
of offshore wind farms. A second-layer optimization method for access systems, including substation
site selection and grid topology planning, was proposed. Zhu, J. et al. [12], with the goal of the highest
economic return on investment cycle, a distributed power supply location and capacity optimization
method considering network dynamic reconfiguration was proposed.

It can be seen from the above references that the kinds of DG location and capacity selection
models have been constructed, and the optimization algorithm such as particle swarm optimization
(PSO) and genetic algorithm (GA) are applied to solve the model. However, with the development of
research, some characteristics inherent in optimization algorithms have gradually become bottlenecks,
restricting its further development. For example, the training speed is slow and time-consuming; it is
easy to fall into local minimum, easy to produce premature convergence, local optimization ability
is not strong; and parameter setting is complex, difficult, and has certain dependence on the initial
population selection. In response to the above problems, Huang, G.B. et al. [13] proposed a new
type of single hidden layer feed forward neural network (SLFN)-extreme learning machine (ELM).
The algorithm has the advantages of fast learning speed, simple and easy to implement structure,
less human intervention, and strong generalization ability. Ren, R. et al. [14], an optimized kernel
extreme learning machine (KELM) method was proposed for the power load forecasting problem.
Compared with support vector machine (SVM), the proposed method had good predictive performance
and computation speed.

The rapid development of data analysis and processing technology have enabled a large amount
of operational power system data to be accumulated, which laid a good foundation for data-driven
analysis. The application of data-driven ideas and technologies to traditional power network analysis
and optimization problems comprehensively uses historical and measured data, improving the
accuracy of the results of power network analysis and optimization, thus improving the economical
and stability of the power system. For issues of data quality and computational efficiency of intelligent
transportation systems based on big data, Shen, K. et al. [15] summarized the development trends
and the direction of advanced technologies, such as multi-source data fusion and multi-scenario
applications. At present, few studies involve data-driven power flow calculations. For transmission
networks, it is easier to establish a power flow calculation equation based on physical models.
However, for distribution networks, due to the complex topology, the obtained information is usually
incomplete, so it is difficult to perform power flow calculations based on accurate physical models.
The access of a large number of distributed generation points makes the distribution network more
uncertain. Therefore, considering the use of data-driven ideas, using historical and measured data to
compensate for the completeness of information, through the training and testing of the model can
help to solve the uncertainty description problem.
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Therefore, we considered the use of data-driven thinking to describe the uncertainty of wind
and photovoltaic output and introduced it into the power flow calculation of distribution networks.
The multi-type DG location and capacity selection model based on the kernel extreme learning machine
(KELM) was constructed to map various DG outputs to node voltages. Using the data-driven KELM
method, various DG configuration schemes satisfying the constraints are provided and the voltage
stability evaluation index is introduced to evaluate the results. The IEEE33&69-bus radial distribution
system is used as an example to simulate and compare the obtained DG location and capacity selection
results with particle swarm optimization (PSO) and genetic algorithm (GA) algorithms. The validity
and feasibility of the proposed method were verified, and the computation speed was faster.

2. Location and Capacity Selection Model of DG

First, we discuss the stochastic models for wind and photovoltaic power generation.

2.1. DG Probability Model

2.1.1. Wind Power Generation

The output power of wind is affected by wind speed. Wind speed distribution obeys the Weibull
distribution, and its probability density function [16] can be expressed by Equation (1)

f (v) =
k
c

(v
c

)k−1
exp
[
−
(v

c

)k
]

(1)

where k and c are the shape parameter and scale parameter of the Weibull distribution, respectively,
and v is the actual wind speed.

The wind power, as a function of the wind speed, is a non-linear function, so this linear power
(speed) function is an approximation. Thereby, the output power distribution function Pw of the wind
power generation can be obtained as

Pw =


0 v ≤ vci, v ≥ vco

Pn(v− vci)/(vn − vci) vci ≤ v ≤ vn

Pn vn ≤ v ≤ vco

(2)

where vci is the cut-in wind speed, vco is the cut-out wind speed, and Pn is the rated output of the fan.
vn is the rated wind speed.

2.1.2. Photovoltaic (PV) Power Generation

The solar light intensity s approximates the Weibull distribution over a certain period of time,
and its probability density function [17] can be expressed as

f (s) =
k
c

( s
c

)k−1
exp
[
−
( s

c

)k
]

(3)

where k and c are shape parameter and scale parameter, respectively.
Thereby, the output power distribution function Ps of the photovoltaic power generation can be

obtained as

Ps =

{
Psn(s/sn) 0 ≤ s ≤ sn

Psn s ≥ sn
(4)

sn is the light intensity at the rated output power, and Psn is the rated output power of the photovoltaic cell.
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2.2. Voltage Stability Evaluation Index

The feasible critical solution to the current flow equation is considered the limit point of voltage
stability. The voltage stability index is judged by the extreme conditions of the power flow solution,
which can reflect the area where the system is the most prone to voltage collapse and the node [18].
Prior research [19] showed that the voltage stability of the whole system can be evaluated according to
the index. The larger the index value, the more unstable the network voltage. We used an improved
voltage stability index (IVSE). The index is calculated as

IVSE =
4Q
(
r2 + x2)
xU2 (5)

where Q represents the reactive power loss in the system; r and x represent the equivalent resistance
and reactance of the system considering DG, respectively; and U represents the node voltage.

When the DG is not connected, the pre-pushback generation method is used to calculate the
power flow of the distribution network. The voltage stability evaluation index is used as the reference
value. The node with the largest index value was selected as the initial position of the DG access.

In order to facilitate comparative analysis, the rate of change of IVSE index is defined as

Iivse_Rate =
|Iivse − Iivse0|

Iivse0
× 100% (6)

where Iivse0 indicates the initial value of the IVSE indicator when the DG is not connected, Iivse indicates
the value of the IVSE indicator under different DG configuration schemes, and Iivse_Rate represents the
rate of change of the IVSE indicator. The rate of change of the index indicates the change in the voltage
of different nodes with access to the DG; the larger the value, the greater the degree of change at the
access node.

2.3. Active Power Loss

For a radiating distribution network with n branches, the active power loss Ploss is

S2
ij = P2

ij + Q2
ij (7)

Ploss =
n

∑
i=1

S2
ij

U2
i

Rij =
n

∑
i=1

P2
ij + Q2

ij

U2
i

Rij (8)

where Pij and Qij are the active and reactive power flowing through the branch, respectively; Rij is the
branch resistance; Sij is the power flowing through the branch between node i and node j; and Ui is the
voltage of node i.

After the DG is connected to the system, the input power to the node i is Pk, then

Pk = Pwind + Ppv (9)

where Pwind and Ppv represent the output power of wind and photovoltaic power generations, respectively.

P′loss =
k

∑
i=1

(Pi − Pk)
2

U2
i

Ri +
n

∑
i=k+1

P2
i

U2
i

Ri +
n

∑
i=1

Q2
i

U2
i

Ri (10)

Substituting Equation (9) and simplifying it to

P′loss = Ploss +
k

∑
i=1

P2
k

U2
i

Ri −
k

∑
i=1

2PiPk

U2
i

Ri (11)
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where P’loss represents the active power loss after DG access.
When the DG is not connected, the power flow calculation of the distribution network is

performed, and the obtained value is used as the active power loss reference value of the distribution
network system.

2.4. Restriction Conditions

Comprehensively comparing the composition of various objective functions, the active power
loss is usually the basis of various objective functions. Therefore, in order to compare the simulation
results, we used the chance constrained programming method to construct the objective function with
the minimum loss of active power.

2.4.1. Opportunity Constraints

Considering the location and capacity study of DG uncertain factors, the node voltage amplitude
and the feeder transmission capacity are generally allowed to have a few exceptions within a reasonable
confidence level [20], as

Pr{Umin ≤ Ui ≤ Umax} ≥ α (12)

Pr
{

Sij ≤ Sijmax
}
≥ β (13)

where α and β take 0.95 according to practical experience in similar cases; Umax and Umin are the upper
and lower voltage limits, respectively; and Sijmax is the maximum line power transmission limit.

2.4.2. Equality Constraints

The equality constraint is based on the basic power flow equation of the distribution network,
and influences the DG

Pi + PDG − PLi −Ui ∑
jεi

Uj
(
Gij cos θij + Bij sin θij

)
= 0

Qi + QDG −QLi −Ui ∑ Uj
(
Gij sin θij − Bij cos θij

)
= 0

(14)

where Pi and Qi are the active power and reactive power injected by the network to node i, respectively;
PDG and QDG are the active power and reactive power injected by DG to node i, respectively; PLi and
QLi are the active load power and reactive load power of node I, respectively; Ui and Uj are the voltages
of nodes i and j, respectively; Gij and Bij are the line resistance and reactance, respectively; and θij is
impedance angle.

2.4.3. Inequality Constraints

Considering the impact of DG access, the voltage of each node does not exceed the limits

Uimin ≤ Ui ≤ Uimax (15)

where Uimin and Uimax are the upper and lower limits of node i’s voltage, respectively, and DG meets
the limit of access capacity.

SDGi ≤ SDGimax (16)

where SDGi and SDGimax are the installation capacity of the ith DG and its maximum allowable
installation capacity, respectively.
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3. Data-Driven KELM

3.1. Data-Driven Analysis

Data driven analysis refers to data-driven thinking and control [21,22]. Data-driven thinking refers
to the use of online and offline data from a controlled system to implement various desired functions
of the system, mainly for data-based forecasting, evaluation, scheduling, monitoring, diagnosis,
decision making, and optimization. With the data-driven approach, the results of forecasting, control,
and evaluation can be tested based on real-time system data [23,24].

Traditional power network analysis and optimization problems often establish a complete
physical model based on the basic laws of a power system, such as power flow calculation
models. Through constraints, such as renewable energy output and network topology parameters,
numerical calculation or optimization solution are taken as the means, the network’s power
flow distribution is obtained, as well as voltage profile, active loss and other operational
data. Therefore, traditional power network analysis and optimization problems—such as power
flow calculation, planning and scheduling, voltage control, etc.—are mostly model data
calculation problems.

Data-driven power network analysis and optimization problems mostly do not depend on
the physical model of the power system. With a certain relationship between data, the process
of solving unknown data is based on known values. This is a data-driven computation problem.
Notably, the data-driven power flow calculation mentioned in this paper still needs to establish the
physical model of the power system. The introduction of the data-driven method reduces the reliance
on the physical model of the power system, however, in the process of processing the data, we still
needed to establish a mathematical model.

3.2. Kernel Function Extreme Learning Machine

The extreme learning machine (ELM) was developed by Huang et al. in 2004 to introduce machine
learning theory [13]. Based on this theory, various related algorithms, including the extreme learning
machine with kernel function (KELM), were derived and widely used by researchers in different
fields [25,26]. The basic topology of the ELM is shown in Figure 1.
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Figure 1. Basic topology of extreme learning machine (ELM). βi is the output weight, xj is the input
training data, d is the number of input layer units, L is the number of hidden layer nodes, and g(x) is
the output function of hidden layer nodes.

ELM is a generalized single hidden layer feedforward neural network. After randomly generating
input weights and offsets, the output weights are obtained through matrix calculation. Compared with
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the traditional feedforward post-transmission neural network, extreme learning machine has extremely
fast training speed, better generalization performance, and easier implementation.

Suppose a given training set N = {(xi,ti)|xi∈Rd, ti∈Rm, i = 1, 2, . . . , d}, where xi is training data,
ti is the category label for each sample. The basic ELM training algorithm can be summarized as
follows: (1) randomly assign hidden node parameters: input weight wi and offset bi, i = 1, . . . , L, 1⁄c for
bias constant; (2) calculate the hidden layer output matrix H; and (3) obtain an output weight β. Thus,

β = HT
(

1
c
+ HHT

)−1
T (17)

Then, the corresponding output function of the ELM is

f (x) = h(x)β = h(x)HT
(

1
c
+ HHT

)−1
T (18)

where, h(x) is the hidden layer feature mapping.
ELM guarantees regression prediction accuracy by minimizing output error, which is

lim
L→∞
‖ f (x)− fo(x)‖ = lim

L→∞
‖

L

∑
i=1

βihi(x)− fo(x)‖ = 0 (19)

where fo(x) is the function to be predicted consisting of the target value.
The basic ELM algorithm has been applied to short-term electric load forecasting [27], high-voltage

circuit breaker mechanical fault diagnosis [28], and a tunnel foundation pit deformation intelligent
prediction model [29]. ELM demonstrated high quality performance to meet the needs of different
applications. ELM is a new algorithm for SLFN, which randomly generates the connection weight
between the input layer and the hidden layer, and the threshold of the hidden layer neurons. ELM does
not need to be adjusted during the training process; it only needs to set the hidden layer neurons.
Therefore, ELM can be used to obtain the only optimal solution. When the number of neurons in
the hidden layer is equal to the number of samples in the training set, the ELM can approach all
training samples with zero error. However, more neurons in the hidden layer is not necessarily better.
From the prediction accuracy of the test set, when the number of neurons in the hidden layer is
gradually increased, the prediction rate of the test set gradually decreases. Therefore, it is necessary
to comprehensively consider the prediction accuracy of the training set and the test set and make
a compromise selection.

Compared to the basic ELM algorithm, the kernel extreme learning machine is more capable
of solving regression prediction problems, and faster while obtaining better or similar prediction
accuracy [30]. In the KELM algorithm, the specific form of the feature mapping function h(x) of the
hidden layer node is not specifically given, but only needs to know the specific form of the kernel
function K(u,v) to find the value of the output function. Because the kernel function directly adopts the
form of inner product, it is not necessary to set the number of hidden layer nodes when solving the
output function, so that the initial weight and offset of the hidden layer do not need to be set.

For the KELM algorithm, a kernel function is introduced to obtain better regression prediction
accuracy, as

f (x) = h(x)HT
[

1
c
+ HHT

]−1
T =

 K(x, x1)
...

K(x, xN)

[1
c
+ ΩELM

]−1
T (20)

ΩELM(i,j) = h(xi)·h
(

xj
)
= K

(
xi, xj

)
(21)

where ΩELM is kernel function matrix, K(u, v) is the kernel function, which usually chooses Gaussian
kernel function, and N is the input layer dimension.
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Therefore, through the above analysis, we chose KELM to study the DG location and capacity
planning in distribution network.

The model mainly uses KELM’s approximation ability of nonlinearity and generalization
performance, to approximate the nonlinear relationship expressed with physical model between
nodes in power system. In this paper, KELM is used to approximate the relationship between different
access points of DG and the change of output power and network node voltage. Through training and
testing, the variation of node voltage distribution with the DG access position and output power is
given. By judging the root mean square error (RMSE) between the predicted and measured values
given by the KELM model, the calculation accuracy of the model is judged. The voltage stability
evaluation index is introduced to evaluate the result, so that the DG configuration scheme that satisfies
the condition is selected.

The Figure 2 above shows the structure of the KELM model. PDG represents the output power of
DG, UDG represents the voltage of the DG access point, and K(u,v) represents the kernel function.

RMSE =

√√√√ 1
N

N

∑
i=1

(y(i)− y∗(i))2 (22)
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In the above formula, RMSE represents the root mean square error, y(i) represents the measured
value, y*(i) represents the predicted value given by the KELM model, and N is the number of samples.
The smaller the RMSE, the closer the prediction effect is to the measured value.

3.3. Solution Steps

The KELM algorithm is based on data-driven idea with the aim calculating data-driven power
flow, and using the KELM algorithm to solve the DG location and capacity selection model.
The algorithm is divided into two parts. The first is using the data-driven technology to describe
the uncertainty of the wind and photovoltaic power generation output, minimizing the loss of the
network as the objective function, and computing power flow that satisfies the constraint conditions.
The second is using the obtained results to train KELM to map from DG output to voltage distribution.
When the set value of mean square error (RMSE) is satisfied, the DG configuration scheme that meets
the requirements is obtained. Finally, the results were evaluated using the voltage stability evaluation
index, and the obtained configuration scheme was compared with the existing PSO and GA algorithms.

The solution steps are as follows:
Step 1: Initialize the system parameters, set the type of DG, and obtain basic parameters, such as

DG output PDG.
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Step 2: Calculate the power flow of the distribution network without DG to obtain the IVSE index,
the voltage profile, and active power loss. Select the point with the highest index value as the initial
DG access location.

Step 3: Taking the initial access location as the starting point, calculate the power flow of the
distribution network with DG, and record the DG output sequence PDG and the corresponding node
voltage sequence UDG, as P = {PDG1, . . . , PDGm; UDG1, . . . , UDGn}.

Step 4: The KELM model is trained until the value of the root mean square error (RMSE) satisfies
the set value, thereby obtaining the initial configuration scheme of DG, which is the access location
and capacity of DG under the basic load condition.

Step 5: Based on the DG configuration scheme obtained in Step 4, the output of the DG is set to
vary in the range of 10% to 30% of the total load, recorded as ∆SDG1 and ∆SDG2, respectively. Perform
the power flow calculation again, and obtain a new data sample, denoted as P’ = {P’DG1, . . . , P’DGm;
U’DG1, . . . , U’DGn}.

Step 6: P’ is taken as a test sample and input into the trained KELM. Judge if the RMSE satisfies
the set value. If yes, the P’ at this time is saved as the new DG configuration scheme. Otherwise, return
to Step 5.

Step 7: From the obtained DG configuration scheme, substitute access capacity and corresponding
location information into the pre-return method of distribution network to re-calculate the power flow.
Calculate the IVSE index, voltage profile, and active power loss.

Step 8: Select the access capacity and location information of the DG corresponding to the
minimum active power loss.

4. Simulations

4.1. Experimental Framework

We used a IEEE33&69-bus radial distribution system for simulation. The original parameters
of the system are provided in Tables A1 and A2 of the Appendix A. The initial access locations of
photovoltaic and wind power generation were determined according to the IVSE index. First, the point
with the largest index was selected, and then the lowest point of the node voltage was selected.
Using the measured data of wind farms and photovoltaic stations in a project, and adopting data-driven
technology, a large number of simulations were carried out to obtain the distribution function and
its parameters. According to the simulation results, the wind speed obeyed the Weibull distribution
of k = 5.8 and c = 16, and the fan had rated speed vn of 15 m/s, cut-in speed vi of 4 m/s, and cut-out
speed vo of 25 m/s. The illumination intensity followed a Weibull distribution with a k = 0.45 and
c = 9.18. The number of data sampling times was set to 6000. We assumed that sufficient reactive power
was given in the network, and the target of DG was designed and fixed with the aim of minimizing
the active power loss. Figures 3 and 4 give out the topology of IEEE33&69-bus radial distribution
system, respectively.
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4.2. Data Analysis

4.2.1. Results of KELM

After a certain amount of simulation, the configuration schemes of various types of DGs satisfying
the restrictions were obtained. Three representative nodes were selected that corresponded to the
worst voltage stability point, the lowest voltage amplitude, and any node in the net.

Tables 1 and 2 show the configuration scheme of the IEEE33&69 node system and DG access.
Their notation is provided in the following format: in CXMX, C is the abbreviation for Case,
the subsequent digit represents the number of DG access, M is the abbreviation of Mode, and the
subsequent digit represents the grouping of different types of DG. The CXMXs in Tables 1 and 2
are different.

Table 1. Configuration scheme of IEEE 33-bus radial distribution system with DGs.

Node C1M1 C1M2 C2M1 C2M2 C3M1 C3M2

Node 5 PV Wind PV Wind Wind PV
Node 17 - - Wind PV Wind Wind
Node 27 - - - - PV PV

Table 2. Configuration scheme of IEEE 69-bus radial distribution system with DGs.

Node C1M1 C1M2 C2M1 C2M2 C3M1 C3M2

Node 6 - - - - PV Wind
Node 45 PV Wind PV Wind PV PV
Node 53 - - PV PV PV PV

Tables 1 and 2 shows the configuration results of the various types of DGs calculated using the
data-driven KELM method. The unit of data in the table is MW.

Tables 3 and 4 show the location and capacity (MW) of each type of DG access, and the
corresponding active power loss (kW). Among them, the active power loss of the IEEE33&69-bus
radial distribution system was 202.45 kW, and 226.5 kW when DG was not connected. It can be seen
from Tables 3 and 4 that the DG access was generally enabled reducing the active power loss of the
network. Different access locations and capacities had different degrees of influence on the active
power loss of the network.

For the IEEE33-bus radial distribution system, when the DG adopted the C3M2 mode, the active
power loss was the least, only 104.14 kW, and the total capacity of the DG access reached 5.534 MW.
For the IEEE69-bus radial distribution system, when the DG adopted the C3M1 mode, the active power
loss was the least at only 92.64 kW. The total capacity of DG access reached 3.126 MW.

Different access locations had a large impact on active power loss. When accessing a DG,
for an IEEE33-bus radial distribution system (33-node), when accessing only node 5, the wind access
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capacity was higher than PV and the active power loss was lower. For the 69-node system, when only
accessing node 45, wind access capacity was higher than PV, but the active power loss was basically
the same. When the two DGs were connected for the 33-node system, when the wind access node 5
and the PV access node 17 were swapped, the active loss was lower and the access capacity was larger.
For the 69-node system, the active power loss was higher when wind and PV accessed both nodes 45
and 53 at the same time compared to when the wind accessed node 45 or the PV accessed node 53,
but the access capacity was larger. Then, when DG accessed three points and when wind replaced the
PV access location, the active power loss was higher but the access capacity was also larger.

Table 3. DG location and capacity selection results of IEEE 33-bus radial distribution system (Ploss: active
power loss).

Node &Capacity &Ploss C1M1 C1M2 C2M1 C2M2 C3M1 C3M2

Node 5 1.087 3.427 0.99 3.434 3.524 1.053
Node 17 3.447 1.04 3.474 3.467
Node 27 1.052 1.014

DG (MW) 1.087 3.427 4.437 4.474 8.05 5.534
Ploss (kW) 133.78 119.09 142.63 119.64 171.72 104.14

Table 4. DG location and capacity selection results of IEEE 69-bus radial distribution system (Ploss: active
power loss).

Node &Capacity &Ploss C1M1 C1M2 C2M1 C2M2 C3M1 C3M2

Node 6 1.079 3.41
Node 45 0.989 3.418 1.251 3.414 1.058 1
Node 53 2.327 1.06 0.989 0.996

DG (MW) 0.989 3.418 3.578 4.474 3.126 5.406
Ploss (kW) 123.39 124.1 101.35 154.5 92.64 133.45

4.2.2. Voltage Profile

The voltage profile curves of the IEEE33&69 systems before and after DG access are shown in
Figures 5 and 6. V_noDG indicates that the DG is not connected, and CXMX represents different DG
access modes. The specific allocation is shown in Tables 1 and 2.
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Different access modes had different effects on the voltage profile. For the 33-node system,
the network voltage level increased the most in mode C3M1. For the 69-node system, the voltage
profile varied with DG in different access modes, with varying degrees of improvement, especially for
access points and their nearby nodes. In mode C3M2, the voltage level near the power supply side
increased the most. In mode C2M2, the voltage level at the end of the network increased the most.

Overall, as the number of DG accesses increased, the network voltage level improved considerably.
In particular, the DG access location had an important impact on the network voltage profile.

The voltage profile of the DG access node in different access modes is shown in Figures 7 and 8.
V_noDG indicates the voltage of the corresponding node when the DG is not connected. As can be seen
from Figures 7 and 8, the voltage of the access node increased with the access of the DG, and changed
with the various DG access modes. For the 33-node system in the case of C3M1, the voltage amplitude
of the DG access point was the highest, and C1M2 was the second-highest. For the 69-node system
in the case of C2M2, the voltage amplitude of the DG access point was the highest, and C1M2 was
the second-highest.
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It can be seen from Figures 7 and 8 that different configurations of wind power and PV had
different influences on the voltage level of the access point, and the overall trend was to increase the
voltage level of the access point. However, the change in access type and access capacity of DG greatly
influenced the increase of voltage, and specific analysis is needed.
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4.2.3. IVSE Index

For further verification, the DG location and capacity results produced by the KELM method
were substituted into the pre-pushback method for power flow calculation, and the IVSE index change
rate of the access point was obtained, as shown in Figures 9 and 10. The distribution of the IVSE index
change rates for different access modes is shown in Figures 9 and 10. As can be seen in the figure, in the
IEEE 33-bus radial distribution system, the index change rate was the highest in the C3M1, and C1M2
was second. In the IEEE 69-bus radial distribution system, the index change rate was the highest in
mode C2M2, and C1M2 was second. Note that for the 33-node system, the voltage increase in the DG
access point was the largest in C3M1. For the 69-node system, the voltage increase in the DG access
point was the largest in mode C2M2.
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Comparing the above two examples for different network structures, the increase in the voltage
level was related to the number of DGs, and the access type and location, and they are a set of mutually
influential factors. In particular, the access location of wind power had a large impact on the voltage
profile and had a large access capacity.

Therefore, from the above analysis of the voltage profile and IVSE index changes, the DG
location and capacity selection results produced by the KELM algorithm were generally satisfactory
and feasible.
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4.3. Comparison

Tables 5 and 6 compare the results produced by the KELM algorithm with the PSO and GA
methods from the aspects of DG access number, access location, access capacity, and active power loss.
Table 5 corresponds to IEEE 33-bus radial distribution system (referred to as the 33-node system) and
Table 6 corresponds to the IEEE 69-bus radial distribution system (referred to as the 69-node system).

Table 5. Comparison of distributed generation (DG) location and capacity selection results for the
33-node system. GA: genetic algorithm; KELM: kernel extreme learning machine; PSO: particle
swarm optimization.

References Methods
Used

Number of
DGs

Selected
Buses Size of DGs (MW) Active Power

Loss (kW)

Base case - - - - 202.45

Ref. [32] PSO 1 7 3.6239 3.6239 131.85

Ref. [33] PSO 2
29

1.867
1.483

116.7131 0.384

Ref. [34] GA 3
10

3.1
1.5

106.328 0.43
30 1.07

Proposed KELM

1 5 3.4 3.4 118.11

2
5

4.44
3.391

118.417 1.049

3
5

5.526
1.05

104.217 3.57
27 0.906

It can be seen from Tables 5 and 6 that the results obtained by the KELM method and PSO and
GA algorithms were similar.

For the 33-node system, when the DG was connected to one position, the DG access capacity
was similar to the other methods, and the configuration active power loss given by KELM was lower.
When the DG was connected to two, the DG access capacity produced by KELM was higher than that
by the PSO algorithm, and the active loss was similar. When the DG was connected to three, the DG
access capacity given by KELM was higher than that of the GA algorithm, and the active power loss
was lower.
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Table 6. Comparison of DG location and capacity selection results for 69-node system.

References Methods
Used

Number of
DGs

Selected
Buses Size of DGs (MW) Active Power

Loss (kW)

Base case - - - - 226.5

Ref. [32] PSO
1 50 3.685 3.685 87.63

2
37

3.526
1.314

86.6850 2.212

Ref. [34] GA 3
21

2.99
0.93

90.351 1.075
53 0.985

Proposed KELM

1 45 3.42 3.418 124.1

2
45

3.58
1.251

101.353 2.327

3
6

3.126
1.079

92.645 1.058
53 0.989

For the 69-node system, when the DG was connected to one position, the DG access capacity was
similar to the other methods, and the configuration active power loss produced by KELM was slightly
higher. When DG was connected to two, the DG access capacity given by KELM was similar, and the
active loss was a little higher than the PSO algorithm, but still lower than the active power loss when
the DG was not connected. When the DG was connected to three, the DG access capacity produced by
the KELM was higher than that of the GA algorithm, and the active power loss was similar.

Based on the above comparison, the proposed KELM method provides effective and feasible
DG configuration results. When the target of minimum active power loss was used, the various
DG configuration schemes produced by the KELM method were better than the existing algorithms,
with larger capacity and lower or similar power loss.

5. Discussion

Through the above simulation experiments and comparative analysis, the access of DG generally
improved the network voltage level, reduced the active power loss, and changed the access location of
different types of DG, which had different effects on the network voltage level.

The access of the DG not only improved the access node, but also increased the voltage level of
the nodes near the access point. Compared with photovoltaic, wind power had a larger access capacity
and increased the network voltage level more. Through statistical analysis of the simulation data,
the average degree of voltage increase by DG access was about 6%. The access type, access location,
and capacity of the DG produced different changes in the network’s active power loss. Due to the
large capacity of wind power, the degree of impact on the network’s active power loss was greater.
When wind power and photovoltaic were simultaneously connected, the calculation of the KELM
method provided various DG configuration schemes that were more helpful to reduce network loss.
With further increase in the number of DG accesses, higher access capacity was achieved through
KELM calculation, and the capacity increase averaged about 4%.

The rate of change in the IVSE index represents the change in the network voltage profile before
and after DG access. Through this index, the influence of different configuration schemes of DG
on the network voltage profile was further verified. Notably, the influence on the access node had
a greater impact.

In addition, the DG configuration results obtained by the KELM were compared with the existing
PSO and GA methods. The comparison results showed that the results produced by the KELM
algorithm were effective and feasible, and could meet the actual needs of the project. In terms of
calculation time, according to the existing research, when the machines used are all ordinary laptops,
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and the calculation speed and memory of the CPU are basically the same, the calculation time of
PSO and its improved algorithm (such as quantum-behaved PSO and improved quantum-behaved
PSO) were published by Peng, X.G. et al. [35] as 719.6 s, 538.3 s, and 419.2 s, respectively. The average
calculation time of SVM is 870.4s. While that of KELM is 324.7 s. Explain that KELM is fast.
Existing optimization algorithms, such as PSO and GA, need to constantly adjust relevant parameters
and set various search strategies by iteratively updating to avoid falling into local minimum values
and improving the optimization effect. The KELM algorithm introduces the kernel function into the
extreme learning machine and replaces the random mapping in the basic ELM with kernel mapping,
which effectively improved the generalization ability and stability problems caused by the random set
of the hidden layer parameters. The complexity of the calculation was greatly reduced and avoids
the setting of the number of hidden layer nodes. The iterative adjustment is not needed, and the least
square optimization solution can be obtained. Therefore, the KELM algorithm requires less human
intervention and has a faster training speed. The network parameter adjustment process is simple,
consumes less time, and has better stability and greater generalization ability.

On the other hand, in order to prove the prediction accuracy of the proposed method, the KELM
method is compared with SVM, the root mean square error is used as the evaluation index, and the
comparison results are given. When maintaining the same basic conditions, the RMSE of KELM is
approximately 0.000491 and the RMSE of SVM is approximately 0.1042. The prediction accuracy of
KELM is higher than SVM.

6. Conclusions

We used data-driven technology to describe the uncertainty of wind and photovoltaic power
generation and introduced this technology into the power flow calculation of distribution network
with multi-types of DG. By training KELM, the mapping of various DG output to node voltage profile
is realized. Under the condition of ensuring the minimum network loss, a configuration scheme that
satisfies the constraints of network security operation is given. Voltage stability evaluation indexes
were introduced to evaluate the DG location and capacity selection results. The IEEE33&69-bus
radial distribution system is used as an example to simulate, and the configuration results of DG
are compared with the existing PSO and GA algorithms to verify the effectiveness and feasibility of
the proposed method. In addition, the calculation time and prediction accuracy are compared with
the SVM algorithm, which verifies that the proposed method has faster calculation speed and better
prediction accuracy.

Therefore, the conclusions of this paper are briefly summarized as follows:

(1) DG access improves the network voltage level, especially the access of large-capacity wind power.
By adopting the method proposed in this paper, the configuration scheme increases voltage
amplitude by an average of 6%.

(2) DG access reduces network loss. With the increase in the number of DG accesses, higher access
capacity can be achieved by adopting the method proposed in this paper, and the capacity
increase averages about 4%.

(3) Through comparison of the existing PSO and GA methods, the effectiveness, feasibility,
calculation speed, and high precision of the proposed method were verified.

(4) Using this method, detailed configuration schemes of various types of DGs can be obtained.
Combined with the fast calculation speed, the online operation control schemes of distribution
networks with a high proportion of distributed power access can be considered.

As we only addressed the wind and photovoltaic power generation problems for the location
and capacity selection of a distribution network, our study has limitations. In the future, with the
development of technology, it is necessary to consider the access of new elements to the distribution
network, such as electric vehicles and energy storage devices, to constitute a multi-energy interconnect
system. These additional connections will change the basic characteristics of the distribution network,
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so further research needs to be completed to determine how to use the data-driven KELM method on
coordinated control and optimization of multi-energy systems.

Author Contributions: Methodology, J.T. and Z.Y.; Software, Y.X., J.T., and Z.Y.; Formal analysis, J.T. and Y.X.;
Data curation, J.T., Y.X., and Z.Y.; Writing—original draft preparation, J.T.; Writing—review and editing, J.T., Y.X.,
and Z.Y.; Funding acquisition, Z.Y.

Funding: This research was funded by the National Key Research and Development Program of China under
Grant, grant number 2016YFB010190.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

k Weibull distribution shape parameter
c Weibull distribution scale parameter
v actual wind speed
Pw output power distribution function of wind power generation
Pn rated output of the fan
vci cut-in speed
vco cut-out speed
vn rated speed
Ps output power distribution function of photovoltaic (PV) power generation
Psn rated output power of photovoltaic cells
sn light intensity at rated output power
s light intensity
IVSE Improved voltage stability evaluation index
P active power
Q reactive power
r equivalent resistance
x equivalent reactance
U node voltage
Iivse_Rate IVSE index change rate
Iivse0 IVSE value without DG
Iivse IVSE value
Ploss active power loss
Sij apparent power
Pij active power between node i and j
Qij reactive power between node i and j
Ui voltage of node i
Uj voltage of node j
Rij branch resistance between node i and j
Pk DG output power
Pwind wind output power
Ppv PV output power
P’loss active power loss with DG
Pi injecting active power of node i
Qi injecting reactive power of node i
Umin voltage minimum
Umax voltage maximum
PDG injecting active power of DG
QDG injecting reactive power of DG
PLi active power load of node i
QLi reactive power load of node i
Uimin lower voltage limit of node i
Uimax upper voltage limit of node i
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SDGi DG installation capacity
SDGimax DG maximum allowable installation capacity
N number of training samples
xi input training data
ti category label for each sample
L hidden layer number
d input layer number
m output layer number
w input weight
b bias
1/c bias constant
g(x) output function of hidden layer
H hidden layer output matrix
β output weight
T output matrix
h(x) hidden layer feature mapping
f(x) output function
fo(x) pending prediction function
K(u,v) kernel function

Appendix A.

Table A1. Data for the IEEE 33-bus radial distribution system.

Node i Node j Branch (Ohm) Load of Node j (kW)

1 2 0.0922 + j0.047 100 + j60
2 3 0.4930 + j0.2511 90 + j40
3 4 0.3660 +j0.1864 120 + j80
4 5 0.3811 + j0.1941 60 + j30
5 6 0.8190 + j0.7070 60 + j20
6 7 0.1872 + j0.6188 200 + j100
7 8 0.7114 + j0.2351 200 + j100
8 9 1.0300 + j0.7400 60 + j20
9 10 1.0440 + j0.7400 60 + j20
10 11 0.1966 + j0.0650 45 + j30
11 12 0.3744 + j0.1238 60 + j35
12 13 1.4680 + j1.1550 60 + j35
13 14 0.5416 + j0.7129 120 + j80
14 15 0.5910 + j0.5260 60 + j10
15 16 0.7463 + j0.5450 60 + j20
16 17 1.2890 + j1.7210 60 + j20
17 18 0.3720 + j0.5740 90 + j40
2 19 0.1640 + j0.1565 90 + j40
19 20 1.5042 + j1.3554 90 + j40
20 21 0.4095 + j0.4784 90 + j40
21 22 0.7089 + j0.9373 90 + j40
3 23 0.4512 + j0.3083 90 + j50
23 24 0.8980 + j0.7091 420 + j200
24 25 0.8960 + j0.7011 420 + j200
6 26 0.2030 + j0.1034 60 + j25
26 27 0.2842 + j0.1447 60 + j25
27 28 1.0590 + j0.9337 60 + j20
28 29 0.8042 + j0.7006 120 + j70
29 30 0.5075 + j0.2585 200 + j600
30 31 0.9744 + j0.9630 150 + j70
31 32 0.3105 + j0.3619 210 + j100
32 33 0.3410 + j0.5362 60 + j40
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Table A2. Data for the IEEE 69-bus radial distribution system.

Node i Node j Branch (Ohm) Load of Node j (kW)

1 2 0.0050 + j0.0012 0
2 3 0.0050 + j0.0012 0
3 4 0.0015 + j0.0036 0
4 5 0.0251 + j0.0294 0
5 6 0.3660 + j0.1864 2.6 + j2.2
6 7 0.3811 + j0.1941 40.4 + j30
7 8 0.0922 + j0.0470 75 + j54
8 9 0.0493 + j0.0251 30 + j22
9 10 0.8190 + j0.2707 28 + j19
10 11 0.1872 + j0.0691 145 + j104
11 12 0.7114 + j0.2351 145 + j104
12 13 1.0300 + j0.3400 8 + j5.5
13 14 1.0440 + j0.3450 8 + j5.5
14 15 1.0580 + j0.3496 0
15 16 0.1966 + j0.0650 45.5 + j30
16 17 0.3744 + j0.1238 60 + j35
17 18 0.0047 + j0.0016 60 + j35
18 19 0.3276 + j0.1083 0
19 20 0.2106 + j0.0696 1 + j0.6
20 21 0.3416 + j0.1129 114 + j81
21 22 0.0140 + j0.0046 5.3 + j3.5
22 23 0.1591 + j0.0526 0
23 24 0.3463 + j0.1145 28 + j20
24 25 0.7488 + j0.2457 0
25 26 0.3089 + j0.1021 14 + j10
26 27 0.1732 + j0.0572 14 + j10
3 28 0.0044 + j0.0108 26 + j18.6
28 29 0.0640 + j0.1565 26 + j18.6
29 30 0.3978 + j0.1315 0
30 31 0.0702 + j0.0232 0
31 32 0.3510 + j0.1160 0
32 33 0.8390 + j0.2816 14 + j10
33 34 1.7080 + j0.5646 19.5 + j14
34 35 1.4740 + j0.4873 6 + j4
3 59 0.0044 + j0.0108 26 + j18.55
59 60 0.0640 + j0.1565 26 + j18.55
60 61 0.1053 + j0.1230 0
61 62 0.0304 + j0.0355 24 + j17
62 63 0.0018 + j0.0021 24 + j17
63 64 0.7283 + j0.8509 1.2 + j1
64 65 0.3100 + j0.3623 0
65 66 0.0410 + j0.0478 6 + j4.3
66 67 0.0092 + j0.0116 0
67 68 0.1089 + j0.1373 39.22 + j26.3
68 69 0.0009 + j0.0012 39.22 + j26.3
4 36 0.0034 + j0.0084 0
36 37 0.0851 + j0.2083 79 + j56.4
37 38 0.2898 + j0.7091 384.70 + j274.5
38 39 0.0822 + j0.2011 384.70 + j274.5
8 40 0.0928 + j0.0473 40.5 + j28.3
40 41 0.3319 + j0.1114 3.6 + j2.7
9 42 0.1740 + j0.0886 4.35 + j3.5
42 43 0.2030 + j0.1034 26.4 + j19
43 44 0.2842 + j0.1447 24 + j17.2
44 45 0.2813 + j0.1433 0
45 46 1.5900 + j0.5337 0
46 47 0.7837 + j0.2630 0
47 48 0.3042 + j0.1006 100 + j72
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Table A2. Cont.

Node i Node j Branch (Ohm) Load of Node j (kW)

48 49 0.3861 + j0.1172 0
49 50 0.5075 + j0.2585 1244 + j888
50 51 0.0974 + j0.0496 32 + j23
51 52 0.1450 + j0.0738 0
52 53 0.7105 + j0.3619 227 + j162
53 54 1.041 + j0.5302 59 + j42
11 55 0.2012 + j0.0611 18 + j13
55 56 0.0047 + j0.0014 18 + j13
12 57 0.7394 + j0.2444 28 + j20
57 58 0.0047 + j0.0016 28 + j20
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